JPS59211289A - Manufacture of amorphous silicon solar battery - Google Patents

Manufacture of amorphous silicon solar battery

Info

Publication number
JPS59211289A
JPS59211289A JP58085607A JP8560783A JPS59211289A JP S59211289 A JPS59211289 A JP S59211289A JP 58085607 A JP58085607 A JP 58085607A JP 8560783 A JP8560783 A JP 8560783A JP S59211289 A JPS59211289 A JP S59211289A
Authority
JP
Japan
Prior art keywords
layer
thickness
resistance
electrodes
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58085607A
Other languages
Japanese (ja)
Inventor
Shinji Nishiura
西浦 真治
Yoshiyuki Uchida
内田 喜之
Michiya Kamiyama
神山 道也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58085607A priority Critical patent/JPS59211289A/en
Publication of JPS59211289A publication Critical patent/JPS59211289A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To readily obtain a desired window layer thickness by previously thickly forming the window layer when forming the layer of the uppermost layer of an a-Si thin film of pin structure, forming two metal electrodes thereon, etching while measuring the resistance between the both electrodes, and obtaining the prescribed window layer thickness. CONSTITUTION:A plurality of cells 20 formed with an a-Si layer and a metal electrode pattern are placed on a susceptor 21 of a plasma etching device, metal electrodes 15, 16 are retained by a terminal 22, high frequency wave is applied to discharge it. The resistance between the electrodes 15 and 16 is gradually increased, and etching is continued until the resistance becomes, for example, 300M. At this time, since the resistance of an I type layer 3 is large, the thickness of the N type layer can be detected from the resistance between the both electrodes. The thickness of the N type layer is irregular at every cell. Accordingly, the resistance between the electrodes of one cell is monitored to control the thickness of the N type layer. In the cell having the layer 4 optimized initially in the thickness is covered with the cell by a substrate of a stainless steel, thereby preventing the etching from developing.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は金属基板上に異なる性質のアモルファスシリコ
ン薄膜を順次積層してpin接合を形成し、上面には光
の入射する領域を残して集電金属電極を設けるアモルフ
ァスシリコン太陽電池の製造方法に関する。
Detailed Description of the Invention [Technical field to which the invention pertains] The present invention forms a pin junction by sequentially stacking amorphous silicon thin films with different properties on a metal substrate, and leaves a region on the top surface where light enters to concentrate the light. The present invention relates to a method of manufacturing an amorphous silicon solar cell provided with an electric metal electrode.

〔従来技術とその問題点〕[Prior art and its problems]

アモルファスシリコン太陽電池は、低コスト太陽電池の
有力候補として注目を集めている。それは、アモルファ
スシリコン太陽電池が低温気相成長法で接合を形成する
ために作成上のエネルギー消費が少ないこと、吸収係数
が単結晶シリコンに比較して一桁以上大きいのでセル形
成上ガス消費、量が少なくてすむこと等、いくつかの利
点がおるためである。ところがまだ開発途上のためセル
効率が低い、歩留りが低い等単結晶シリコン太陽電池に
比較して、幾つかの欠点も有している。このアモルファ
スシリコン(以下a−8iと記す)太陽電池のセル効率
にはアモルファスシリコンの膜厚に依存することが分か
っている。第1図はa−8l太陽電池の構造を示す。例
えばステンレス鋼板を用いる導電状基板1を1〜10T
orrの真空中で約200〜800℃に加熱した電極上
におき、シランガスとジボランガスの混合ガスを導入し
、前記電極と対向電極との間に高周波電圧を印加してグ
ロー放電を発生させ、混合ガスを分解することによりp
形層−8層層2を約50OAの厚さに形成する。次に真
空度を−たん1O−3Torr以下にした後、シランガ
スを1〜10Torrの条件で導入して同様にグロー放
電分解によりノンドープミー8層層8を約0.5μmの
厚さに堆積する。再び1O−3Torr以下に排気の後
、シランガスとフォスフインガスの混合ガスを1〜10
Torrで導入し、グロー放電分解することによってn
形層−8層層4を約100xの厚さに形成する。すなわ
ち、a Si層10は、p形層2、ノンドープ層8、n
形層4の3層から成る。
Amorphous silicon solar cells are attracting attention as a promising candidate for low-cost solar cells. Because amorphous silicon solar cells form junctions using low-temperature vapor phase growth, they require less energy to create, and the absorption coefficient is more than an order of magnitude higher than that of single-crystal silicon, so the amount of gas consumed during cell formation is low. This is because it has several advantages, such as requiring less. However, since it is still under development, it has several drawbacks compared to single-crystal silicon solar cells, such as low cell efficiency and low yield. It is known that the cell efficiency of this amorphous silicon (hereinafter referred to as a-8i) solar cell depends on the film thickness of the amorphous silicon. FIG. 1 shows the structure of an a-8l solar cell. For example, the conductive substrate 1 using a stainless steel plate is 1 to 10T
A mixed gas of silane gas and diborane gas is placed on an electrode heated to about 200 to 800°C in a vacuum of 100° C., and a high frequency voltage is applied between the electrode and the counter electrode to generate a glow discharge and mix. p by decomposing the gas
Layer-8 Layer 2 is formed to a thickness of about 50 OA. Next, after reducing the degree of vacuum to -10-3 Torr or less, silane gas is introduced under the condition of 1 to 10 Torr, and a non-doped 8-layer layer 8 is deposited to a thickness of about 0.5 .mu.m by glow discharge decomposition. After evacuation to below 1O-3 Torr again, a mixed gas of silane gas and phosphine gas was heated to 1 to 10 Torr.
By introducing at Torr and decomposing by glow discharge, n
Layer-8 Layer 4 is formed to a thickness of approximately 100x. That is, the a Si layer 10 includes a p-type layer 2, a non-doped layer 8, and an n-type layer 2.
It consists of three layers: the shape layer 4.

又2をn形層、4をp形層とすることも可能であるが、
この場合はn形層2、p形層4の膜厚をそれぞれ約50
OA、約10OAとする必要があるoa−si層10の
上に透明電極5を形成する。透明電極5はインジラム錫
酸化物(ITO) 、S、n02等からなる透明導電膜
で蒸着等によ多形成される。膜厚は反射率を最/J%に
するため700〜800Aに設定される。この上に部分
的に集1!電極6が設けられ、これは真空蒸着または印
刷等によって形成された条状金属薄膜である。
It is also possible to make 2 an n-type layer and 4 a p-type layer, but
In this case, the thickness of the n-type layer 2 and the p-type layer 4 is approximately 50 mm.
A transparent electrode 5 is formed on the OA-Si layer 10, which needs to have an OA of about 10 OA. The transparent electrode 5 is a transparent conductive film made of indilum tin oxide (ITO), S, n02, etc., and is formed by vapor deposition or the like. The film thickness is set to 700 to 800 A to make the reflectance as low as /J%. Partial collection 1 on this! An electrode 6 is provided, which is a strip metal thin film formed by vacuum deposition, printing, or the like.

このa−8r太陽電池の出力特性の1層4、すなわち光
7の入射する側のa−8層窓層の膜厚依存性を示したも
のが第2図である。Jscは短絡電流で、1層膜厚が約
100Aのとき最大とな、D 、117M〜の値を与え
ている。Vocは開放電圧で、−1層膜厚の増大と共に
増加するが、1層膜厚約10OAで最大に達し以後一定
の値を示す。ηは変換効率で、0層膜厚増大と共に増加
するが、0層膜厚100Aのところで最大値を示し、1
層膜厚がさらに増大すると低下する。
FIG. 2 shows the dependence of the output characteristics of this A-8R solar cell on the film thickness of the first layer 4, that is, the A-8 window layer on the side where light 7 is incident. Jsc is a short circuit current, which is maximum when the thickness of one layer is about 100A, giving a value of D, 117M~. Voc is an open circuit voltage, which increases as the thickness of the −1 layer increases, but reaches a maximum when the thickness of one layer is about 10 OA, and thereafter shows a constant value. η is the conversion efficiency, which increases as the 0 layer thickness increases, but reaches its maximum value when the 0 layer thickness is 100A, and 1
It decreases as the layer thickness increases further.

これらの結果から、1層膜厚を100A近辺に制御性よ
く再現することがセルの効率および歩留シを向上させる
上で重要である。骨噸÷噸導考噂セ→噂鰺恭命=しかし
a−8膜生成装置が大きくなるとa−Stの膜厚制御が
困難となる度合が増加する。また現在の生成装置では、
窓層の形成の際はa−8i膜の成長速度を一定に抑え1
成長時間を調整することによって膜厚を決めている。寮
際に、例えば10ット4枚、10ロツトのa−8i膜層
1000A付着させた場合、成長時間による制御では膜
厚が900〜l100Aの範囲にはらついた。これは膜
厚の制御性が±10チであることを意味する。すなわち
第2図に、おいて最高値である100Aの厚さを得るつ
もシでも90層程度の1層膜厚を有するものができるこ
とになシ、特性はそれだけ悪くなる。こういう状態でa
−8i太陽電池の光入射側の窓層を形成すると、セルが
大面積の場合には全面において効率のばらつきが存在し
、全体として効率が低くなる。
From these results, it is important to reproduce the single layer thickness to around 100A with good controllability in order to improve cell efficiency and yield. However, as the a-8 film production device becomes larger, the degree to which it becomes difficult to control the a-St film thickness increases. Also, with current generation equipment,
When forming the window layer, the growth rate of the a-8i film was kept constant1
The film thickness is determined by adjusting the growth time. For example, when four 10-lot A-8I film layers of 1000 A were deposited near a dormitory, the film thickness varied within the range of 900 to 1100 A when controlled by growth time. This means that the controllability of the film thickness is ±10 inches. In other words, even if a thickness of 100 A, which is the maximum value in FIG. 2, is obtained, a film having a single layer thickness of about 90 layers is produced, and the characteristics deteriorate accordingly. In this state a
When a window layer is formed on the light incident side of a -8i solar cell, if the cell has a large area, there will be variations in efficiency over the entire surface, and the efficiency will be low as a whole.

〔発明の目的〕[Purpose of the invention]

本発明は、pinm造のa−8+薄膜を有する太陽電池
の窓層の膜厚制御を改善し、a−8+太陽電池、特に大
面積のa−8i太陽電池の効率を向上せしめることを目
的とする。
The present invention aims to improve the film thickness control of the window layer of a solar cell having an A-8+ thin film made of PIM, and to improve the efficiency of an A-8+ solar cell, especially a large-area A-8I solar cell. do.

〔発明の要点〕[Key points of the invention]

本発明はpin構造のa−8i薄膜の最上層である窓層
形成の際、予め所定の窓層厚さより厚い層を形成後集電
電極として利用できる二つの金属電極をその上に設け、
両電極間の抵抗測定によシ膜厚を検知しながら最上層の
エツチングを行って所定の窓層厚さを得ることによって
上記の目的を達成する。
In the present invention, when forming the window layer which is the top layer of the A-8I thin film with the pin structure, after forming a layer thicker than a predetermined window layer thickness in advance, two metal electrodes that can be used as current collecting electrodes are provided thereon.
The above object is achieved by etching the uppermost layer while detecting the film thickness by measuring the resistance between both electrodes to obtain a predetermined window layer thickness.

〔発明の実施例〕[Embodiments of the invention]

第8図において第1図と共通の部分には同一の符号が付
されている。7(FIIIX70+1のステンレス鋼基
板1を200〜800℃に加熱し、1〜10Torrの
真空状態でp形層−8iJi 2 t 約50OA、 
/ 7 F 7 )(ila−8層層8を約0.5μm
の厚さにそれぞれ堆積する。次にn形層−8層層14を
所望の窓層厚さ1ooXの倍の約2ooKの厚さに成長
させる。次いで真空蒸着法によってチタンまたはアルミ
ニウム膜からなる金属電極15および16を形成する・
この金属電極の膜厚は2000〜5oooXで・般社ら
れるべき集電電極と同じパターンにマスク蒸着される。
In FIG. 8, parts common to those in FIG. 1 are given the same reference numerals. 7 (Heating the stainless steel substrate 1 of FIIIX70+1 to 200 to 800°C, and forming the p-type layer −8iJi 2 t about 50OA in a vacuum state of 1 to 10 Torr,
/ 7 F 7 ) (ila-8 layer layer 8 about 0.5 μm
are deposited to a thickness of . Next, an n-8 layer 14 is grown to a thickness of about 2ooK, which is twice the desired window layer thickness of 1ooX. Next, metal electrodes 15 and 16 made of titanium or aluminum films are formed by vacuum evaporation.
The film thickness of this metal electrode is 2000 to 500X and is deposited using a mask in the same pattern as the current collecting electrode to be formed.

この金属電極15.16は第4図に示すように二つの分
離されたパターンであることが必要である。このa−8
1層と金属電極パターンを形成した4つのセル20を第
5図に示すような形でプラズマエツチング装置のサセプ
タ21に置き、サセプタ21にとルつけである端子22
で金属電極15.16をおさえる。この端子22は碍子
等の絶縁体28でサセプタとは絶縁されている。この端
子22からはそれぞれリード線がとシ出されておシ、装
置の反応槽外でこの両端子の抵抗を測定できるようKな
っている。この時、真空槽は光のはいらぬように光から
遮断され、alt層に光が入射しないようにされる。こ
うして抵抗を測定したところ、抵抗値は170順から1
30MΩにばらついた。
The metal electrodes 15, 16 need to be in two separate patterns as shown in FIG. This a-8
Four cells 20 each having one layer and a metal electrode pattern formed thereon are placed on a susceptor 21 of a plasma etching apparatus in the form shown in FIG.
Hold down the metal electrodes 15 and 16. This terminal 22 is insulated from the susceptor with an insulator 28 such as an insulator. Lead wires are drawn out from these terminals 22, respectively, so that the resistance of both terminals can be measured outside the reaction chamber of the apparatus. At this time, the vacuum chamber is shielded from light to prevent light from entering the alt layer. When the resistance was measured in this way, the resistance value was 1 from 170.
It varied to 30MΩ.

この反応槽を1O−3Torr以下に排気した後、8t
F4ガスを導入して0,2〜0.8Torrの条件で高
周波を印加して放電を行った。この際の放電パワーは2
00Wで、8iH4ガスの場合の放電パワーの約4倍で
ある。放電中は端子22から外部に引き出されているリ
ード線を短絡し、サセプタ21と同電位に保持した。1
0秒放電毎に放電をとめ暗状態にして、この電極15.
16間の抵抗を測定したところ抵抗は徐々に増大した。
After evacuating this reaction tank to below 1O-3 Torr, 8t
F4 gas was introduced and high frequency was applied under conditions of 0.2 to 0.8 Torr to cause discharge. The discharge power at this time is 2
00W, which is about four times the discharge power in the case of 8iH4 gas. During discharge, the lead wire drawn out from the terminal 22 was short-circuited to maintain the same potential as the susceptor 21. 1
After every 0 seconds of discharge, the discharge is stopped and a dark state is created, and this electrode 15.
When the resistance was measured between 16 and 16, the resistance gradually increased.

そしてこの抵抗が800順になるところまでエツチング
を続けた。同一サセプタ上ではほとんど同じ速度でn形
層がエツチングされることが確かめられた。これはガス
圧力をa”si層形成の場合の718にしてエツチング
するので、放電の均一性が良好々ためと思われる。両電
極間の抵抗800M11は1層膜厚が100Aの浮名に
相当する。このとき1層8の膜厚は0.5μmあるが抵
抗は1が1Ω以上ら9て大きいので、両電極間の抵抗か
ら1層膜厚を検知することができる。セルの1層膜厚は
各セル毎にばらついているので1つ毎セルの電極間抵抗
をモニタし1層膜厚を100λになるようコントロール
していく必要がある。膜厚が最初に最適化された0層4
を有するセルについては槽内に予め用意してあったステ
ンレスの基板をそのセルを被覆した。こうして−エツチ
ングの進展を防ぐことが出きた。真空を破るのは、すべ
てのセルの1層膜厚が最適化されてからでおる。
Etching was continued until this resistance reached 800. It was confirmed that the n-type layer was etched at almost the same speed on the same susceptor. This seems to be because the gas pressure is set to 718 for forming the a''Si layer, and the uniformity of the discharge is good.The resistance between the two electrodes, 800M11, corresponds to the thickness of one layer of 100A. At this time, the thickness of one layer 8 is 0.5 μm, but the resistance is large as 1 is 1Ω or more, so the thickness of the first layer can be detected from the resistance between both electrodes.Thickness of the first layer of the cell Since the resistance varies from cell to cell, it is necessary to monitor the interelectrode resistance of each cell and control the film thickness of one layer to 100λ.
For cells having 100% oxidation, the cells were covered with a stainless steel substrate prepared in advance in the tank. In this way, it was possible to prevent the progress of etching. The vacuum is broken only after the thickness of one layer in all cells has been optimized.

こうして得られた4つのセルに第6図に示すように透明
電極17を蒸着した。このようにしてでき上った太陽電
池セルは金属基板1と金属電極16の直上の透明電極1
7から光起電力を取り出すことができ、抵抗測定に用い
られた金属電極16が集電電極としても役立つ。でき上
った太陽電池セルの特性を測定したところ、セル特性の
ばらつきはほとんどなく 、7.5%以上の効率を達成
した。この結果は一従来の方法でつくられた10ロツト
の太陽電池セルの効率が6.5〜7.5チの範囲でばら
ついたのに対して極めてすぐれているものであることは
容易に理解できる。
Transparent electrodes 17 were deposited on the four cells thus obtained, as shown in FIG. The solar cell thus completed has a metal substrate 1 and a transparent electrode 1 directly above the metal electrode 16.
Photovoltaic force can be taken out from 7, and the metal electrode 16 used for resistance measurement also serves as a current collecting electrode. When the characteristics of the completed solar cell were measured, there was almost no variation in cell characteristics, and an efficiency of over 7.5% was achieved. It is easy to understand that this result is extremely superior to the efficiency of 10 lots of solar cells produced using the conventional method, which varied in the range of 6.5 to 7.5 inches. .

第7図は第二の実施例を示す。金属電極15.16を設
けたのちn層14をエツチングすると電極の下部はその
まま残シ、他の部分は100A程度となる。
FIG. 7 shows a second embodiment. When the n-layer 14 is etched after providing the metal electrodes 15 and 16, the lower part of the electrode remains as it is, and the other part becomes about 100A.

この場合、電極15.16とエツチングされた0層4と
の間の段差が大きくなると透明電極17がその段差部に
おいて中断されるおそれがあるので、電極15.16の
膜厚は200A程度にされる。このような薄い電極では
シート抵抗が大きくなるので、特に大面積の太陽電池セ
ルにおいては、第4図に示す金属電極15 、16の幹
部24 、25の上に透明電極層17を介して印刷電極
18を付加することによりセルの直列抵抗を小さくする
ことが有効である。金属電極15.16の枝部26,2
7は電流が小さいので付加電極を設けてもほとんど効果
がない。
In this case, if the step between the electrode 15.16 and the etched 0 layer 4 becomes large, the transparent electrode 17 may be interrupted at the step, so the film thickness of the electrode 15.16 is set to about 200A. Ru. Since such thin electrodes have a large sheet resistance, in particular in large-area solar cells, printed electrodes are placed on the trunks 24 and 25 of the metal electrodes 15 and 16 shown in FIG. 4 via a transparent electrode layer 17. It is effective to reduce the series resistance of the cell by adding 18. Branches 26, 2 of metal electrodes 15, 16
In case 7, the current is small, so providing an additional electrode has almost no effect.

n層を形成する場合シランガス1フオスフインガス、水
素ガスを1:0.01:20の比率で導入し、約200
Wのパワーでグロー放電分解すると、n層は約10OA
の結晶粒の集まった微結晶構造となる。この層線比抵抗
で1Ω備程度の値をもっている。従って、第8図に示し
た左右の金属電極15.16間の抵抗は20臥の0層形
成後18KQ−17KOの値となった。この場合100
Aのn層を得るには、この両者の抵抗が80KOとなる
までn層をエツチングするとよいことがわかった。
When forming the n-layer, introduce silane gas, phosphine gas, and hydrogen gas at a ratio of 1:0.01:20, approximately 200
When decomposed by glow discharge with the power of W, the n-layer has a power of about 10OA.
It has a microcrystalline structure with a collection of crystal grains. This layer wire specific resistance has a value of about 1Ω. Therefore, the resistance between the left and right metal electrodes 15 and 16 shown in FIG. 8 had a value of 18KQ-17KO after 20 layers of zero layer were formed. In this case 100
It has been found that in order to obtain the n-layer of A, it is best to etch the n-layer until the resistance of both becomes 80 KO.

上記の実施例では最上層としてn層を有する場合につい
て述べたが、基板側から順にa−8i薄膜のn層、i層
、p層を積層してpin接合を形成する場合にも最上層
のp層の最適厚さを得るために本発明を適用することが
できる。
In the above embodiment, the case where the n-layer is the top layer has been described, but the top layer can also be formed when the n-layer, i-layer, and p-layer of the a-8i thin film are laminated in order from the substrate side to form a pin junction. The invention can be applied to obtain the optimum thickness of the p-layer.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明はpin構造を有するa−81
薄膜の窓層の厚さを最適値にするために、予め最上層を
厚く形成しておきその上に設けた二つの金属電極間の抵
抗を測定しながらエツチングするもので、これによシ所
望の窓層厚さを容易に得るこトカでき、特性の良好なア
モルファスシリコン太陽電池の製造方法として極めて有
効である@
As described above, the present invention provides a-81 with a pin structure.
In order to optimize the thickness of the thin window layer, a thick top layer is formed in advance, and the resistance between two metal electrodes placed on top of it is measured while being etched. It is extremely effective as a method for manufacturing amorphous silicon solar cells with good characteristics, as it is possible to easily obtain a window layer thickness of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のa−8i太陽電池の断面図、第2図はa
−8i太陽電池の出力特性の1層膜厚依存性を示す1#
!図、第3図は本発明の一実施例大面積a−81太陽電
池の製造中間段階での断面図、第4図は第8図と同じ段
階での平面図、第5図はその実施例におけるプラズマエ
ツチング操作を示す平面図、第6図はその実施例による
太陽電池の断面図、第7図は別の実施例によるa 5i
太陽電池の断面図である。 1・・・金属基板、2・・・a−8ip層、8・・・a
−8ii層、4−a−8in層(窓層)、14−a−8
in層、15.16・・・金属電極。 オ  1  図 ?24 a −so R’k ’# 才  、  図  1121 オ  3  関 で  4  図
Figure 1 is a cross-sectional view of a conventional A-8i solar cell, Figure 2 is a
-1# showing the dependence of the output characteristics of the -8i solar cell on the thickness of one layer
! Figure 3 is a sectional view at an intermediate stage in the production of a large-area A-81 solar cell according to an embodiment of the present invention, Figure 4 is a plan view at the same stage as Figure 8, and Figure 5 is an embodiment thereof. FIG. 6 is a cross-sectional view of a solar cell according to this embodiment, and FIG. 7 is a plan view showing a plasma etching operation according to another embodiment.
FIG. 2 is a cross-sectional view of a solar cell. 1... Metal substrate, 2... a-8ip layer, 8... a
-8ii layer, 4-a-8in layer (window layer), 14-a-8
in layer, 15.16...metal electrode. O 1 Figure? 24 a -so R'k '# , Figure 1121 O 3 Seki de 4 Figure 1121

Claims (1)

【特許請求の範囲】[Claims] 1)金属基板上に性質の異なるアモルファスシリコン薄
膜を順次積層してpin接合を形成し、上面に光の入射
領域を残して集電金属電極を設ける方法において、アモ
ルファスシリコン薄膜の最上層を予め所定の窓層厚さよ
シ厚く形成後、その上に集電電極として利用できる二つ
に分離された金属電極を設け、両金属間の抵抗測定によ
如膜厚を検知しながら最上層のコツチングを行い所定の
窓層厚さを得ることを特徴とするアモルファスシリコン
太陽電池の製造方法。
1) In a method in which amorphous silicon thin films with different properties are sequentially laminated on a metal substrate to form a pin junction and a current collecting metal electrode is provided leaving a light incident area on the top surface, the uppermost layer of the amorphous silicon thin film is predetermined. After forming a window layer thicker than the window layer, a metal electrode separated into two parts that can be used as a current collecting electrode is placed on top of the window layer, and the thickness of the top layer is detected by measuring the resistance between the two metals. 1. A method for producing an amorphous silicon solar cell, the method comprising: obtaining a predetermined window layer thickness.
JP58085607A 1983-05-16 1983-05-16 Manufacture of amorphous silicon solar battery Pending JPS59211289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085607A JPS59211289A (en) 1983-05-16 1983-05-16 Manufacture of amorphous silicon solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085607A JPS59211289A (en) 1983-05-16 1983-05-16 Manufacture of amorphous silicon solar battery

Publications (1)

Publication Number Publication Date
JPS59211289A true JPS59211289A (en) 1984-11-30

Family

ID=13863512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085607A Pending JPS59211289A (en) 1983-05-16 1983-05-16 Manufacture of amorphous silicon solar battery

Country Status (1)

Country Link
JP (1) JPS59211289A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584292A (en) * 1984-10-19 1986-04-22 Kotobuki Seiyaku Co., Ltd. Antihypertensive 1,5-benzothiazepine derivatives and compositions thereof
JP2016535448A (en) * 2013-10-30 2016-11-10 ベイジン アポロ ディン ロン ソーラー テクノロジー カンパニー リミテッド Thin film solar cell module manufacturing method and thin film solar cell module
WO2019164444A1 (en) * 2018-02-22 2019-08-29 Solibro Research Ab Optimized top contact grid design for thin film solar cells and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584292A (en) * 1984-10-19 1986-04-22 Kotobuki Seiyaku Co., Ltd. Antihypertensive 1,5-benzothiazepine derivatives and compositions thereof
JP2016535448A (en) * 2013-10-30 2016-11-10 ベイジン アポロ ディン ロン ソーラー テクノロジー カンパニー リミテッド Thin film solar cell module manufacturing method and thin film solar cell module
WO2019164444A1 (en) * 2018-02-22 2019-08-29 Solibro Research Ab Optimized top contact grid design for thin film solar cells and method of producing the same

Similar Documents

Publication Publication Date Title
US4873118A (en) Oxygen glow treating of ZnO electrode for thin film silicon solar cell
US4746618A (en) Method of continuously forming an array of photovoltaic cells electrically connected in series
US6700057B2 (en) Photovoltaic device
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
JPH0230176B2 (en)
JPH04266019A (en) Film formation
CN218788382U (en) High-efficiency heterojunction solar cell
JPH0432552B2 (en)
US4799968A (en) Photovoltaic device
JPH0992860A (en) Photovoltaic element
JPS59211289A (en) Manufacture of amorphous silicon solar battery
US4680607A (en) Photovoltaic cell
JPS6132416A (en) Manufacture of semiconductor device
JPH0282655A (en) Manufacture of photovolatic device
JPH03101274A (en) Manufacture of amorphous solar cell
JP2757896B2 (en) Photovoltaic device
JP3272681B2 (en) Solar cell manufacturing method
JP2004253417A (en) Method of manufacturing thin film solar cell
JPH10200139A (en) Amorphous semiconductor solar battery
JPH0620147B2 (en) Photovoltaic device
JP2000208787A (en) Solar battery
JP2644901B2 (en) Method for manufacturing pin type amorphous silicon solar cell
CN117976769A (en) Preparation method of TOPCon battery structure
JPH04212474A (en) Manufacture of thin film solar battery
JPH02177371A (en) Manufacture of amorphous solar cell