JPS62142366A - Manufacture of substrate for thin film solar battery - Google Patents
Manufacture of substrate for thin film solar batteryInfo
- Publication number
- JPS62142366A JPS62142366A JP60283465A JP28346585A JPS62142366A JP S62142366 A JPS62142366 A JP S62142366A JP 60283465 A JP60283465 A JP 60283465A JP 28346585 A JP28346585 A JP 28346585A JP S62142366 A JPS62142366 A JP S62142366A
- Authority
- JP
- Japan
- Prior art keywords
- alumite
- oxalic acid
- substrate
- temperature
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 17
- 239000010409 thin film Substances 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 48
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 238000007743 anodising Methods 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002048 anodisation reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- WMYWOWFOOVUPFY-UHFFFAOYSA-L dihydroxy(dioxo)chromium;phosphoric acid Chemical compound OP(O)(O)=O.O[Cr](O)(=O)=O WMYWOWFOOVUPFY-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03921—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、アルミニウムまたはアルミニウム合金板の表
面をシュウ酸陽極酸化法による酸化アルマイトで覆い絶
縁化した、集積型薄膜太陽電池用基板の製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a substrate for an integrated thin film solar cell, in which the surface of an aluminum or aluminum alloy plate is covered with an oxidized alumite formed by an oxalic acid anodization method to insulate it. It is.
従来の技術 アルミニウムまたはアルミニウム合金は軽量。Conventional technology Aluminum or aluminum alloy is lightweight.
安価な素材としてa−3t太陽電池用基板としての利用
が検討され、いくつかの方法によって表面に絶縁性を付
与して集積型太陽電池用基板として使用することが可能
である。絶縁性を付与する方法としては、例えば(1)
ポリイミド等の耐熱性樹脂のコーティング、またはフィ
ルムの接着、(2)クロム酸塩、リン酸−クロム酸塩等
の化成処理皮膜による絶縁、(3)陽極酸化アルミナに
よる絶縁皮膜の形成が考えられているが、なかでも陽極
酸化アルミナはコスト性、耐久性を考慮すると最も優れ
た絶縁皮膜であると考えられる。陽極酸化アルミナの種
類については種々のものが知られているが、太陽電池用
基板としては耐熱クラリフ性の漫またノユウ酸陽極酸化
アルミナ基板が最適であることが知られている。As an inexpensive material, its use as a substrate for A-3T solar cells is being considered, and it is possible to use it as a substrate for integrated solar cells by imparting insulation to the surface using several methods. Examples of methods for imparting insulation include (1)
Coating with heat-resistant resin such as polyimide or adhesion of film, (2) insulation with chemical conversion coatings such as chromate, phosphoric acid-chromate, and (3) formation of insulation coating with anodized alumina are considered. However, anodized alumina is considered to be the most excellent insulating film in terms of cost and durability. Although various kinds of anodized alumina are known, it is known that a heat-resistant chloride anodized alumina substrate is optimal as a substrate for a solar cell.
発明が解決しようとする問題点
このような従来の製造方法としてシュウ;硬陽極酸化ア
ルマイトを形成する場合、−改に浴温度:i30±2℃
に制御されているが、こD浴温で陽極酸化アルマイトを
形成し、この上にa−5i太陽電池を形成するとa−S
i堆積時の高温が原因となり陽極酸化アルマイト中にク
ラックが発生し、・41 極酸化アルマイトの絶縁性が
破壊され、第3図に示すように、アルミニウム基板1片
面上の陽極酸化アルマイト2中のクラック6が導通部と
なるだめに、集積型a−3i太陽電池4の複数の素子の
短絡し合う金属下部電接3が同電位となり、不良なa−
5L太陽電池となるという問題点があった。本発明はこ
のような問題点を解決するもので、陽極酸化法における
浴温度を制御することを目的とするものである。Problems to be Solved by the Invention In the conventional manufacturing method, when forming hard anodized alumite, the bath temperature is 30±2°C.
However, if anodized alumite is formed at this D bath temperature and an a-5i solar cell is formed on it, the a-S
Due to the high temperature during deposition, cracks occur in the anodized alumite, and the insulation properties of the anodized alumite are destroyed, resulting in cracks in the anodized alumite 2 on one side of the aluminum substrate 1, as shown in Figure 3. In order for the crack 6 to become a conductive part, the metal lower electrical contacts 3 of the multiple elements of the integrated A-3I solar cell 4 that are shorted to each other become at the same potential, causing a defective A-3I solar cell 4 to become electrically conductive.
There was a problem in that it was a 5L solar cell. The present invention solves these problems and aims to control the bath temperature in anodization.
問題点を解決するだめの手段
この問題点を解決するために、本発明は、シュウ酸浴の
温度を30℃以上46℃未満に制御したことを特徴とす
るものである。Means for Solving the Problem In order to solve this problem, the present invention is characterized in that the temperature of the oxalic acid bath is controlled to 30°C or more and less than 46°C.
作 用
シュウ酸浴の温度を30℃以上46℃未満にすると、ア
ルマイト皮膜の耐熱性が向上するため、a−5i堆積時
の300℃の高温下でもクラックは発生せず、アルマイ
ト上に複数の素子が直列接続された集積型a−3i太陽
電池が得られる。Effect When the temperature of the oxalic acid bath is set to 30°C or more and less than 46°C, the heat resistance of the alumite film improves, so no cracks occur even at a high temperature of 300°C during a-5i deposition, and multiple cracks appear on the alumite. An integrated a-3i solar cell in which elements are connected in series is obtained.
実施例 本発明の一実施例を添付図面に基づいて説明する。Example An embodiment of the present invention will be described based on the accompanying drawings.
第1図は本発明によって得られるa−3i太陽電池用基
板を使用したa−Si太陽電池の構成図である。1は純
度99.99%のアルミニウム薄板である。2は温度が
30℃以上46℃未満に制御されたシュウ酸浴で形成さ
れたシュウ酸陽極酸化アルマイトである。3はCr、
ステンレス、チタン等の薄膜より成る金属下部電極。FIG. 1 is a block diagram of an a-Si solar cell using an a-3i solar cell substrate obtained according to the present invention. 1 is an aluminum thin plate with a purity of 99.99%. 2 is oxalic acid anodic oxidation alumite formed in an oxalic acid bath whose temperature is controlled at 30°C or higher and lower than 46°C. 3 is Cr;
A metal lower electrode made of a thin film of stainless steel, titanium, etc.
4はa−3iであり、通常のプラズマCVD法によって
作製し、p型a−SL、i型a−8i、n型a−3iと
順次堆積されている。6は5%のS n O2を含有し
た工n2o3より成る透明導電層である。Reference numeral 4 denotes a-3i, which is manufactured by a normal plasma CVD method, and p-type a-SL, i-type a-8i, and n-type a-3i are sequentially deposited. 6 is a transparent conductive layer made of n2o3 containing 5% SnO2.
次に、第2図を用いてシュウ酸陽極酸化アルマイト2の
形成工程について説明を行なう。横軸にシュウ酸浴の温
度〔℃〕と、縦軸にシュウ酸陽極酸化アルマイトを30
0℃に加熱した後にアルマイト中に発生するクラック発
生率〔%〕を示した。Next, the process of forming the oxalic acid anodized alumite 2 will be explained using FIG. The horizontal axis shows the temperature of the oxalic acid bath [℃], and the vertical axis shows the temperature of the oxalic acid anodized alumite at 30°C.
The crack generation rate [%] generated in alumite after heating to 0°C is shown.
クラックの発生はアルマイト表面に面積1dの今頃薄膜
を蒸着し、今頃薄膜とアルミニウム間の抵抗を測定し、
抵抗が1MΩ以下のものをアルマイト中にクラックが発
生していると判定し、各プロットに対し試料数100ケ
の場合のクラック発生率を測定した。浴温か低いほどク
ラックの発生率は高く、浴温か高いほど発生率は低い。The occurrence of cracks can be determined by depositing a thin film with an area of 1 d on the alumite surface and measuring the resistance between the thin film and aluminum.
When the resistance was 1 MΩ or less, it was determined that cracks had occurred in the alumite, and the crack occurrence rate was measured for 100 samples for each plot. The lower the bath temperature, the higher the crack occurrence rate, and the higher the bath temperature, the lower the crack occurrence rate.
これは浴温か高いほどアルマイトの硬匿が低くなること
が知られており、300℃の加熱による熱膨張にアルマ
イトが耐えることが可能になるものと考えられる。浴温
が30℃以上になるとクラック発生率が○となり、a−
3t太陽電池用基板としての使用が可能になる。しかし
、浴温か46℃より高くなるとアルマイト皮膜の生長遮
塵よりもアルミニウムの溶解速度の方が速くなり、アル
マイトの生長が困難となる。This is because it is known that the higher the bath temperature, the lower the hardness of alumite, and it is thought that this makes it possible for alumite to withstand thermal expansion due to heating at 300°C. When the bath temperature is 30°C or higher, the crack occurrence rate becomes ○, and a-
It can be used as a substrate for 3t solar cells. However, if the bath temperature becomes higher than 46° C., the dissolution rate of aluminum becomes faster than the alumite film that prevents dust from growing, making it difficult to grow the alumite.
以上のことからシュウ酸浴の温度は30℃から46℃未
満に制御したものがa−Si太陽電池用基板としては最
適である。From the above, it is optimal for an a-Si solar cell substrate to control the temperature of the oxalic acid bath from 30°C to less than 46°C.
発明の効果
このように本発明ではクラックの発生がないアルマイト
により片面を絶縁化したアルミニウム基板を提供でき、
1素子の面積を大きく敗ることができ、大面積化を容易
にすることができる価1面ある薄膜太陽電池用基板の製
造方法を提供するものである。Effects of the Invention As described above, the present invention can provide an aluminum substrate insulated on one side by alumite that does not cause cracks.
The present invention provides a method for manufacturing a substrate for a thin film solar cell with one surface, which can greatly reduce the area of one element and can easily increase the area.
第1図は本発明によって得られた基板を用いて構成した
a−9i太陽電池の構成を示す図、第2図はシュウ酸浴
温度と陽極酸化アルマイトの加熱によるクラック発生率
との関係を示す図、第3図は従来のアルミニウム基板を
用いたa−3L太陽電池の構成を示す図である。
1・・・・・アルミニウム薄板、2・・・・・・シュウ
酸陽極酸化アルマイト、6・・・・・・クラック。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
シユウ醇浴の5毘多
〔0C〕Fig. 1 shows the structure of an a-9i solar cell constructed using the substrate obtained according to the present invention, and Fig. 2 shows the relationship between the oxalic acid bath temperature and the crack occurrence rate due to heating of anodized alumite. 3 are diagrams showing the structure of an a-3L solar cell using a conventional aluminum substrate. 1...Aluminum thin plate, 2...Oxalic acid anodized alumite, 6...Crack. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: 5 baths [0C]
Claims (1)
の表面をシュウ酸陽極酸化アルミナによって絶縁化した
薄膜太陽電池用基板の陽極酸化工程において、30℃以
上46℃未満に温度制御されたシュウ酸浴を使用するこ
とを特徴とする薄膜太陽電池用基板の製造方法。In the anodizing process of a thin film solar cell substrate in which at least one surface of aluminum or aluminum alloy is insulated with oxalic acid anodized alumina, an oxalic acid bath whose temperature is controlled at 30°C or higher and lower than 46°C is used. A method for manufacturing a thin film solar cell substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60283465A JPS62142366A (en) | 1985-12-17 | 1985-12-17 | Manufacture of substrate for thin film solar battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60283465A JPS62142366A (en) | 1985-12-17 | 1985-12-17 | Manufacture of substrate for thin film solar battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62142366A true JPS62142366A (en) | 1987-06-25 |
Family
ID=17665897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60283465A Pending JPS62142366A (en) | 1985-12-17 | 1985-12-17 | Manufacture of substrate for thin film solar battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62142366A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5558723A (en) * | 1994-04-15 | 1996-09-24 | Siemens Solar Gmbh | Thin-film solar module with electrically conductive substrate and method for the manufacture thereof |
US20110192451A1 (en) * | 2010-02-08 | 2011-08-11 | Fujifilm Corporation | Metal substrate with insulation layer and method for manufacturing the same, semiconductor device and method for manufacturing the same, and solar cell and method for manufacturing the same |
WO2011096209A1 (en) * | 2010-02-08 | 2011-08-11 | Fujifilm Corporation | Metal substrate with insulation layer and manufacturing method thereof, semiconductor device and manufacturing method thereof, solar cell and manufacturing method thereof, electronic circuit and manufacturing method thereof, and light-emitting element and manufacturing method thereof |
-
1985
- 1985-12-17 JP JP60283465A patent/JPS62142366A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5558723A (en) * | 1994-04-15 | 1996-09-24 | Siemens Solar Gmbh | Thin-film solar module with electrically conductive substrate and method for the manufacture thereof |
US20110192451A1 (en) * | 2010-02-08 | 2011-08-11 | Fujifilm Corporation | Metal substrate with insulation layer and method for manufacturing the same, semiconductor device and method for manufacturing the same, and solar cell and method for manufacturing the same |
WO2011096209A1 (en) * | 2010-02-08 | 2011-08-11 | Fujifilm Corporation | Metal substrate with insulation layer and manufacturing method thereof, semiconductor device and manufacturing method thereof, solar cell and manufacturing method thereof, electronic circuit and manufacturing method thereof, and light-emitting element and manufacturing method thereof |
JP2011181887A (en) * | 2010-02-08 | 2011-09-15 | Fujifilm Corp | Metal substrate with insulating layer and manufacturing method thereof, semiconductor device and manufacturing method thereof, solar cell and manufacturing method thereof, electronic circuit and manufacturing method thereof, and light-emitting element and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6289369A (en) | Photovoltaic device | |
US3461058A (en) | Method of producing a composite electrode | |
JPS62142366A (en) | Manufacture of substrate for thin film solar battery | |
JP2574699B2 (en) | Oxygen generating anode and its manufacturing method | |
JPS63249379A (en) | Manufacture of substrate for thin film solar cell | |
JPS61116883A (en) | Transparent electrode with metal wiring | |
JPH0133909B2 (en) | ||
KR101133151B1 (en) | Method for manufacturing electrode for vapor deposition process | |
JPS61284971A (en) | Substrate for thin film solar battery | |
JPS63222468A (en) | Substrate for amorphous silicon solar cell | |
JP2000286432A (en) | Solar battery element, substrate therefor and its manufacture | |
JPS63249380A (en) | Manufacture of substrate for thin film solar cell | |
CN1026186C (en) | Isotation technology for metal surface medium film | |
JPS6148798B2 (en) | ||
JP2005163096A5 (en) | ||
JPS58173873A (en) | Amorphous si solar battery and manufacture thereof | |
JPS60214572A (en) | Thin-film solar cell and manufacture thereof | |
JPS61133675A (en) | Manufacture of substrate for amorphous si solar battery | |
JPS639744B2 (en) | ||
JPS63250866A (en) | Manufacture of substrate for thin film solar cell | |
CN1349371A (en) | Electromolded electrothermal alloy element and its making process | |
JPS6351003B2 (en) | ||
JPS6170766A (en) | Thin-film solar cell | |
JPS5935439B2 (en) | Manufacturing method of insoluble anode for electrolysis | |
JPH05209299A (en) | Insoluble electrode and its production |