JPS62142366A - Manufacture of substrate for thin film solar battery - Google Patents

Manufacture of substrate for thin film solar battery

Info

Publication number
JPS62142366A
JPS62142366A JP60283465A JP28346585A JPS62142366A JP S62142366 A JPS62142366 A JP S62142366A JP 60283465 A JP60283465 A JP 60283465A JP 28346585 A JP28346585 A JP 28346585A JP S62142366 A JPS62142366 A JP S62142366A
Authority
JP
Japan
Prior art keywords
alumite
oxalic acid
substrate
temperature
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283465A
Other languages
Japanese (ja)
Inventor
Koichi Yamasaka
山坂 孝一
Koshiro Mori
森 幸四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60283465A priority Critical patent/JPS62142366A/en
Publication of JPS62142366A publication Critical patent/JPS62142366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form an aluminum substrate, whose one surface is insulated with alumite on which cracks are not yielded, by using oxalic acid bath, whose temperature is controlled. CONSTITUTION:The temperature of oxalic acid bath in an anodic oxidation method is controlled above 30 deg.C and below 46 deg.C. When the temperature of the oxalic acid bath is set above 30 deg.C and below 46 deg.C, cracks are not yielded even at the high temperature of 300 deg.C when a-Si is deposited since the heat resistance of an alumite film is improved. Thus, an integrated a-Si solar battery, in which a plurality of elements are connected in series on the alumite, is obtained. Therefore, the area of one element can be made wide, and the large area can be readily implemented for the battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルミニウムまたはアルミニウム合金板の表
面をシュウ酸陽極酸化法による酸化アルマイトで覆い絶
縁化した、集積型薄膜太陽電池用基板の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a substrate for an integrated thin film solar cell, in which the surface of an aluminum or aluminum alloy plate is covered with an oxidized alumite formed by an oxalic acid anodization method to insulate it. It is.

従来の技術 アルミニウムまたはアルミニウム合金は軽量。Conventional technology Aluminum or aluminum alloy is lightweight.

安価な素材としてa−3t太陽電池用基板としての利用
が検討され、いくつかの方法によって表面に絶縁性を付
与して集積型太陽電池用基板として使用することが可能
である。絶縁性を付与する方法としては、例えば(1)
ポリイミド等の耐熱性樹脂のコーティング、またはフィ
ルムの接着、(2)クロム酸塩、リン酸−クロム酸塩等
の化成処理皮膜による絶縁、(3)陽極酸化アルミナに
よる絶縁皮膜の形成が考えられているが、なかでも陽極
酸化アルミナはコスト性、耐久性を考慮すると最も優れ
た絶縁皮膜であると考えられる。陽極酸化アルミナの種
類については種々のものが知られているが、太陽電池用
基板としては耐熱クラリフ性の漫またノユウ酸陽極酸化
アルミナ基板が最適であることが知られている。
As an inexpensive material, its use as a substrate for A-3T solar cells is being considered, and it is possible to use it as a substrate for integrated solar cells by imparting insulation to the surface using several methods. Examples of methods for imparting insulation include (1)
Coating with heat-resistant resin such as polyimide or adhesion of film, (2) insulation with chemical conversion coatings such as chromate, phosphoric acid-chromate, and (3) formation of insulation coating with anodized alumina are considered. However, anodized alumina is considered to be the most excellent insulating film in terms of cost and durability. Although various kinds of anodized alumina are known, it is known that a heat-resistant chloride anodized alumina substrate is optimal as a substrate for a solar cell.

発明が解決しようとする問題点 このような従来の製造方法としてシュウ;硬陽極酸化ア
ルマイトを形成する場合、−改に浴温度:i30±2℃
に制御されているが、こD浴温で陽極酸化アルマイトを
形成し、この上にa−5i太陽電池を形成するとa−S
i堆積時の高温が原因となり陽極酸化アルマイト中にク
ラックが発生し、・41 極酸化アルマイトの絶縁性が
破壊され、第3図に示すように、アルミニウム基板1片
面上の陽極酸化アルマイト2中のクラック6が導通部と
なるだめに、集積型a−3i太陽電池4の複数の素子の
短絡し合う金属下部電接3が同電位となり、不良なa−
5L太陽電池となるという問題点があった。本発明はこ
のような問題点を解決するもので、陽極酸化法における
浴温度を制御することを目的とするものである。
Problems to be Solved by the Invention In the conventional manufacturing method, when forming hard anodized alumite, the bath temperature is 30±2°C.
However, if anodized alumite is formed at this D bath temperature and an a-5i solar cell is formed on it, the a-S
Due to the high temperature during deposition, cracks occur in the anodized alumite, and the insulation properties of the anodized alumite are destroyed, resulting in cracks in the anodized alumite 2 on one side of the aluminum substrate 1, as shown in Figure 3. In order for the crack 6 to become a conductive part, the metal lower electrical contacts 3 of the multiple elements of the integrated A-3I solar cell 4 that are shorted to each other become at the same potential, causing a defective A-3I solar cell 4 to become electrically conductive.
There was a problem in that it was a 5L solar cell. The present invention solves these problems and aims to control the bath temperature in anodization.

問題点を解決するだめの手段 この問題点を解決するために、本発明は、シュウ酸浴の
温度を30℃以上46℃未満に制御したことを特徴とす
るものである。
Means for Solving the Problem In order to solve this problem, the present invention is characterized in that the temperature of the oxalic acid bath is controlled to 30°C or more and less than 46°C.

作   用 シュウ酸浴の温度を30℃以上46℃未満にすると、ア
ルマイト皮膜の耐熱性が向上するため、a−5i堆積時
の300℃の高温下でもクラックは発生せず、アルマイ
ト上に複数の素子が直列接続された集積型a−3i太陽
電池が得られる。
Effect When the temperature of the oxalic acid bath is set to 30°C or more and less than 46°C, the heat resistance of the alumite film improves, so no cracks occur even at a high temperature of 300°C during a-5i deposition, and multiple cracks appear on the alumite. An integrated a-3i solar cell in which elements are connected in series is obtained.

実施例 本発明の一実施例を添付図面に基づいて説明する。Example An embodiment of the present invention will be described based on the accompanying drawings.

第1図は本発明によって得られるa−3i太陽電池用基
板を使用したa−Si太陽電池の構成図である。1は純
度99.99%のアルミニウム薄板である。2は温度が
30℃以上46℃未満に制御されたシュウ酸浴で形成さ
れたシュウ酸陽極酸化アルマイトである。3はCr、 
 ステンレス、チタン等の薄膜より成る金属下部電極。
FIG. 1 is a block diagram of an a-Si solar cell using an a-3i solar cell substrate obtained according to the present invention. 1 is an aluminum thin plate with a purity of 99.99%. 2 is oxalic acid anodic oxidation alumite formed in an oxalic acid bath whose temperature is controlled at 30°C or higher and lower than 46°C. 3 is Cr;
A metal lower electrode made of a thin film of stainless steel, titanium, etc.

4はa−3iであり、通常のプラズマCVD法によって
作製し、p型a−SL、i型a−8i、n型a−3iと
順次堆積されている。6は5%のS n O2を含有し
た工n2o3より成る透明導電層である。
Reference numeral 4 denotes a-3i, which is manufactured by a normal plasma CVD method, and p-type a-SL, i-type a-8i, and n-type a-3i are sequentially deposited. 6 is a transparent conductive layer made of n2o3 containing 5% SnO2.

次に、第2図を用いてシュウ酸陽極酸化アルマイト2の
形成工程について説明を行なう。横軸にシュウ酸浴の温
度〔℃〕と、縦軸にシュウ酸陽極酸化アルマイトを30
0℃に加熱した後にアルマイト中に発生するクラック発
生率〔%〕を示した。
Next, the process of forming the oxalic acid anodized alumite 2 will be explained using FIG. The horizontal axis shows the temperature of the oxalic acid bath [℃], and the vertical axis shows the temperature of the oxalic acid anodized alumite at 30°C.
The crack generation rate [%] generated in alumite after heating to 0°C is shown.

クラックの発生はアルマイト表面に面積1dの今頃薄膜
を蒸着し、今頃薄膜とアルミニウム間の抵抗を測定し、
抵抗が1MΩ以下のものをアルマイト中にクラックが発
生していると判定し、各プロットに対し試料数100ケ
の場合のクラック発生率を測定した。浴温か低いほどク
ラックの発生率は高く、浴温か高いほど発生率は低い。
The occurrence of cracks can be determined by depositing a thin film with an area of 1 d on the alumite surface and measuring the resistance between the thin film and aluminum.
When the resistance was 1 MΩ or less, it was determined that cracks had occurred in the alumite, and the crack occurrence rate was measured for 100 samples for each plot. The lower the bath temperature, the higher the crack occurrence rate, and the higher the bath temperature, the lower the crack occurrence rate.

これは浴温か高いほどアルマイトの硬匿が低くなること
が知られており、300℃の加熱による熱膨張にアルマ
イトが耐えることが可能になるものと考えられる。浴温
が30℃以上になるとクラック発生率が○となり、a−
3t太陽電池用基板としての使用が可能になる。しかし
、浴温か46℃より高くなるとアルマイト皮膜の生長遮
塵よりもアルミニウムの溶解速度の方が速くなり、アル
マイトの生長が困難となる。
This is because it is known that the higher the bath temperature, the lower the hardness of alumite, and it is thought that this makes it possible for alumite to withstand thermal expansion due to heating at 300°C. When the bath temperature is 30°C or higher, the crack occurrence rate becomes ○, and a-
It can be used as a substrate for 3t solar cells. However, if the bath temperature becomes higher than 46° C., the dissolution rate of aluminum becomes faster than the alumite film that prevents dust from growing, making it difficult to grow the alumite.

以上のことからシュウ酸浴の温度は30℃から46℃未
満に制御したものがa−Si太陽電池用基板としては最
適である。
From the above, it is optimal for an a-Si solar cell substrate to control the temperature of the oxalic acid bath from 30°C to less than 46°C.

発明の効果 このように本発明ではクラックの発生がないアルマイト
により片面を絶縁化したアルミニウム基板を提供でき、
1素子の面積を大きく敗ることができ、大面積化を容易
にすることができる価1面ある薄膜太陽電池用基板の製
造方法を提供するものである。
Effects of the Invention As described above, the present invention can provide an aluminum substrate insulated on one side by alumite that does not cause cracks.
The present invention provides a method for manufacturing a substrate for a thin film solar cell with one surface, which can greatly reduce the area of one element and can easily increase the area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって得られた基板を用いて構成した
a−9i太陽電池の構成を示す図、第2図はシュウ酸浴
温度と陽極酸化アルマイトの加熱によるクラック発生率
との関係を示す図、第3図は従来のアルミニウム基板を
用いたa−3L太陽電池の構成を示す図である。 1・・・・・アルミニウム薄板、2・・・・・・シュウ
酸陽極酸化アルマイト、6・・・・・・クラック。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 シユウ醇浴の5毘多 〔0C〕
Fig. 1 shows the structure of an a-9i solar cell constructed using the substrate obtained according to the present invention, and Fig. 2 shows the relationship between the oxalic acid bath temperature and the crack occurrence rate due to heating of anodized alumite. 3 are diagrams showing the structure of an a-3L solar cell using a conventional aluminum substrate. 1...Aluminum thin plate, 2...Oxalic acid anodized alumite, 6...Crack. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: 5 baths [0C]

Claims (1)

【特許請求の範囲】[Claims] アルミニウムまたはアルミニウム合金の少なくとも一方
の表面をシュウ酸陽極酸化アルミナによって絶縁化した
薄膜太陽電池用基板の陽極酸化工程において、30℃以
上46℃未満に温度制御されたシュウ酸浴を使用するこ
とを特徴とする薄膜太陽電池用基板の製造方法。
In the anodizing process of a thin film solar cell substrate in which at least one surface of aluminum or aluminum alloy is insulated with oxalic acid anodized alumina, an oxalic acid bath whose temperature is controlled at 30°C or higher and lower than 46°C is used. A method for manufacturing a thin film solar cell substrate.
JP60283465A 1985-12-17 1985-12-17 Manufacture of substrate for thin film solar battery Pending JPS62142366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283465A JPS62142366A (en) 1985-12-17 1985-12-17 Manufacture of substrate for thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283465A JPS62142366A (en) 1985-12-17 1985-12-17 Manufacture of substrate for thin film solar battery

Publications (1)

Publication Number Publication Date
JPS62142366A true JPS62142366A (en) 1987-06-25

Family

ID=17665897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283465A Pending JPS62142366A (en) 1985-12-17 1985-12-17 Manufacture of substrate for thin film solar battery

Country Status (1)

Country Link
JP (1) JPS62142366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558723A (en) * 1994-04-15 1996-09-24 Siemens Solar Gmbh Thin-film solar module with electrically conductive substrate and method for the manufacture thereof
US20110192451A1 (en) * 2010-02-08 2011-08-11 Fujifilm Corporation Metal substrate with insulation layer and method for manufacturing the same, semiconductor device and method for manufacturing the same, and solar cell and method for manufacturing the same
WO2011096209A1 (en) * 2010-02-08 2011-08-11 Fujifilm Corporation Metal substrate with insulation layer and manufacturing method thereof, semiconductor device and manufacturing method thereof, solar cell and manufacturing method thereof, electronic circuit and manufacturing method thereof, and light-emitting element and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558723A (en) * 1994-04-15 1996-09-24 Siemens Solar Gmbh Thin-film solar module with electrically conductive substrate and method for the manufacture thereof
US20110192451A1 (en) * 2010-02-08 2011-08-11 Fujifilm Corporation Metal substrate with insulation layer and method for manufacturing the same, semiconductor device and method for manufacturing the same, and solar cell and method for manufacturing the same
WO2011096209A1 (en) * 2010-02-08 2011-08-11 Fujifilm Corporation Metal substrate with insulation layer and manufacturing method thereof, semiconductor device and manufacturing method thereof, solar cell and manufacturing method thereof, electronic circuit and manufacturing method thereof, and light-emitting element and manufacturing method thereof
JP2011181887A (en) * 2010-02-08 2011-09-15 Fujifilm Corp Metal substrate with insulating layer and manufacturing method thereof, semiconductor device and manufacturing method thereof, solar cell and manufacturing method thereof, electronic circuit and manufacturing method thereof, and light-emitting element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS6289369A (en) Photovoltaic device
US3461058A (en) Method of producing a composite electrode
JPS62142366A (en) Manufacture of substrate for thin film solar battery
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JPS63249379A (en) Manufacture of substrate for thin film solar cell
JPS61116883A (en) Transparent electrode with metal wiring
JPH0133909B2 (en)
KR101133151B1 (en) Method for manufacturing electrode for vapor deposition process
JPS61284971A (en) Substrate for thin film solar battery
JPS63222468A (en) Substrate for amorphous silicon solar cell
JP2000286432A (en) Solar battery element, substrate therefor and its manufacture
JPS63249380A (en) Manufacture of substrate for thin film solar cell
CN1026186C (en) Isotation technology for metal surface medium film
JPS6148798B2 (en)
JP2005163096A5 (en)
JPS58173873A (en) Amorphous si solar battery and manufacture thereof
JPS60214572A (en) Thin-film solar cell and manufacture thereof
JPS61133675A (en) Manufacture of substrate for amorphous si solar battery
JPS639744B2 (en)
JPS63250866A (en) Manufacture of substrate for thin film solar cell
CN1349371A (en) Electromolded electrothermal alloy element and its making process
JPS6351003B2 (en)
JPS6170766A (en) Thin-film solar cell
JPS5935439B2 (en) Manufacturing method of insoluble anode for electrolysis
JPH05209299A (en) Insoluble electrode and its production