JP2574699B2 - Oxygen generating anode and its manufacturing method - Google Patents

Oxygen generating anode and its manufacturing method

Info

Publication number
JP2574699B2
JP2574699B2 JP1103003A JP10300389A JP2574699B2 JP 2574699 B2 JP2574699 B2 JP 2574699B2 JP 1103003 A JP1103003 A JP 1103003A JP 10300389 A JP10300389 A JP 10300389A JP 2574699 B2 JP2574699 B2 JP 2574699B2
Authority
JP
Japan
Prior art keywords
electrode
intermediate layer
tantalum
electrode active
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1103003A
Other languages
Japanese (ja)
Other versions
JPH02282491A (en
Inventor
俊幸 池田
外志雄 村永
雅彦 大炭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14342490&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2574699(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1103003A priority Critical patent/JP2574699B2/en
Publication of JPH02282491A publication Critical patent/JPH02282491A/en
Application granted granted Critical
Publication of JP2574699B2 publication Critical patent/JP2574699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸素発生を伴う電解工程,特にスズ,亜鉛,
クロム等の電気メッキの不溶性陽極に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electrolytic process involving the generation of oxygen, in particular, tin, zinc,
It relates to an insoluble anode of electroplating of chromium or the like.

(従来の技術) スズ,亜鉛,クロム等の銅板等の電気メッキ用陽極と
して現在、鉛又は鉛合金が使用されているが、鉛は比較
的消耗が速く、溶け出した鉛によるメッキ液の汚染,メ
ッキ皮膜の劣化等の問題がある。
(Prior art) Currently, lead or lead alloy is used as an anode for electroplating copper plates such as tin, zinc, chromium, etc., but lead is relatively fast consumed, and contamination of the plating solution by dissolved lead. And problems such as deterioration of the plating film.

これに代わる陽極として白金メッキ陽極や白金箔クラ
ッド陽極が検討されているが、白金は消耗が大きく解決
に至っていない。そのために消耗の少ない貴金属及びそ
の酸化物を電極活性物質とした不溶性陽極が種々提案さ
れている。
Platinum-plated anodes and platinum-foil clad anodes are being studied as alternatives to this, but platinum has been exhausted and has not been solved. For this reason, various insoluble anodes using noble metals and oxides thereof, which are less consumed, as electrode active substances have been proposed.

しかしながら、経済性,加工性の面から広く用いられ
るチタン及びその合金を基体として、単純に電極活性物
質をコーティングしただけの電極では、使用中に陽極よ
り発生する酸化力に富む発生期の酸素により電極被覆層
と基体間に導電性のない酸化物層が形成され、残存する
電極活性物質の量が十分であっても電極としての機能が
なくなってしまい、ついには電極被覆層の剥離をきたし
使用不能になるという不都合を生じる。このために、電
極活性物質の被覆量を多くする傾向があるが、高価な貴
金属を使用することを考えるとその利用効率は決して良
いものであると言えない。
However, in the case of an electrode simply coated with an electrode active material using titanium or its alloy as a base, which is widely used in terms of economy and workability, the oxidizing power of the oxidizing power generated from the anode during use causes the generation of oxygen. A nonconductive oxide layer is formed between the electrode coating layer and the substrate, and even if the amount of the remaining electrode active substance is sufficient, the electrode function is lost, and eventually the electrode coating layer is peeled off and used. The inconvenience of being disabled is caused. For this reason, the coating amount of the electrode active material tends to be increased, but its use efficiency cannot be said to be good considering the use of expensive noble metals.

この問題点を解決するために特開昭59−38394号公報
には基体上に4価の原子価を有するチタン及びスズから
選ばれた少なくとも1種類の金属の酸化物と5価の原子
価を有するタンタル及びニオブから選ばれた少なくとも
1種類の金属の酸化物との混合酸化物からなる中間層を
設け、その上を電極活性物質で被覆した電極が提案され
ている。この場合には中間層は酸素発生活性能はなく、
電気導電性は一般に知られている4価と5価金属による
原子価制御理論に基づき得られるものと考えられるがそ
の導電性は十分なものではない。
In order to solve this problem, JP-A-59-38394 discloses an oxide of at least one metal selected from titanium and tin having tetravalent valence and a pentavalent valence on a substrate. There has been proposed an electrode in which an intermediate layer made of a mixed oxide with an oxide of at least one metal selected from tantalum and niobium is provided, and the intermediate layer is coated with an electrode active material. In this case, the intermediate layer has no oxygen generating activity,
It is considered that the electric conductivity can be obtained based on a generally known valence control theory using tetravalent and pentavalent metals, but the electric conductivity is not sufficient.

特開昭59−150091号公報では、更に導電性を与える目
的で白金をこの中間層に分散させたものが提案されてい
るが、白金自身が電解液,特に硫酸酸性溶液では消耗が
大きいので中間層の耐久性に限界がある。またこの場合
には中間層自身にも酸素発生活性能があるためにやがて
は不働態化が起る。特開昭62−174394号公報では電気メ
ッキによる多孔性白金層が中間層として述べられている
が、この場合も前記と同様な理由で根本的な解決には至
っていない。
Japanese Patent Application Laid-Open No. Sho 59-15091 proposes a method in which platinum is dispersed in this intermediate layer for the purpose of further imparting conductivity. However, platinum itself is greatly consumed in an electrolytic solution, particularly in a sulfuric acid solution, so that an intermediate layer is used. There is a limit to the durability of the layer. In this case, since the intermediate layer itself has the ability to activate oxygen generation, passivation occurs soon. Japanese Patent Application Laid-Open No. Sho 62-174394 describes a porous platinum layer formed by electroplating as an intermediate layer. However, in this case, a fundamental solution has not been reached for the same reason as described above.

また特開昭57−192281号公報にはチタン又はチタン合
金を基材とし、金属酸化物よりなる電気被覆を有する電
極において、その中間層としてタンタル及び/又はニオ
ブの導電性酸化物層を設けた酸素発生を伴う電解用電極
が提案されているが、タンタル又はニオブの酸化物層は
酸素による不働態化現象を防止するのに十分なものとは
言えない。
Japanese Patent Application Laid-Open No. 57-192281 discloses an electrode having an electric coating made of a metal oxide on a base material of titanium or a titanium alloy, in which a tantalum and / or niobium conductive oxide layer is provided as an intermediate layer. Electrolytic electrodes involving oxygen generation have been proposed, but the tantalum or niobium oxide layer is not sufficient to prevent the passivation phenomenon due to oxygen.

(発明が解決しようとする課題) 本発明の目的のスズ,亜鉛,クロム等の電気メッキ用
陽極として検討されている酸素発生用不溶性陽極におい
て問題とされている基体の不働態化を経済的に有利な方
法で防ぎ、長寿命の電極を提供することにある。
(Problems to be Solved by the Invention) The passivation of the substrate, which is a problem in the insoluble anode for generating oxygen, which is being studied as the anode for electroplating tin, zinc, chromium, etc., of the present invention, is economically possible. An advantage is to provide an electrode that has a long life and prevents it in an advantageous manner.

(課題を解決するための手段) 本発明者らは、酸素発生用不溶性陽極において、中間
層に電極活性物質で発生する酸素による不働態化に対し
金属タンタル又はその合金が十分な抵抗力を有する事を
見出し、更にこれら金属を電極基体上で薄膜化した保護
層として利用する事により経済的に電極基体の不働態化
を防ぎ、電極活性物質の利用効率を向上させた長寿命の
電極を開発した。
(Means for Solving the Problems) In the insoluble anode for generating oxygen, the present inventors have found that tantalum metal or its alloy has a sufficient resistance to passivation due to oxygen generated by an electrode active material in the intermediate layer. Developing a long-life electrode that uses these metals as a protective layer thinned on the electrode substrate, economically preventing passivation of the electrode substrate, and improving the use efficiency of the electrode active material did.

すなわち本発明はバルブ金属又はその合金よりなる導
電性金属基体上に350〜550℃の熱分解温度で白金族金属
又はその酸化物を含む電極活性物質を被覆した電極にお
いて、該基体と電極活性物質被覆層との間に、スパッタ
リング法により形成された結晶性金属タンタルを主成分
とする厚さ1〜3ミクロンの薄膜中間層を設けたことを
特徴とする酸素発生陽極である。
That is, the present invention relates to an electrode in which an electrode active material containing a platinum group metal or an oxide thereof is coated at a pyrolysis temperature of 350 to 550 ° C. on a conductive metal substrate made of a valve metal or an alloy thereof. An oxygen-generating anode characterized in that a thin film intermediate layer having a thickness of 1 to 3 μm and containing, as a main component, crystalline metal tantalum formed by a sputtering method is provided between the coating layer and the coating layer.

本発明の電極基体に使用される導電性金属媒体として
はチタン,ジルコニウム,ニオブ,ハフニウム,タング
ステン,アルミニウム,モリブデン,ビスマス,アンチ
モン等の不働性皮膜を形成するバルブ金属又はその金属
であり、一般的にはチタン,ジルコニウム,ニオブ特に
チタンが好ましい。
The conductive metal medium used for the electrode substrate of the present invention is a valve metal forming a passive film such as titanium, zirconium, niobium, hafnium, tungsten, aluminum, molybdenum, bismuth, antimony or a metal thereof. Titanium, zirconium and niobium are particularly preferred.

中間層は電極基体表面に完全に被覆できなくても基体
の保護効果はかなり得られるが、本発明の目的を達成す
るためには1ミクロン以上の厚みを必要とする。通常厚
み3ミクロン以下で十分である。また中間層自体は多孔
質であることを要しない。
Although the intermediate layer does not completely cover the surface of the electrode substrate, the protective effect of the substrate can be considerably obtained, but a thickness of 1 micron or more is required to achieve the object of the present invention. Usually, a thickness of 3 microns or less is sufficient. The intermediate layer itself does not need to be porous.

次に、このようにして電極活性能を持たない中間層を
設けた基体上に、電気化学的に活性を有する電極被覆層
を設ける。酸素発生を伴う電解に適した電極活性物質と
して、白金族金属もしくはその酸化物が好ましく、又は
これらとチタン,タンタル等バルブ金属との混合酸化物
が好適である。代表的な例としてはイリジウム酸化物,
イリジウム−タンタル混合酸化物,イリジウム−チタン
混合酸化物,イリジウム−ルテニウム混合酸化物,イリ
ジウム−ルテニウム−タンタル混合酸化物,イリジウム
−ルテニウム−チタン混合酸化物,ルテニウム−チタン
混合酸化物,ルテニウム−タンタル混合酸化物等が挙げ
られる。
Next, an electrode coating layer having electrochemical activity is provided on the substrate on which the intermediate layer having no electrode activity is provided in this manner. As the electrode active substance suitable for electrolysis accompanied by oxygen generation, a platinum group metal or its oxide is preferable, or a mixed oxide of these with a valve metal such as titanium or tantalum is preferable. Typical examples are iridium oxide,
Iridium-tantalum mixed oxide, iridium-titanium mixed oxide, iridium-ruthenium mixed oxide, iridium-ruthenium-tantalum mixed oxide, iridium-ruthenium-titanium mixed oxide, ruthenium-titanium mixed oxide, ruthenium-tantalum mixed Oxides and the like.

このような電極活性物質の被覆法としては熱分解を用
いる。すなわちこれらの金属塩溶液を数回塗布乾燥し最
終的に350〜350℃の温度で加熱処理する。このようにし
て金属タンタルを主成分とする中間層を有する本発明電
極を得ることができる。電極の形状としては板状,棒
状,エキスパンド状,多孔板状等種々の形状が可能であ
る。
Thermal decomposition is used as a method for coating such an electrode active material. That is, these metal salt solutions are applied and dried several times, and finally heat-treated at a temperature of 350 to 350 ° C. Thus, the electrode of the present invention having the intermediate layer mainly composed of tantalum metal can be obtained. As the shape of the electrode, various shapes such as a plate shape, a rod shape, an expanded shape, a perforated plate shape, and the like are possible.

(作用) 本発明電極における中間層すなわち金属タンタルを主
成分とする薄膜層の不働態化抑制効果は論理的には必ず
しも明らかでないが、表面被覆層をなすルチル型構造の
電極活性物質と焼成を行うと、X線回折では表面被覆層
と中間層との境界面はタンタル及び一般に最も安定とさ
れている5価のタンタル酸化物(Ta2O5)の回折パター
ンは殆んど認められない。すなわちこの境界面では金属
的な導電性を持つルチル型構造の4価のタンタル酸化物
(TaO2)が生成し、電極活性物質と化学的に安定な状態
を保っているものと思われる。また中間層自体は殆んど
金属タンタルの状態にあるため、不良導体でかつ非ルチ
ル構造の5価のタンタル酸化物と異なる良好な導電性を
保つものと思われる。
(Effect) The effect of suppressing the passivation of the intermediate layer, that is, the thin film layer mainly composed of tantalum metal, in the electrode of the present invention is not necessarily clear logically. When performed, almost no diffraction pattern of tantalum and pentavalent tantalum oxide (Ta 2 O 5 ), which is generally considered most stable, is found at the interface between the surface coating layer and the intermediate layer in X-ray diffraction. That is, it is considered that tetravalent tantalum oxide (TaO 2 ) having a rutile-type structure having metallic conductivity is generated at this interface, and is maintained in a chemically stable state with the electrode active material. Further, since the intermediate layer itself is almost in a state of metal tantalum, it is considered that the intermediate layer has good conductivity different from that of a pentavalent tantalum oxide having a poor conductor and a non-rutile structure.

以下本発明を実施例により具体的に説明するが、本発
明はこれらに限定されるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

実施例1,比較例1 厚さ1mm,大きさ30mm×10mmの市販のチタン板をアセト
ンにより脱脂した後、80℃のショウ酸で12時間エッチン
グ処理し電極基体とした。
Example 1 and Comparative Example 1 A commercially available titanium plate having a thickness of 1 mm and a size of 30 mm × 10 mm was degreased with acetone and then etched with oxalic acid at 80 ° C. for 12 hours to obtain an electrode substrate.

このチタン板を乾燥後、高周波スパッタリング装置
(〜10-4Torr・アルゴンガス,高周波印加電圧2KVの条
件)を用いて1時間処理を行いタンタルとして40g/m2,
厚さ3ミクロンのα型結晶構造を持つ金属タンタルを主
成分とする中間層を基体上に形成させた。
After drying the titanium plate, it was treated for 1 hour using a high-frequency sputtering device (up to 10 -4 Torr / argon gas, high-frequency applied voltage of 2 KV) to obtain 40 g / m 2 of tantalum,
An intermediate layer mainly composed of metal tantalum having an α-type crystal structure and having a thickness of 3 μm was formed on the substrate.

さらに下記に示すような液組成の電極被覆波を調整
し、タンタル薄膜中間層上に塗布した。
Further, an electrode coating wave having a liquid composition as shown below was adjusted and applied on the tantalum thin film intermediate layer.

TaCl3 0.32g H2IrCl6・6H2O 1.00g 濃HCl 1.0ml n−ブチルアルコール 10.0ml これを120℃で10分間乾燥した後、490℃に保持した電
気炉中で20分間焼成した。この電極活性物質の被覆操作
を8回繰り返して10g/m2のイリジウムを含むイリジウム
酸化物を電極活性物質とする電極を作製した(電極活性
被覆層の組成はIrO2(70重量%)−Ta2O5(30重量%)
と推定される)。
TaCl 3 0.32g H 2 IrCl 6 · 6H 2 O 1.00g after drying 10 min conc. HCl 1.0 ml n-butyl alcohol 10.0ml which at 120 ° C., and calcined in an electric furnace maintained at 490 ° C. 20 min. This electrode active material coating operation was repeated eight times to produce an electrode using iridium oxide containing 10 g / m 2 of iridium as the electrode active material (the composition of the electrode active coating layer was IrO 2 (70% by weight) -Ta). 2 O 5 (30% by weight)
It is estimated to be).

比較として、タンタル薄膜中間層を設けなかった以外
は同様の処理をして比較用の電極を作製した。
For comparison, an electrode for comparison was prepared in the same manner except that the tantalum thin film intermediate layer was not provided.

これら電極の被覆部分を一部シールして電極の有効部
分を10mm×10mmとした後、50℃,100g/の硫酸電解溶液
中で陽極として用い、白金板を陰極として電流密度200A
/dm2の条件で加速電解試験を行った。
After partially sealing the covered portion of these electrodes to make the effective portion of the electrode 10 mm × 10 mm, the anode was used as an anode in a sulfuric acid electrolytic solution at 50 ° C and 100 g /, and a platinum plate was used as a cathode and the current density was 200 A.
The accelerated electrolysis test was carried out under the conditions of / dm 2.

タンタル薄膜中間層を設けなかった電極では70時間後
に槽電圧の急激な上昇が認められ通電が不能となった。
この立ち上りの時点で電極活性物質被覆層の厚みをベー
タ線式膜厚形にて測定したところ、作製時に測定した厚
みの80%であり、20%の消耗という結果が得られた。
In the electrode without the tantalum thin film intermediate layer, a sharp rise in the cell voltage was observed 70 hours later, and the electricity could not be supplied.
When the thickness of the electrode active material coating layer was measured at the time of this rise using a beta-ray film thickness type, the thickness was 80% of the thickness measured at the time of fabrication, and a result of 20% consumption was obtained.

一方タンタル薄膜中間層を設けた電極では200時間後
において初期の槽電圧と比較すると約1Vの上昇が認めら
れたものの、未だ安定な電解が可能であった。またこの
時点での厚み測定から得られた電極活性物質の消耗量は
40%であり、タンタル薄膜中間層によって電極活性物質
の電解時における利用効率の向上が認められた。
On the other hand, in the electrode provided with the tantalum thin film intermediate layer, a stable electrolysis was still possible after 200 hours, although a rise of about 1 V was observed as compared with the initial cell voltage. At this point, the consumption of the electrode active material obtained from the thickness measurement is
It was 40%, indicating that the use efficiency of the electrode active material during electrolysis was improved by the tantalum thin film intermediate layer.

比較例2 実施例1と同じ方向で同様のチタン板を脱脂,エッチ
ング処理し電極基体を得た。この電極基体に下記に示す
ような液組成のタンタルのアルコール溶液を塗布した。
Comparative Example 2 The same titanium plate was degreased and etched in the same direction as in Example 1 to obtain an electrode substrate. An alcohol solution of tantalum having the following liquid composition was applied to the electrode substrate.

TaCl3 0.50g 濃HCl 1.0ml n−ブチルアルコール 10.0ml これを電気炉に入れ、大気雰囲気、すなわち酸化性雰
囲気において10℃/分の昇温速度で100℃まで上げた
後、10分間保持して乾燥工程処理を行い、さらに15分で
490℃まで昇温しそのまま保持して20分間焼成した。こ
の操作を5回繰り返してタンタルとして7g/m2の酸化タ
ンタルを主成分とする中間層を形成させた。
TaCl 3 0.50 g Concentrated HCl 1.0 ml n-butyl alcohol 10.0 ml This is put into an electric furnace, and heated to 100 ° C. at a rate of 10 ° C./min in an air atmosphere, that is, an oxidizing atmosphere, and then held for 10 minutes. Perform the drying process and in another 15 minutes
The temperature was raised to 490 ° C., and was kept as it was for 20 minutes. This operation was repeated five times to form an intermediate layer mainly containing 7 g / m 2 of tantalum oxide as tantalum.

中間層表面のX線回折によりTa2O5の回折パターンが
得られた。さらにこの中間層上に下記に示すような液組
成の電極被覆液を調整し塗布した。
A diffraction pattern of Ta 2 O 5 was obtained by X-ray diffraction on the surface of the intermediate layer. Further, an electrode coating solution having the following liquid composition was prepared and applied on the intermediate layer.

H2IrCl6・6H2O 1.00g 濃HCl 1.0ml n−ブチルアルコール 10.0ml これを120℃で10分間乾燥した後、490℃に保持した電
気炉中で20分間焼成した。この電極活性物質の被覆操作
を5回繰り返して7g/m2のイリジウムを含むイリジウム
酸化物を電極活性物質とする電極を作製した。
After H 2 IrCl 6 · 6H 2 O 1.00g of concentrated HCl 1.0 ml n-butyl alcohol 10.0ml This was dried for 10 minutes at 120 ° C., and calcined in an electric furnace maintained at 490 ° C. 20 min. This coating operation of the electrode active substance was repeated five times to produce an electrode using iridium oxide containing 7 g / m 2 of iridium as the electrode active substance.

得られた電極を実施例1と同様の電解条件で加速電解
試験を行ったところ、中間層がTa2O5の電極は35時間の
寿命となった。
When the obtained electrode was subjected to an accelerated electrolysis test under the same electrolysis conditions as in Example 1, the electrode having an intermediate layer of Ta 2 O 5 had a life of 35 hours.

(発明の効果) 以上述べたように、本発明電極は金属タンタルを主成
分とする薄膜中間層を設けることにより、従来問題視さ
れていた電極基体と電極活性物質層との間に生じる不働
態化現象を防ぎ電極活性物質の利用効率を改善すること
ができ、工業電解用陽極,例えば硫酸酸性溶液等の酸素
発生陽極としての利用価値は大である。
(Effects of the Invention) As described above, the electrode of the present invention is provided with a thin film intermediate layer containing tantalum metal as a main component, so that the passive state generated between the electrode substrate and the electrode active material layer, which has conventionally been regarded as a problem, is provided. Thus, the efficiency of use of the electrode active substance can be improved, and the utility value of the anode as an anode for industrial electrolysis, for example, as an anode for generating oxygen such as a sulfuric acid solution is great.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−40676(JP,A) 特開 昭62−284095(JP,A) 特開 平2−247393(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-48-40676 (JP, A) JP-A-62-284095 (JP, A) JP-A-2-247393 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】バルブ金属又はその合金よりなる導電性金
属基体上に350〜550℃の熱分解温度で白金族金属又はそ
の酸化物を含む電極活性物質を被覆した電極において、
該基体と電極活性被覆層との間に、スパッタリング法に
より形成された結晶性金属タンタルを主成分とする厚さ
1〜3ミクロンの薄膜中間層を設けたことを特徴とする
酸素発生陽極。
1. An electrode comprising a conductive metal substrate made of a valve metal or an alloy thereof coated with an electrode active material containing a platinum group metal or an oxide thereof at a pyrolysis temperature of 350 to 550 ° C.
An oxygen-generating anode, comprising a thin-film intermediate layer having a thickness of 1 to 3 μm and comprising, as a main component, crystalline metal tantalum formed by a sputtering method between the substrate and the electrode active coating layer.
JP1103003A 1989-04-21 1989-04-21 Oxygen generating anode and its manufacturing method Expired - Lifetime JP2574699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103003A JP2574699B2 (en) 1989-04-21 1989-04-21 Oxygen generating anode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103003A JP2574699B2 (en) 1989-04-21 1989-04-21 Oxygen generating anode and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02282491A JPH02282491A (en) 1990-11-20
JP2574699B2 true JP2574699B2 (en) 1997-01-22

Family

ID=14342490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103003A Expired - Lifetime JP2574699B2 (en) 1989-04-21 1989-04-21 Oxygen generating anode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2574699B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338323B2 (en) 2010-03-09 2012-12-25 Permelec Electrode Ltd. Electrode for electrochemical reaction and production process thereof
WO2013069711A1 (en) 2011-11-09 2013-05-16 Shinshu University Electrode for electrochemistry and manufacturing method for the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038291A (en) * 2001-09-03 2002-02-06 Daiso Co Ltd Anode for manufacturing metallic foil
JP3700661B2 (en) * 2002-02-07 2005-09-28 ダイソー株式会社 Metal foil manufacturing equipment
ITMI20041006A1 (en) * 2004-05-20 2004-08-20 De Nora Elettrodi Spa OXYGEN DEVELOPMENT ANODE
TWI453306B (en) 2008-03-31 2014-09-21 Permelec Electrode Ltd Manufacturing process of electrodes for electrolysis
EP2107137B1 (en) 2008-03-31 2014-10-08 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
JP4734664B1 (en) 2010-09-17 2011-07-27 田中貴金属工業株式会社 Electrode for electrolysis, anode for electrolysis of ozone, anode for electrolysis of persulfate, and anode for chromium electrooxidation
CN108866610B (en) * 2018-06-01 2023-08-15 马赫内托特殊阳极(苏州)有限公司 Electrolytic anode
CN110257886A (en) * 2019-07-08 2019-09-20 新阳硅密(上海)半导体技术有限公司 A kind of anode assemblies and its application
CN116555845A (en) * 2022-01-27 2023-08-08 马赫内托特殊阳极有限公司 Electrode and application and preparation method thereof
WO2024073866A1 (en) * 2022-10-02 2024-04-11 Magneto Special Anodes (suzhou) Co., Ltd. Electrode, and use and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840676A (en) * 1971-09-29 1973-06-14
JPS5996287A (en) * 1982-10-29 1984-06-02 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Electrode, manufacture and use
JPS62284095A (en) * 1986-06-02 1987-12-09 Permelec Electrode Ltd Durable electrolytic electrode and its production
GB8903322D0 (en) * 1989-02-14 1989-04-05 Ici Plc Electrolytic process
JP2761751B2 (en) * 1989-03-20 1998-06-04 ペルメレック電極株式会社 Electrode for durable electrolysis and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338323B2 (en) 2010-03-09 2012-12-25 Permelec Electrode Ltd. Electrode for electrochemical reaction and production process thereof
WO2013069711A1 (en) 2011-11-09 2013-05-16 Shinshu University Electrode for electrochemistry and manufacturing method for the same

Also Published As

Publication number Publication date
JPH02282491A (en) 1990-11-20

Similar Documents

Publication Publication Date Title
US4468416A (en) Electrolytic electrodes having high durability and process for the production of same
US3632498A (en) Electrode and coating therefor
US3933616A (en) Coating of protected electrocatalytic material on an electrode
KR100227556B1 (en) Electrolytic electrode
US4484999A (en) Electrolytic electrodes having high durability
US4584084A (en) Durable electrode for electrolysis and process for production thereof
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
US3926751A (en) Method of electrowinning metals
US4086157A (en) Electrode for electrochemical processes
CA1159682A (en) Electrode substrate titanium alloy for use in electrolysis
JP2505563B2 (en) Electrode for electrolysis
US4040939A (en) Lead dioxide electrode
EP0955395B1 (en) Electrolyzing electrode and process for the production thereof
JP2596807B2 (en) Anode for oxygen generation and its production method
JP2768904B2 (en) Oxygen generating electrode
US6103299A (en) Method for preparing an electrode for electrolytic processes
JP3259869B2 (en) Electrode substrate for electrolysis and method for producing the same
US5665218A (en) Method of producing an oxygen generating electrode
JP3430479B2 (en) Anode for oxygen generation
JPH0355555B2 (en)
US4032417A (en) Electrolytic processes
JP2596821B2 (en) Anode for oxygen generation
JPH0499294A (en) Oxygen generating anode and its production
US4108745A (en) Selenium-containing coating for valve metal electrodes and use
JP3661924B2 (en) Oxygen generating anode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13