JP3259869B2 - Electrode substrate for electrolysis and method for producing the same - Google Patents

Electrode substrate for electrolysis and method for producing the same

Info

Publication number
JP3259869B2
JP3259869B2 JP23084193A JP23084193A JP3259869B2 JP 3259869 B2 JP3259869 B2 JP 3259869B2 JP 23084193 A JP23084193 A JP 23084193A JP 23084193 A JP23084193 A JP 23084193A JP 3259869 B2 JP3259869 B2 JP 3259869B2
Authority
JP
Japan
Prior art keywords
metal
coating layer
substrate
platinum group
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23084193A
Other languages
Japanese (ja)
Other versions
JPH0762585A (en
Inventor
孝之 島宗
保夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP23084193A priority Critical patent/JP3259869B2/en
Priority to US08/294,046 priority patent/US5531875A/en
Publication of JPH0762585A publication Critical patent/JPH0762585A/en
Application granted granted Critical
Publication of JP3259869B2 publication Critical patent/JP3259869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐久性を有する電解用
電極基体及びその製造方法に関し、より詳細には高電流
密度で使用され主として酸素発生反応に対する耐久性と
電流逆転に対する耐性を有する電解用電極基体及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a durable electrode substrate for electrolysis and a method for producing the same, and more particularly, to an electrolytic electrode substrate used at a high current density and having mainly durability against oxygen generation reaction and resistance against current reversal. The present invention relates to an electrode substrate for use and a method for manufacturing the same.

【0002】[0002]

【従来技術とその問題点】工業電解特に無機酸を主体と
する電解は金属の電解製錬、電気めっき、有機物及び無
機物の電解合成等極めて広い範囲で行われている。これ
らの電解用電極特に陽極として鉛又は鉛合金電極、白金
めっきチタン電極、カーボン電極等が提案されているが
いずれの電極も欠点があり、幅広い用途の電解には使用
されていない。例えば鉛電極は表面に比較的安定で良導
電性である二酸化鉛が形成されるが、この二酸化鉛も通
常の電解条件で数mg/AHの溶解があり、しかも過電
圧が大きいという欠点がある。又白金めっきチタン電極
は高価なわりに寿命が短く、更にカーボン電極は陽極反
応が酸素発生反応であると該カーボン電極が発生酸素と
反応して二酸化炭素として自身を消耗させかつ導電性が
悪いという欠点がある。これらの各電極の欠点を解消す
るために寸法安定性電極(DSE)が提案され幅広く使
用されている。
2. Description of the Related Art Industrial electrolysis, particularly electrolysis mainly using inorganic acids, is performed in a very wide range such as electrolytic smelting of metals, electroplating, and electrolytic synthesis of organic and inorganic substances. These electrodes for electrolysis, particularly lead or lead alloy electrodes, platinum-plated titanium electrodes, carbon electrodes, etc., have been proposed as anodes, but all of these electrodes have drawbacks and are not used for electrolysis in a wide range of applications. For example, a lead electrode is formed on its surface with lead dioxide, which is relatively stable and has good conductivity. However, this lead dioxide also has the drawback that several mg / AH is dissolved under ordinary electrolysis conditions, and the overvoltage is large. Platinum-plated titanium electrodes are expensive and have a short life, and if the anodic reaction is an oxygen generating reaction, the carbon electrode reacts with the generated oxygen to consume itself as carbon dioxide and has poor conductivity. There is. Dimensionally stable electrodes (DSE) have been proposed and widely used to overcome the disadvantages of each of these electrodes.

【0003】このDSEはチタンに代表される弁金属を
基体とし陽極として使用される限りは、表面が不働態化
し、化学的に極めて安定な長寿命電極として機能する。
しかし該DSEも陰極として使用され陰分極を受ける
と、発生する水素と反応して水素化物となり基体自体が
脆弱化したり腐食により表面の被覆が剥離したりして電
極寿命を著しく縮めることになり、特に正負が反転する
つまり電流方向が反転する電解にDSEを使用する際の
大きな欠点となっている。
[0003] As long as this DSE is used as an anode with a valve metal represented by titanium as a base, the surface is passivated and functions as a chemically extremely stable long-life electrode.
However, when the DSE is also used as a cathode and is subjected to negative polarization, it reacts with the generated hydrogen to become hydride, which weakens the substrate itself or peels off the surface coating due to corrosion, thereby significantly shortening the electrode life. In particular, this is a major drawback when using DSE for electrolysis where the polarity is reversed, that is, the current direction is reversed.

【0004】これを避けるために陰分極に対して耐性の
あるニッケルやステンレススチールを使用すると、これ
らの材料は中性から酸性の溶液中では陽極として使用す
ることができないため、正負が反転する電解用の電極と
して不適切であることは明らかである。又陽分極及び陰
分極の両者に対する耐性があるとされるグラファイト等
の炭素電極はガス発生とともに表面が崩落する傾向にあ
り、特に正負反転を行う際にはその傾向が大きくなり、
理論的に使用可能であっても実用的価値は少なかった。
To avoid this, if nickel or stainless steel resistant to negative polarization is used, these materials cannot be used as an anode in a neutral to acidic solution, so that the polarity is reversed. It is clear that it is not suitable as an electrode for use. Also, carbon electrodes such as graphite, which are said to be resistant to both positive and negative polarization, tend to have their surface collapse with the generation of gas, especially when performing positive / negative reversal,
Even if it could be used theoretically, it was of little practical value.

【0005】更にこれらの中間層や改質層は、前述の有
機物やある種の腐食性のハロゲン化物に対して耐性を有
するものの決して十分でなく、前記中間層や改質層が薄
いため、基体自体の耐食性に頼ってしまうという問題点
があった。前述の従来技術の欠点、特に中間層の不働態
化を防止するためにタンタルの線材を溶射して中間層を
形成する方法が提案されている(特開平5−156480
号)。このタンタル溶射では金属タンタルと酸化タンタ
ルの混合した部分酸化物からなる中間層が形成されると
報告されている。しかしタンタルは酸化されやすくつま
り他の金属より不働態化が進行しやすく、特に過酷な条
件下での使用では長寿命を期待できず、更に高価である
ため用途が限定されてしまうという欠点を有している。
Further, these intermediate layers and modified layers have resistance to the above-mentioned organic substances and certain corrosive halides, but they are not sufficient. There was a problem in that it relied on its own corrosion resistance. In order to prevent the above-mentioned disadvantages of the prior art, in particular, passivation of the intermediate layer, there has been proposed a method of forming an intermediate layer by spraying a tantalum wire (Japanese Patent Laid-Open No. 5-156480).
issue). It is reported that this tantalum spraying forms an intermediate layer composed of a partial oxide in which metal tantalum and tantalum oxide are mixed. However, tantalum is liable to be oxidized, that is, passivation is more likely to occur than other metals, and it cannot be expected to have a long life especially under severe conditions. are doing.

【0006】前記弁金属や鉄族金属やその合金の中に陰
陽両分極に対して安定な材料が実質的に存在しないこと
は前述の通りである。しかし金属酸化物の1種であるセ
ラミクスの中には陰陽両分極に対して安定で、ある程度
の導電性を与えるものが存在する。しかしこの導電性は
金属と比較すると相当小さく、しかも工業用に使用され
るこの種の電極にあっては多結晶質の焼結体にならざる
を得ないため、より大きな抵抗を有することになり不適
当であった。
As described above, there is substantially no material stable in both positive and negative polarizations among the valve metals, iron group metals and alloys thereof. However, some ceramics, which are a kind of metal oxide, are stable to both positive and negative polarizations and provide a certain degree of conductivity. However, this conductivity is considerably smaller than that of metal, and since this kind of electrode used for industrial use must be a polycrystalline sintered body, it has a higher resistance. It was inappropriate.

【0007】[0007]

【発明の目的】本発明は、従来の電極基体特にDSE等
の基体に関する前述の問題点を解消し、高電流密度下で
の十分な耐久性と化学的な安定性を有し、かつ正負反転
を伴う電解等における陰分極下での使用及び腐食性物質
を含む電解液中での使用に対して安定で長期間使用でき
る電解用電極基体及びその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems relating to conventional electrode substrates, particularly substrates such as DSE, and has sufficient durability and chemical stability under a high current density, and has a positive / negative inversion. It is an object of the present invention to provide an electrode substrate for electrolysis which is stable for use under negative polarization in electrolysis or the like accompanied by an electrolytic solution and use in an electrolytic solution containing a corrosive substance and can be used for a long period of time, and a method for producing the same.

【0008】[0008]

【問題点を解決するための手段】本発明は、導電性金属
基材、及び該基材表面に形成された、白金族金属と、チ
タン、タンタル及びニオブの少なくとも1種の金属と酸
素を含む非化学量論的組成の部分酸化物の厚さ10から20
0 μmの被覆層を含んで成ることを特徴とする電解用電
極基体である。
SUMMARY OF THE INVENTION The present invention comprises a conductive metal substrate, and a platinum group metal, at least one metal selected from the group consisting of titanium, tantalum and niobium, and oxygen formed on the surface of the substrate. Non-stoichiometric partial oxide thickness 10 to 20
An electrode substrate for electrolysis comprising a coating layer of 0 μm.

【0009】以下本発明を詳細に説明する。本発明の特
徴は、導電性金属基材上に、白金族金属を含む非化学量
論的組成の部分酸化物から成る被覆層を形成し、該酸化
物が本来的に有する導電性及び耐食性を活かすととも
に、前記白金族金属の有する正負反転電解に対する耐性
と比較的大きい導電性も利用し、従来技術では実現でき
なかった高電流密度下での十分な耐久性と化学的な安定
性を有し、かつ正負反転を伴う電解等における陰分極下
での使用及び腐食性物質を含む電解液中での使用に対し
て安定で長期間使用できる電解用電極基体を提供する点
にある。
Hereinafter, the present invention will be described in detail. A feature of the present invention is to form a coating layer made of a partial oxide having a non-stoichiometric composition containing a platinum group metal on a conductive metal base material, and to improve the conductivity and corrosion resistance inherent in the oxide. Utilizing, utilizing the resistance to the positive and negative reversal electrolysis and relatively large conductivity of the platinum group metal, has sufficient durability and chemical stability under high current density that could not be achieved by the prior art. Another object of the present invention is to provide an electrode substrate for electrolysis that is stable for use under negative polarization in electrolysis with positive / negative reversal and the like and for use in an electrolytic solution containing a corrosive substance and can be used for a long period of time.

【0010】本発明で使用する導電性金属基材は、電極
としての使用時に表面に形成される被覆層により隔離さ
れるため導電性であれば通常は特に制約されないが、時
としてピンホールの存在の可能性もあり例えば強酸中で
陽極として使用される場合は比較的耐食性の高いチタン
等で代表される弁金属を使用することが望ましく、特に
加工性が良好で、比較的価格の安いチタンやチタン合金
の使用が望ましい。勿論他の電解ではニッケル等の鉄族
金属やステンレス又は商品名ハステロイ等の耐食合金も
目的に応じて使用できることはいうまでもない。
The conductive metal substrate used in the present invention is not particularly limited as long as it is conductive because it is isolated by a coating layer formed on the surface when used as an electrode. For example, when used as an anode in a strong acid, it is desirable to use a valve metal represented by titanium or the like having relatively high corrosion resistance. The use of a titanium alloy is preferred. Of course, in other electrolysis, an iron group metal such as nickel or a corrosion-resistant alloy such as stainless steel or trade name Hastelloy can be used according to the purpose.

【0011】本発明では、この基材上に被覆層を形成す
るに先立って、該基材表面の粗面化を行うことが望まし
い。前記被覆層は表面層としては厚い10〜200 μmの厚
さを有するため該被覆層を保持しより強固な付着性を得
るためのアンカー効果及び前記基材と該被覆層との強い
化学結合を得るために前記粗面化を行う。代表的な粗面
化法として物理的方法と化学的方法とがある。この粗面
化は粗面化後の基材表面に不純物が残らないこと及び化
学的に不安定な加工層が残らないよう注意して行う。粗
面化の程度は特に限定されないが、JISRa =10〜20
μm、JISRmax =50〜200 μm程度が望ましい。
In the present invention, it is desirable to roughen the surface of the substrate before forming the coating layer on the substrate. Since the coating layer has a thickness of 10 to 200 μm as a surface layer, it has an anchor effect for holding the coating layer and obtaining stronger adhesion and a strong chemical bond between the substrate and the coating layer. The surface is roughened in order to obtain. Typical surface roughening methods include a physical method and a chemical method. This roughening is performed with care so that no impurities remain on the surface of the substrate after the roughening and a chemically unstable processed layer does not remain. Although the degree of surface roughening is not particularly limited, JISR a = 10 to 20
μm, JISR max = about 50 to 200 μm is desirable.

【0012】前述の粗面化の物理的方法としては、例え
ばブラストによる粗面化があり、アルミナ等のセラミク
スサンドにより基材表面を研磨して凹凸を形成する。こ
のブラスト法の場合には、最終的に生成する電極の基材
表面まで電解液が浸透する可能性を考慮してブラスト粉
として酸やアルカリに耐性のあるアルミナやシリカを使
用することが好ましい。アルミナ等を使用するとたとえ
粉末が基材表面に残留しても電極として異常溶出が起こ
ることがなく安定に使用することができる。勿論表面に
食い込んだこれらの粉末の残留を防止するために酸洗処
理等を行うことは更に望ましい。
As a physical method of the above-mentioned roughening, for example, there is a roughening by blasting, and the surface of the base material is polished with a ceramic sand such as alumina to form irregularities. In the case of this blasting method, it is preferable to use alumina or silica which is resistant to acid or alkali as the blast powder in consideration of the possibility that the electrolytic solution penetrates to the substrate surface of the electrode finally formed. If alumina or the like is used, even if the powder remains on the surface of the base material, the electrode can be used stably without causing abnormal elution as an electrode. Of course, it is more desirable to carry out pickling treatment or the like in order to prevent the residue of these powders that have penetrated the surface.

【0013】又前述の化学的粗面化法は薬品で基材表面
に凹凸を形成して粗面化する方法である。例えばチタン
やチタン合金を基材とする場合には、85〜90℃程度の約
20%の塩酸水溶液中に予め洗浄した前記基材を浸漬し数
時間保持することにより粒界腐食を起こして粗面化が行
われる。又基材がチタンやステンレスの場合には40〜60
℃の程度の約10%のヨウ素酸水溶液に前記基材を浸漬す
ることにより、所謂ピッティングコロージョンを起こし
て表面が粗面化される。
The above-mentioned chemical surface roughening method is a method of forming irregularities on the surface of a substrate with a chemical to roughen the surface. For example, when using titanium or a titanium alloy as a base material, about 85 to 90 ° C.
By immersing the previously washed substrate in a 20% hydrochloric acid aqueous solution and holding it for several hours, intergranular corrosion occurs to roughen the surface. If the substrate is titanium or stainless steel, 40-60
By immersing the base material in an aqueous solution of iodic acid of about 10% of about 10 ° C., so-called pitting corrosion is caused to roughen the surface.

【0014】この基材表面に直接白金族金属と部分酸化
物を含む被覆層を形成しても良いが、特に前記基材と前
記被覆層の構成金属が異なる場合には前記基材と前記被
覆層の密着性が不良になる恐れがあり、溶射を用いる場
合にはその恐れが更に大きくなる。この場合には両者間
に金属酸化物から成る結合層を形成することが望まし
い。その形成理由から該結合層は基材金属と被覆層形成
金属の両者の酸化物の混合物であることが好ましい。該
結合層は導電性でなければならず、構成金属塩の溶液を
前記基材上に塗布し300 〜600 ℃で熱分解を行った半導
性酸化物であることが望ましい。又予め非導電性酸化物
を形成し、その後その表面にプラズマ炎を当てることに
より部分的に酸化物の酸素を引き抜いて半導性酸化物に
することもできる。
A coating layer containing a platinum group metal and a partial oxide may be formed directly on the surface of the base material. In particular, when the constituent metals of the base material and the coating layer are different, the base material and the coating There is a risk that the adhesion of the layer may be poor, and when thermal spraying is used, the risk is further increased. In this case, it is desirable to form a bonding layer made of a metal oxide between them. For the reason for the formation, the bonding layer is preferably a mixture of oxides of both the base metal and the coating layer forming metal. The bonding layer must be conductive, and is preferably a semiconductive oxide obtained by applying a solution of the constituent metal salt on the substrate and thermally decomposing the solution at 300 to 600 ° C. Alternatively, a semiconductive oxide can be formed in advance by forming a non-conductive oxide and then exposing the surface to a plasma flame to partially extract oxygen from the oxide.

【0015】次いで前記粗面化された基材表面又は結合
層表面に、白金、ロジウム、ルテニウム、イリジウム等
の白金族金属と、前述のセラミクスと同様な性質を有す
る金属酸化物とを含む被覆層を形成する。該金属酸化物
は、チタン、タンタル及びニオブの少なくとも1種の金
属とそれらの酸化物を含む非化学量論的な部分酸化物か
ら成る。この被覆層は導電性を有し、実質的に前記導電
性基材又はその結合層を完全に被覆していることが必要
である。該被覆層中の部分酸化物は非化学量論的組成つ
まり組成式RO2-x (Rは金属成分を表し、0<x<1
である)で表されればその形成方法は特に限定されな
い。
Next, a coating layer containing a platinum group metal such as platinum, rhodium, ruthenium or iridium and a metal oxide having the same properties as the above-mentioned ceramics is formed on the surface of the roughened substrate or the surface of the bonding layer. To form The metal oxide comprises at least one metal of titanium, tantalum and niobium and non-stoichiometric partial oxides including these oxides. It is necessary that the coating layer has conductivity and substantially completely covers the conductive substrate or the bonding layer thereof. The partial oxide in the coating layer has a non-stoichiometric composition, that is, a composition formula RO 2-x (R represents a metal component and 0 <x <1
Is not particularly limited.

【0016】この被覆層中のチタン、タンタル及びニオ
ブの少なくとも1種の酸化物はセラミクスそのものであ
り、電解液中に混入するフッ素成分や有機物を含有する
電解に対して安定である。しかし正負が反転する電解で
は金属基体よりは遙かに安定であるが、特に陰分極では
極めて小さい水素イオンの浸入を完全には防ぎきれず、
液体及び固体の両者を通って水素イオンが基材金属まで
達し該基材金属が陰分極時に破壊される可能性がある。
これを回避するために本発明では前記被覆層中に白金族
金属を添加することにより、真の意味での電流反転に耐
えることのできる電極を提供することを可能にする。
At least one oxide of titanium, tantalum and niobium in the coating layer is a ceramic itself and is stable against electrolysis containing a fluorine component and an organic substance mixed in the electrolytic solution. However, in the electrolysis where the polarity is reversed, it is much more stable than the metal substrate, but especially in the case of negative polarization, penetration of extremely small hydrogen ions cannot be completely prevented.
Hydrogen ions can reach the base metal through both the liquid and the solid, and the base metal can be destroyed during negative polarization.
In order to avoid this, in the present invention, by adding a platinum group metal to the coating layer, it is possible to provide an electrode that can withstand a true current reversal.

【0017】その真の理由は不明であるが、前記基材を
陽極として使用するときに生ずる酸素イオンの移動を阻
止しかつ陰極として使用するときには同様に生ずる水素
イオンの移動を阻止するためと考えられる。この白金族
金属は多量に存在する必要はなく、5g/m2 以下で十
分であるが、表面全体に均一に分散していることが好ま
しい。
Although the true reason is unknown, it is thought to prevent the transfer of oxygen ions which occur when the substrate is used as an anode and the transfer of hydrogen ions which also occur when the substrate is used as a cathode. Can be The platinum group metal does not need to be present in a large amount, and it is sufficient that the amount is 5 g / m 2 or less, but it is preferable that the platinum group metal is uniformly dispersed over the entire surface.

【0018】この白金族金属と部分酸化物を含む被覆層
の形成はどのような方法により行ってもよいが、プラズ
マ溶射やアーク溶射等の溶射法によることが望ましい。
溶射により金属と金属酸化物を含む被覆層を金属基材上
に形成すると、該被覆層がアーク溶射やプラズマ溶射独
自の緻密で実質表面積が大きい層となり、電解での使用
時に実質的な電流密度を下げることができ、更に金属に
よる良好な導電性及び溶射被覆層と基材金属との強固な
付着性を確保でき、かつ多量に存在する金属に起因する
部分酸化物の酸素不足による導電性酸化物形成により生
ずる良好な耐性を有する電解用電極基体が得られ、更に
チタン等の有する通常の電解条件における耐酸化性のた
め不働態化の進行が抑制され、長期間の使用が可能にな
る。
The coating layer containing the platinum group metal and the partial oxide may be formed by any method, but is preferably formed by a spraying method such as plasma spraying or arc spraying.
When a coating layer containing a metal and a metal oxide is formed on a metal substrate by thermal spraying, the coating layer becomes a unique and large-area surface layer unique to arc spraying or plasma spraying, and has a substantial current density when used in electrolysis. In addition, good conductivity by metal and strong adhesion between the thermal spray coating layer and the base metal can be secured, and conductive oxidation due to lack of oxygen in partial oxides caused by a large amount of metal. An electrode substrate for electrolysis having good resistance resulting from the formation of a product is obtained, and furthermore, the progress of passivation is suppressed due to oxidation resistance under ordinary electrolysis conditions of titanium or the like, and long-term use becomes possible.

【0019】使用する溶射粒子の粒度は目的に応じて選
択すればよいが、勿論電極基体である以上、実質表面積
が大きい方が望ましい。電極基体としての表面粗度はほ
ぼJISRmax ≧100 μm、JISRa ≧10μmである
ことが望ましく、この表面粗度を達成するためには、粒
径が20〜100 μmの溶射粒子を使用することが好ましい
が線材を溶射することも可能である。粒径が20μm未満
であると緻密な被覆層が形成できるが、表面粗度が小さ
くなり溶射時の酸化が進行しすぎる可能性がある。一方
100 μmを越えると、緻密で貫通孔のない溶射層の形成
が困難になる。又溶射材料を金属のみとする場合は、ア
ーク溶射法により金属ワイヤを原料として溶射層を形成
することができる。この場合は、プラズマ溶射より緻密
性が5〜10%程度劣るが、その分表面の凹凸が大きくな
るという特徴があるので、用途に応じて選択できる。な
お溶射に使用する酸化チタン、酸化タンタル及び酸化ニ
オブとしては、それぞれ精製したルチル鉱、タンタライ
ト鉱及びコロンバイト鉱をそのまま用いることができ
る。
The particle size of the spray particles to be used may be selected according to the purpose. Of course, it is desirable that the surface area is large as long as the electrode substrate is used. It is desirable that the surface roughness of the electrode substrate is approximately JISR max ≧ 100 μm and JISR a ≧ 10 μm. To achieve this surface roughness, spray particles having a particle size of 20 to 100 μm should be used. However, it is also possible to spray a wire. If the particle size is less than 20 μm, a dense coating layer can be formed, but the surface roughness becomes small and oxidation during thermal spraying may proceed too much. on the other hand
If it exceeds 100 μm, it is difficult to form a dense thermal sprayed layer without through holes. When only the metal is used as the thermal spray material, the thermal spray layer can be formed by using a metal wire as a raw material by the arc thermal spraying method. In this case, the density is inferior to the plasma spraying by about 5 to 10%, but there is a feature that the unevenness of the surface is correspondingly large, so that it can be selected according to the application. As the titanium oxide, tantalum oxide and niobium oxide used for thermal spraying, purified rutile ore, tantalite ore, and columbite ore can be used as they are.

【0020】形成される被覆層の厚さは10〜200 μmが
適当であり、10μm未満であると貫通孔が残る恐れが大
きく、又200 μmを越えると被覆層が重くなり過ぎて剥
離しやすくなり、かつ該被覆層の導電率は10-2〜10-3Ω
cmであり高電流密度下ではオーム損が大となり局部的
な発熱により電極寿命を短縮させる傾向が強い。
The thickness of the coating layer to be formed is suitably from 10 to 200 μm, and if it is less than 10 μm, there is a great possibility that a through hole will remain. And the conductivity of the coating layer is 10 -2 to 10 -3 Ω.
cm, the ohmic loss becomes large under a high current density, and the local heat generation tends to shorten the electrode life.

【0021】溶射法により前記被覆層中に白金族金属を
含有させるためには、予め金属チタンや酸化チタン等の
溶射用粒子の表面に白金族金属化合物の薄層を担持させ
ておけば良い。つまり溶射する金属及び/又は酸化物粒
子の表面を塩酸等の揮発性の酸で活性化した後、塩化白
金酸等の白金族金属の塩の水溶液やアルコール溶液に浸
漬する等して前記粒子表面に白金族金属塩を担持させ
る。この粒子を乾燥後400 〜800 ℃程度で熱処理して前
記化合物を熱分解して白金族金属を前記粒子表面に析出
させ、次いでこの粒子を前記基材表面に溶射し、該基材
上に、白金族金属が分散した部分酸化物から成る被覆層
を形成することができる。溶射前の粒子表面上の白金族
金属化合物は溶射により熱が加わるため、溶射前に熱分
解して白金族金属に還元しておく必要はないが、予め熱
分解をして白金族金属を析出させておいた方が白金族金
属の歩留りは向上する。
In order to contain a platinum group metal in the coating layer by the thermal spraying method, a thin layer of a platinum group metal compound may be previously supported on the surface of thermal spray particles such as titanium metal and titanium oxide. That is, the surface of the metal and / or oxide particles to be sprayed is activated with a volatile acid such as hydrochloric acid and then immersed in an aqueous solution of a salt of a platinum group metal such as chloroplatinic acid or an alcohol solution, or the like, to thereby form the particle surface. Support a platinum group metal salt. The particles are dried and then heat-treated at about 400 to 800 ° C. to thermally decompose the compound to precipitate a platinum group metal on the surface of the particles, and then spray the particles on the surface of the base material, A coating layer made of a partial oxide in which a platinum group metal is dispersed can be formed. Since the platinum group metal compound on the particle surface before thermal spraying is heated by thermal spraying, it is not necessary to thermally decompose and reduce it to platinum group metal before thermal spraying, but it is necessary to perform thermal decomposition in advance to deposit platinum group metal. The yield increases the yield of platinum group metals.

【0022】なお溶射用粒子の全部に白金族金属を担持
させる必要はなく、白金族金属又はその化合物を担持さ
せた粒子と担持させない粒子の混合粒子を溶射して被覆
層を形成することもできる。又白金族金属を含まない被
覆層を溶射等により形成し、その後該被覆層表面に白金
族金属を蒸着によりあるいは熱分解法により担持させ均
一に分散させるようにして白金族金属と部分酸化物とを
含む被覆層を形成するようにしてもよい。
It is not necessary to support the platinum group metal on all of the thermal spraying particles. The coating layer may be formed by spraying mixed particles of particles supporting the platinum group metal or its compound and particles not supporting the platinum group metal. . Further, a coating layer containing no platinum group metal is formed by thermal spraying or the like, and thereafter the platinum group metal and the partial oxide are deposited on the surface of the coating layer by vapor deposition or thermal decomposition so as to be uniformly dispersed. May be formed.

【0023】前述の非化学量論的な部分酸化物を形成す
るためには溶射法が最適である。通常のプラズマ溶射に
より溶射物を形成すると、溶射物自体は強い還元性雰囲
気にあり、該雰囲気では酸化物生成はないが、実際の被
覆形成時には冷却過程で金属が酸化物に変換されやすく
酸化物表面が形成されることがある。従来はこの酸化物
形成を防止するために窒素やアルゴン等の不活性ガスを
シールガスとして使用し酸化を抑制していた。しかし非
化学量論的な部分酸化物の形成を意図する本発明では、
むしろ積極的にこの酸化物を形成する現象を利用し、金
属粒子を溶射するのみで溶射金属の一部を金属酸化物に
変換して非化学量論な組成化を進め導電性酸化物を含む
被覆層の形成を意図する。溶射法による非化学量論的な
部分酸化物の形成法として他に次の2種類の方法つまり
酸化性シールガスの使用及び酸化物溶射粒子の使用によ
る酸化物生成方法がある。
In order to form the above-mentioned non-stoichiometric partial oxide, the thermal spraying method is optimal. When a sprayed material is formed by ordinary plasma spraying, the sprayed material itself is in a strong reducing atmosphere, and no oxide is generated in this atmosphere. A surface may be formed. Conventionally, in order to prevent this oxide formation, an inert gas such as nitrogen or argon is used as a seal gas to suppress oxidation. However, in the present invention, which is intended to form a non-stoichiometric partial oxide,
Rather, utilizing the phenomenon of actively forming this oxide, only spraying metal particles converts a part of the sprayed metal to metal oxide and promotes non-stoichiometric composition to include conductive oxide It is intended to form a coating layer. As other methods for forming non-stoichiometric partial oxides by the thermal spraying method, there are the following two types of methods, namely, the use of an oxidizing seal gas and the method of forming an oxide by using oxide spray particles.

【0024】粗面化した基材表面に通常の溶射条件に従
って、溶射金属粒子や線材をアルゴンとヘリウムの混合
ガスをプラズマガスとして溶射する。その際に周囲のシ
ールガスを酸化性ガスとすると溶射される金属の一部が
酸化されて溶射金属と金属酸化物とを含む部分酸化物で
ある混合被覆層が形成される。生成する酸化物量は条件
によって異なるが、例えば酸化性ガスを空気とし、溶射
金属であるチタンの粒径を30〜60μmとすると、溶射チ
タンの20〜30%が酸化チタンに変換され、70〜80%の溶
射チタンと30〜20%の酸化チタンとを含む部分酸化物で
ある混合被覆層が形成される。酸素の含有量を50%程度
に高めると酸化物量も50%程度まで上昇する。しかし金
属酸化物量を更に高めると絶縁酸化物が形成され導電性
が損なわれる恐れがあり、かつ爆発的に酸化が進行する
危険がある。
The sprayed metal particles and wire are sprayed onto the roughened substrate surface using a mixed gas of argon and helium according to ordinary spraying conditions. At this time, if the surrounding seal gas is an oxidizing gas, a part of the sprayed metal is oxidized to form a mixed coating layer which is a partial oxide containing the sprayed metal and the metal oxide. The amount of generated oxide varies depending on the conditions. For example, if the oxidizing gas is air and the particle size of titanium as a spray metal is 30 to 60 μm, 20 to 30% of the sprayed titanium is converted to titanium oxide, and 70 to 80%. A mixed coating layer is formed which is a partial oxide containing 2% by weight of sprayed titanium and 30% to 20% of titanium oxide. When the oxygen content is increased to about 50%, the oxide amount also increases to about 50%. However, if the amount of metal oxide is further increased, an insulating oxide may be formed and conductivity may be impaired, and oxidation may explosively proceed.

【0025】又溶射物として前述の金属粒子又は線材だ
けでなく、金属酸化物粉末又は線材を混合し、同様の溶
射条件で溶射すると、所定の割合で金属と金属酸化物を
含む部分酸化物である混合被覆層が形成される。なおチ
タン、タンタル及びニオブの全ての金属及び金属酸化物
を被覆層中に含ませることが望ましいことがある。その
場合にこの酸化物粉末を粒子粉末の一部として使用する
方法では各金属同士及び溶射金属と溶射酸化物との割合
を所定値に設定できるため非常に好都合であり、幅広い
用途に本発明を適用することが可能になる。
Further, not only the above-mentioned metal particles or wire but also a metal oxide powder or wire as a sprayed material is mixed and sprayed under the same spraying conditions to obtain a partial oxide containing metal and metal oxide at a predetermined ratio. Certain mixed coating layers are formed. It is sometimes desirable to include all metals and metal oxides of titanium, tantalum and niobium in the coating layer. In this case, the method of using the oxide powder as a part of the particle powder is very convenient because the ratio of each metal and the ratio of the sprayed metal and the sprayed oxide can be set to a predetermined value, and the present invention is applicable to a wide range of applications. It becomes possible to apply.

【0026】このような構成から成る本発明の電極基体
に、例えば酸化イリジウムを含む電極物質の被覆を形成
して電極とし、各種電解用、特に正負が反転する電解用
として使用すると、前記電極基体が従来の電極基体より
遙かに大きい耐性特に酸素イオン及び水素イオンの透過
を阻止する能力を有するため、不働態化を遅らせ、これ
により実質的な電極寿命が極めて長くなる。
The electrode substrate of the present invention having the above-mentioned structure is coated with an electrode material containing, for example, iridium oxide to form an electrode. Have a much greater resistance than conventional electrode substrates, especially the ability to block the penetration of oxygen and hydrogen ions, thereby slowing passivation and thereby substantially extending the life of the electrode.

【0027】[0027]

【実施例】次に本発明による電極基体の製造の実施例を
記載するが、該実施例は本発明を限定するものではな
い。
EXAMPLES Next, examples of the production of an electrode substrate according to the present invention will be described, but the examples do not limit the present invention.

【0028】[0028]

【実施例1】精製した天然ルチル鉱とタンタライト鉱
を、チタンとタンタルが重量比で9:1となるように混
合しボールミルにより粉砕した。12時間粉砕後分級し、
粒度が20〜50μmであるものを選んだ。この混合粒子を
20%の沸騰塩酸中に分散し30分間保持した後、市水で洗
浄して鉄分を除去した。この操作により一部の粒子が20
μm未満となったのでこの粒子を湿式分級により除去し
た。
Example 1 Purified natural rutile ore and tantalite ore were mixed at a weight ratio of titanium and tantalum of 9: 1 and pulverized by a ball mill. Classify after grinding for 12 hours,
Those having a particle size of 20 to 50 μm were selected. This mixed particles
After dispersing in 20% boiling hydrochloric acid and keeping the mixture for 30 minutes, it was washed with city water to remove iron. By this operation, some particles become 20
Since the particle size was less than μm, the particles were removed by wet classification.

【0029】残った粒子を乾燥し、そのうちの30%を塩
化白金酸に浸漬しその後取り出して空気を断った炉中、
550 ℃で1時間焼成して前記粒子表面に金属白金を担持
した。白金担持量は2g/100 g−粒子であった。白金
を担持した30%分の粒子を白金を担持していない70%の
粒子と十分に混合し、プラズマ溶射用粉末とした。
The remaining particles were dried, and 30% of the particles were immersed in chloroplatinic acid, then taken out and cut off in an oven.
The particles were baked at 550 ° C. for 1 hour to carry metallic platinum on the surface of the particles. The platinum loading was 2 g / 100 g-particles. 30% of particles supporting platinum were sufficiently mixed with 70% of particles not supporting platinum to obtain a powder for plasma spraying.

【0030】一方縦100 mm、横100 mm、厚さ3mm
の市販のJIS第2種の純チタン板を基材として、その
表面を直径1.2 mmのアルミナ砂でサンドブラスト処理
して表面組織を破壊した後、その表面をアセトンで洗浄
脱脂した。プラズマガスとしてヘリウムを10%含むアル
ゴンガスを使用し、基材である前記チタン表面に前記プ
ラズマ溶射用粉末を溶射して、約100 μmの厚さの被覆
層を形成し、試料基体とした。白金担持量は計算上で3
g/m2 であった。生成した試料基体の表面粗度はR
max =200 μmであった。
On the other hand, length 100 mm, width 100 mm, thickness 3 mm
Using a commercially available JIS type 2 pure titanium plate as a base material, the surface was sandblasted with alumina sand having a diameter of 1.2 mm to break the surface structure, and the surface was washed and degreased with acetone. An argon gas containing 10% of helium was used as a plasma gas, and the powder for plasma spraying was sprayed on the surface of the titanium as a base material to form a coating layer having a thickness of about 100 μm. The amount of supported platinum is calculated as 3
g / m 2 . The surface roughness of the formed sample substrate is R
max = 200 μm.

【0031】この試料基体表面に、酸化イリジウム及び
酸化タンタルの2:1(モル比)混合物である電極物質
を熱分解法により被覆形成し試料電極とした。被覆量は
それぞれ7gイリジウム/m2 及び3gタンタル/m2
であった。pHを0.5 〜1に調整した250 g/リットル
の硫酸ナトリウムを含む硫酸水溶液中に前記試料電極を
2枚浸漬し、温度を60℃に維持し2分毎に正負反転しな
がら通電して電解を行った。電流密度は300 A/dm2
あり、1200時間経過後も電解を継続することができた。
An electrode material, which is a 2: 1 (molar ratio) mixture of iridium oxide and tantalum oxide, was formed on the surface of the sample substrate by thermal decomposition to form a sample electrode. The coating amounts were 7 g iridium / m 2 and 3 g tantalum / m 2, respectively.
Met. The two sample electrodes were immersed in an aqueous solution of sulfuric acid containing 250 g / liter of sodium sulfate adjusted to a pH of 0.5 to 1, and maintained at a temperature of 60 ° C., and the current was applied while inverting the polarity every two minutes to perform electrolysis. went. The current density was 300 A / dm 2 , and electrolysis could be continued even after 1200 hours.

【0032】[0032]

【比較例1】全ての粒子に白金を担持させなかったこと
以外は実施例1の操作と同様にして試料電極を作製し、
この試料電極を使用して実施例1と同じ電解条件で電解
を行ったところ、電解開始後700 時間で通電不能になっ
た。
Comparative Example 1 A sample electrode was prepared in the same manner as in Example 1, except that platinum was not supported on all particles.
When electrolysis was performed under the same electrolysis conditions as in Example 1 using this sample electrode, electricity could not be supplied 700 hours after the start of electrolysis.

【0033】[0033]

【実施例2】タンタライトの代わりにコロンバイト鉱を
使用して実施例1と同様の操作でチタン:ニオブ:タン
タル=16:3:1(モル比)から成る白金担持前の粉末
を作製した。この粉末を実施例1と同様にして酸洗し除
鉄した後、チタン量に対して10%の粒径調整したスポン
ジチタンを加え十分混合した。この粒子を塩化白金酸の
イソプロピルアルコール溶液に浸漬し、その後100 ℃の
空気中で乾燥して溶射用粉末とした。白金担持量は5g
/kg−粒子であった。
EXAMPLE 2 A powder of titanium: niobium: tantalum = 16: 3: 1 (molar ratio) before carrying platinum was prepared in the same manner as in Example 1, except that columbite was used instead of tantalite. . This powder was pickled and iron-removed in the same manner as in Example 1, and titanium sponge whose particle size was adjusted to 10% with respect to the amount of titanium was added and mixed well. The particles were immersed in a solution of chloroplatinic acid in isopropyl alcohol, and then dried in air at 100 ° C. to obtain a thermal spray powder. Platinum loading is 5g
/ Kg-particles.

【0034】一方実施例1と同じ純チタン板を実施例1
と同様にサンドブラスト処理した後、20%の沸騰塩酸中
で処理して表面を活性化し基材とした。この基材表面
に、チタン:タンタル=9:1(モル比)となるように
四塩化チタンと五塩化タンタルの5%塩酸水溶液を塗布
し、流通空気中540 ℃で15分間焼き付け、これを4回繰
り返してルチル型酸化物から成る結合層を形成した。
On the other hand, the same pure titanium plate as in Example 1 was used.
After sandblasting in the same manner as described above, the surface was activated by treatment in 20% boiling hydrochloric acid to obtain a substrate. A 5% hydrochloric acid aqueous solution of titanium tetrachloride and tantalum pentachloride was applied to the surface of the base material so that titanium: tantalum = 9: 1 (molar ratio), and baked at 540 ° C. for 15 minutes in flowing air. This was repeated twice to form a binding layer made of a rutile oxide.

【0035】この結合層表面に前記溶射用粉末を、実施
例1と同じ条件でプラズマ溶射して約100 μm厚の被覆
層を形成し、試料基体とした。白金担持量は歩留り計算
上から約3g/m2 であり、生成した試料基体の表面粗
度はRmax =約220 μmであった。この試料基体上に実
施例1と同じ電極物質を実施例1と同じ操作で被覆した
後、実施例1と同じ電解条件で電解を行ったところ、開
始後1200時間を経過しても電解の継続が可能であった。
The thermal spraying powder was plasma-sprayed on the surface of the bonding layer under the same conditions as in Example 1 to form a coating layer having a thickness of about 100 μm. The amount of platinum carried was about 3 g / m 2 in terms of yield calculation, and the surface roughness of the formed sample substrate was R max = about 220 μm. After the same electrode material as in Example 1 was coated on this sample substrate by the same operation as in Example 1, electrolysis was performed under the same electrolysis conditions as in Example 1. The electrolysis was continued even after 1200 hours from the start. Was possible.

【0036】[0036]

【実施例3】全ての粒子に白金を担持させていない溶射
用粉末を実施例1の操作に従って作製し、かつ該溶射用
粉末を実施例1と同じ基材上にプラズマ溶射して白金を
含まない被覆層を形成した。この被覆層表面に物理蒸着
法により白金を白金担持量が3g/m2 となるように付
着させ、かつ600 ℃で3時間保持して十分に拡散させ
た。その表面に実施例1と同じ操作で電極物質を被覆し
て試料電極とした。この試料電極を使用して実施例1と
同じ条件で正負反転電解を行ったところ1300時間の電極
寿命を得ることができた。
Example 3 A thermal spraying powder in which all particles did not carry platinum was prepared according to the procedure of Example 1, and the thermal spraying powder was plasma-sprayed on the same substrate as in Example 1 to contain platinum. No covering layer was formed. Platinum was deposited on the surface of the coating layer by a physical vapor deposition method so that the amount of platinum carried was 3 g / m 2, and was held at 600 ° C. for 3 hours to be sufficiently diffused. The surface was coated with an electrode material in the same manner as in Example 1 to obtain a sample electrode. Positive / negative inversion electrolysis was performed using the sample electrode under the same conditions as in Example 1. As a result, an electrode life of 1300 hours was obtained.

【0037】[0037]

【発明の効果】本発明は、導電性金属基材、及び該基材
表面に形成された、白金族金属と、チタン、タンタル及
びニオブの少なくとも1種の金属と酸素を含む非化学量
論的組成の部分酸化物の厚さ10から200 μmの被覆層を
含んで成ることを特徴とする電解用電極基体である。
According to the present invention, there is provided a conductive metal substrate, and a non-stoichiometric composition comprising a platinum group metal, at least one metal selected from the group consisting of titanium, tantalum and niobium, and oxygen formed on the surface of the substrate. An electrode substrate for electrolysis, comprising a coating layer of a partial oxide having a thickness of 10 to 200 μm.

【0038】本発明に係わる電極基体は、被覆層中の部
分酸化物のみでも高電流に対する耐性やフッ素成分等に
対する耐性を有するが、正負反転電解時の耐性は十分と
は言えない。しかし該部分酸化物とともに存在する白金
族金属がこの正負反転電解に対する耐性を有し、前記被
覆層は高電流に対する耐性やフッ素成分等に対する耐性
とともに、正負反転電解時の耐性も有することになり、
この被覆層により電極基材がほぼ完全に保護され、実質
的な電極寿命が極めて長くなる。
Although the electrode substrate according to the present invention has resistance to a high current and resistance to fluorine components and the like even with only the partial oxide in the coating layer, the resistance at the time of positive / negative inversion electrolysis is not sufficient. However, the platinum group metal present together with the partial oxide has resistance to the positive / negative inversion electrolysis, and the coating layer has resistance to high current and fluorine components, as well as resistance at the time of positive / negative inversion electrolysis,
The coating layer protects the electrode substrate almost completely, and the effective electrode life is extremely long.

【0039】又前記金属基材と被覆層との間の密着性が
不十分になりやすい場合には、両者間つまり基材表面に
好ましくは前記基材及び被覆層を構成する金属を含む金
属酸化物から成る結合層を形成して密着性を向上させる
ことができる。
When the adhesion between the metal substrate and the coating layer is likely to be insufficient, the metal oxide containing the metal constituting the substrate and the coating layer preferably between the two, that is, on the surface of the substrate. The adhesion can be improved by forming a bonding layer made of a material.

【0040】前記基材上に、このような白金族金属と部
分酸化物とを含む被覆層を形成して本発明に係わる電解
用電極基体を製造するためには、部分酸化物のみを含む
層を前記基材上に形成しその後、この層に蒸着や熱分解
法により白金族金属を添加して被覆層とするか、あるい
は溶射法の場合のように白金族金属を担持させた金属や
金属酸化物を予め作製しこれを前記基材上に被覆して被
覆層とすることができる。
In order to form the coating layer containing the platinum group metal and the partial oxide on the base material to produce the electrode substrate for electrolysis according to the present invention, a layer containing only the partial oxide is required. Is formed on the base material, and then a platinum group metal is added to the layer by vapor deposition or thermal decomposition to form a coating layer, or a metal or metal carrying a platinum group metal as in the case of thermal spraying. An oxide can be prepared in advance and coated on the substrate to form a coating layer.

フロントページの続き (56)参考文献 特開 平7−54182(JP,A) 特開 平6−33287(JP,A) 特開 平5−148675(JP,A) 特開 平4−301062(JP,A) 特開 平7−62584(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 Continuation of front page (56) References JP-A-7-54182 (JP, A) JP-A-6-33287 (JP, A) JP-A-5-148675 (JP, A) JP-A-4-301062 (JP) , A) JP-A-7-62584 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性金属基材、及び該基材表面に形成
された、白金族金属と、チタン、タンタル及びニオブの
少なくとも1種の金属と酸素を含む非化学量論的組成の
部分酸化物の厚さ10から200 μmの被覆層を含んで成る
ことを特徴とする電解用電極基体。
1. A conductive metal substrate, and a partial oxidation of a non-stoichiometric composition formed on the surface of the substrate and containing a platinum group metal, at least one metal selected from titanium, tantalum and niobium, and oxygen. An electrode substrate for electrolysis, comprising a coating layer having a thickness of 10 to 200 μm.
【請求項2】 導電性金属基材、該基材表面に形成され
た金属酸化物から成る結合層、及び該結合層表面に形成
された、白金族金属と、チタン、タンタル及びニオブの
少なくとも1種の金属と酸素を含む非化学量論的組成の
部分酸化物の厚さ10から200 μmの被覆層を含んで成る
ことを特徴とする電解用電極基体。
2. A conductive metal substrate, a bonding layer formed of a metal oxide formed on the surface of the substrate, and at least one of a platinum group metal, titanium, tantalum and niobium formed on the surface of the bonding layer. An electrode substrate for electrolysis, comprising a coating layer of a non-stoichiometric partial oxide containing a kind of metal and oxygen having a thickness of 10 to 200 μm.
【請求項3】 導電性金属基材上に、チタン、タンタル
及びニオブの少なくとも1種の金属と酸素を含む非化学
量論的組成の部分酸化物の厚さ10から200 μmの被覆層
を形成し、次いで該被覆層表面に白金族金属化合物を含
む塗布液を塗布し、該白金族金属化合物を熱分解して前
記被覆層中に白金族金属を分散させることを特徴とする
電解用電極基体の製造方法。
3. A coating layer having a thickness of 10 to 200 μm of a non-stoichiometric partial oxide containing at least one metal of titanium, tantalum and niobium and oxygen on a conductive metal substrate. An electrode substrate for electrolysis, wherein a coating solution containing a platinum group metal compound is applied to the surface of the coating layer, and the platinum group metal compound is thermally decomposed to disperse the platinum group metal in the coating layer. Manufacturing method.
【請求項4】 導電性金属基材上に、チタン、タンタル
及びニオブの少なくとも1種の金属と酸素を含む非化学
量論的組成の部分酸化物の厚さ10から200 μmの被覆層
を形成し、次いで該被覆層表面に白金族金属を蒸着し、
該白金族金属を前記被覆層中に分散させることを特徴と
する電解用電極基体の製造方法。
4. A coating layer having a thickness of 10 to 200 μm of a non-stoichiometric partial oxide containing oxygen and at least one metal of titanium, tantalum and niobium is formed on a conductive metal substrate. Then, a platinum group metal is deposited on the surface of the coating layer,
A method for producing an electrode substrate for electrolysis, comprising dispersing the platinum group metal in the coating layer.
【請求項5】 導電性金属基材上に、少なくともその一
部に白金族金属又はその化合物を担持させたチタン、タ
ンタル及びニオブの少なくとも1種の金属及び/又は金
属酸化物の粒子を溶射し、白金族金属と、チタン、タン
タル及びニオブの少なくとも1種の金属と酸素を含む非
化学量論的組成の部分酸化物の厚さ10から200 μmの被
覆層を形成することを特徴とする電解用電極基体の製造
方法。
5. Spraying particles of at least one kind of metal and / or metal oxide of titanium, tantalum and niobium having at least a part of which supports a platinum group metal or a compound thereof on a conductive metal substrate. Forming a coating layer having a thickness of 10 to 200 μm of a partial oxide having a non-stoichiometric composition containing a platinum group metal, at least one metal of titanium, tantalum and niobium and oxygen. For producing an electrode substrate for use.
JP23084193A 1993-08-24 1993-08-24 Electrode substrate for electrolysis and method for producing the same Expired - Fee Related JP3259869B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23084193A JP3259869B2 (en) 1993-08-24 1993-08-24 Electrode substrate for electrolysis and method for producing the same
US08/294,046 US5531875A (en) 1993-08-24 1994-08-24 Electrode substrate for electrolysis and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23084193A JP3259869B2 (en) 1993-08-24 1993-08-24 Electrode substrate for electrolysis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0762585A JPH0762585A (en) 1995-03-07
JP3259869B2 true JP3259869B2 (en) 2002-02-25

Family

ID=16914127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23084193A Expired - Fee Related JP3259869B2 (en) 1993-08-24 1993-08-24 Electrode substrate for electrolysis and method for producing the same

Country Status (2)

Country Link
US (1) US5531875A (en)
JP (1) JP3259869B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339002A (en) * 1995-04-10 1996-12-24 Ngk Insulators Ltd Second harmonic wave generating element and its production
JP3628756B2 (en) * 1995-04-28 2005-03-16 ペルメレック電極株式会社 Gas diffusion electrode
US5667649A (en) * 1995-06-29 1997-09-16 Bushman; James B. Corrosion-resistant ferrous alloys for use as impressed current anodes
US6217729B1 (en) * 1999-04-08 2001-04-17 United States Filter Corporation Anode formulation and methods of manufacture
NO324550B1 (en) * 2001-10-10 2007-11-19 Lasse Kroknes Apparatus by electrode, method of manufacture thereof and use thereof
EP1489200A1 (en) * 2003-06-19 2004-12-22 Akzo Nobel N.V. Electrode
ES2944935T3 (en) 2012-02-23 2023-06-27 Treadstone Tech Inc Corrosion resistant and electrically conductive metal surface
US11668017B2 (en) 2018-07-30 2023-06-06 Water Star, Inc. Current reversal tolerant multilayer material, method of making the same, use as an electrode, and use in electrochemical processes
US11639142B2 (en) 2019-01-11 2023-05-02 Ford Global Technologies, Llc Electronic control module wake monitor
CN117535712B (en) * 2023-12-25 2024-07-16 广东卡沃罗氢科技有限公司 Bipolar plate, preparation method thereof, electrolysis cell and electrolysis tank

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2300422C3 (en) * 1973-01-05 1981-10-15 Hoechst Ag, 6000 Frankfurt Method of making an electrode
IT1127303B (en) * 1979-12-20 1986-05-21 Oronzio De Nora Impianti PROCEDURE FOR THE PREPARATION OF MIXED CATALYTIC OXIDES
JP3212334B2 (en) * 1991-11-28 2001-09-25 ペルメレック電極株式会社 Electrode substrate for electrolysis, electrode for electrolysis, and methods for producing them

Also Published As

Publication number Publication date
US5531875A (en) 1996-07-02
JPH0762585A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
US5435896A (en) Cell having electrodes of improved service life
JP2011017084A (en) Electrocatalytic coating with platinum group metals and electrode made therefrom
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
JP3259869B2 (en) Electrode substrate for electrolysis and method for producing the same
EP0493326B1 (en) Substrate of improved melt sprayed surface morphology
US6802948B2 (en) Copper electrowinning
US5324407A (en) Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
JPH04231491A (en) Electric catalyzer cathode and its manufacture
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JP3212334B2 (en) Electrode substrate for electrolysis, electrode for electrolysis, and methods for producing them
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
JP4284387B2 (en) Electrode for electrolysis and method for producing the same
JPH0633287A (en) Electrode for electrolysis and its production
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JP3257872B2 (en) Electrode substrate for electrolysis and method for producing the same
JP3422885B2 (en) Electrode substrate
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JP3259870B2 (en) Electrode substrate for electrolysis and method for producing the same
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
JP3422884B2 (en) Electrode for electrolysis
JPH09125292A (en) Electrode substrate
JPH0533177A (en) Production of anode for generating oxygen
JPH11335887A (en) Production of high durability electrode
JPH0434640B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees