JP3422885B2 - Electrode substrate - Google Patents

Electrode substrate

Info

Publication number
JP3422885B2
JP3422885B2 JP28540495A JP28540495A JP3422885B2 JP 3422885 B2 JP3422885 B2 JP 3422885B2 JP 28540495 A JP28540495 A JP 28540495A JP 28540495 A JP28540495 A JP 28540495A JP 3422885 B2 JP3422885 B2 JP 3422885B2
Authority
JP
Japan
Prior art keywords
oxide
electrode
layer
substrate
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28540495A
Other languages
Japanese (ja)
Other versions
JPH09125291A (en
Inventor
孝之 島宗
節郎 尾形
善之 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP28540495A priority Critical patent/JP3422885B2/en
Publication of JPH09125291A publication Critical patent/JPH09125291A/en
Application granted granted Critical
Publication of JP3422885B2 publication Critical patent/JP3422885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、陽極反応として酸
素発生が起こる酸性電解液中において陽極として使用す
る電極に関するものであり、とくに高速亜鉛めっきや電
解銅箔製造などにおいて高電流密度の電解に使用される
陽極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode used as an anode in an acidic electrolytic solution in which oxygen is generated as an anodic reaction, and is particularly suitable for high current density electrolysis in high-speed galvanizing or electrolytic copper foil production. It relates to the anode used.

【0002】[0002]

【従来の技術】鋼板の高速亜鉛めっきや電解銅箔製造に
は従来から鉛陽極が使用されてきた。その理由は電解浴
が硫酸を主成分としたものであり、極めて腐食性が強
く、その中で安定な導電性の物質は鉛以外にほとんど無
いこと、電解電流密度が大きいこと、さらに、鉛は比較
的安価であること等による。また、鉛は容易に他の金属
と合金をつくり、加工性も極めて良いこという特徴を有
することもその理由である。しかしながら、消耗の少な
い鉛合金を用いた場合でも、電解時の消耗量は数mg/
Ahであり、それが環境を汚染する可能性があること、
また、製品であるめっき層中や箔中に含まれて悪影響を
及ぼすという問題点があった。そこで、チタン等の薄膜
形成性金属、弁金属と称される金属もしくはその合金の
表面に白金族金属やその酸化物の電極触媒層を被覆した
いわゆる寸法安定性電極が使用されるようになった。こ
の電極は、食塩の電気分解によって水酸化ナトリウムと
塩素を生産する際に塩素発生用電極として使われてい
る。
2. Description of the Related Art Lead anodes have been used for high-speed galvanizing of steel sheets and production of electrolytic copper foils. The reason is that the electrolytic bath contains sulfuric acid as a main component, it is extremely corrosive, and there is almost no stable conductive substance other than lead, the electrolytic current density is large, and moreover, lead is Because it is relatively inexpensive. Another reason is that lead easily forms alloys with other metals and has excellent workability. However, even when using a lead alloy that consumes little, the amount consumed during electrolysis is a few mg /
Ah, which can pollute the environment,
In addition, there is a problem that it is contained in the plated layer or the foil, which is a product, and has an adverse effect. Therefore, so-called dimensionally stable electrodes have been used in which the surface of a thin film forming metal such as titanium, a valve metal, or an alloy thereof is coated with an electrode catalyst layer of a platinum group metal or its oxide. . This electrode is used as a chlorine generation electrode when sodium hydroxide and chlorine are produced by electrolysis of salt.

【0003】こうした電極の電極触媒被覆の成分などを
変えて酸素発生用に使用したが、酸素の被覆層中への移
動およびそれに伴い基体であるチタンの表面酸化による
不働態化が起こるという問題点があった。その解決のた
めに本発明者らも種々の工夫を行っている。例えば、一
部分に不働態化が起こっても導電性を保持するために、
基体金属表面をあらかじめ他の金属を含む酸化物とし、
半導体に近い導電性を与え、電極表面から移動した酸素
と反応しても導電性を失わないように、あらかじめ酸素
の少ない非化学量論的な酸化物を形成しておく方法など
である。
Although the components of the electrode catalyst coating of such an electrode were changed and used for oxygen generation, there was a problem in that oxygen was transferred into the coating layer and passivated by surface oxidation of titanium as a substrate. was there. To solve this problem, the inventors have made various efforts. For example, in order to retain conductivity even if passivation occurs in a part,
The base metal surface is previously made an oxide containing another metal,
For example, a non-stoichiometric oxide containing a small amount of oxygen is formed in advance so as to give conductivity close to that of a semiconductor and not lose conductivity even when reacting with oxygen transferred from the electrode surface.

【0004】また、チタンはこれらの用途に使う電解浴
である硫酸中では必ずしも化学的には安定でないことか
ら表面にタンタルを被覆し、その後に被覆を形成するこ
と、また、ガラス質中間層の被覆を行ってチタンを完全
に覆ってしまうことも行われている。しかしながら、基
体表面への半導体の酸化物被覆の形成は電子部品を作る
場合のようには、必ずしも完全には形成されないので、
電極触媒の被覆層が寿命となる前に電極基体が不導態化
し、また、腐食に対しても必ずしも耐食性が大きくない
ことがあげられる。これは被覆中に導電性を保持するた
めに白金等の導電物質を含有している物でも同様であっ
た。一方、タンタルを被覆している基体では、タンタル
自身は十分な耐蝕性を示すが、タンタルとチタンとの膨
張係数の相違から、電極触媒物質を塗布した化合物の熱
分解によって電極触媒層を形成する工程において、体積
膨張が起こり、それによって基体であるチタンから剥離
してしまう。そのために、電極触媒物質の形成条件が極
めて制限されるという問題があり、必ずしも良い効果が
期待できなかった。
Further, titanium is not always chemically stable in sulfuric acid, which is an electrolytic bath used for these purposes, and therefore tantalum is coated on the surface and then the coating is formed, and the vitreous intermediate layer is formed. It is also practiced to coat the titanium completely. However, the formation of a semiconductor oxide coating on the substrate surface is not always completely formed as in the case of making electronic components,
It is possible that the electrode base body is rendered nonconductive before the coating layer of the electrode catalyst reaches the end of its life, and the corrosion resistance is not necessarily high. This was also the case with a material containing a conductive material such as platinum in order to maintain conductivity in the coating. On the other hand, in the substrate coated with tantalum, tantalum itself has sufficient corrosion resistance, but due to the difference in expansion coefficient between tantalum and titanium, the electrode catalyst layer is formed by thermal decomposition of the compound coated with the electrode catalyst substance. In the process, volume expansion occurs, which causes separation from titanium, which is the substrate. Therefore, there is a problem that the conditions for forming the electrode catalyst substance are extremely limited, and a good effect cannot always be expected.

【0005】また、ガラス質の被覆は導電性が必ずしも
良くないこと、また電極触媒物質とガラス質被覆との接
着性が良くないという問題点がある。すなわち、通常は
電極触媒物質と基体は化学結合を形成するが、ガラス質
被覆の場合は化学結合が期待できないことによる。この
ように種々の改良が行われているが、問題点が十分に解
決されているとは言えなかった。また、耐蝕性物質を溶
射する技術が提案されているが、溶射層そのものは耐蝕
性が十分にあっても、電極の中間層としてはその厚さは
100μm程度であるので、貫通孔を完全に防ぐことは
極めて困難であった。このわずかな貫通孔を通って腐食
性の電解液が溶射層と基体との間に入ると、電解中であ
っても基体は分極をしないので、界面が腐食するという
ことがあり、十分な耐久性があるとは言えなかった。
Further, there is a problem that the vitreous coating does not necessarily have good conductivity, and the adhesiveness between the electrode catalyst substance and the vitreous coating is not good. That is, usually, the electrode catalyst substance and the substrate form a chemical bond, but in the case of a glassy coating, the chemical bond cannot be expected. Although various improvements have been made in this way, it cannot be said that the problems have been sufficiently solved. Further, although a technique of spraying a corrosion resistant substance has been proposed, even if the sprayed layer itself has sufficient corrosion resistance, since the thickness of the intermediate layer of the electrode is about 100 μm, the through hole can be completely formed. It was extremely difficult to prevent. If a corrosive electrolyte enters between the thermal spray layer and the substrate through these slight through holes, the substrate will not polarize even during electrolysis, and the interface may corrode, resulting in sufficient durability. I couldn't say that there was anything.

【0006】[0006]

【発明が解決しようとする課題】本発明は、陽極反応と
して酸素発生反応が起こる酸性電解液中において陽極と
して使用可能な長寿命の不溶性電極を提供することを課
題とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a long-life insoluble electrode that can be used as an anode in an acidic electrolyte in which an oxygen evolution reaction occurs as an anodic reaction.

【0007】[0007]

【課題を解決するための手段】本発明は、陽極反応とし
て酸素発生反応が起こる陽極用の電極基体において、金
属基体上に白金族金属またはその酸化物を含む層を形成
した後に、導電性の酸化チタンの溶射層を形成した電極
基体である。また、白金族金属が白金であり、白金族金
属の酸化物が酸化パラジウムであるである前記の電極基
体である。また、導電性の酸化チタンが、プラズマ溶射
により導電性となるルチル型酸化チタン、酸化チタンと
他の酸化物との複合酸化物、もしくはドープによって導
電化した酸化チタンから選ばれた少なくとも1種である
電極基体である。
According to the present invention, in an electrode substrate for an anode in which an oxygen generating reaction occurs as an anodic reaction, a layer containing a platinum group metal or an oxide thereof is formed on a metal substrate and then a conductive It is an electrode substrate on which a sprayed layer of titanium oxide is formed. Further, the above-mentioned electrode base body in which the platinum group metal is platinum and the oxide of the platinum group metal is palladium oxide. Further, the conductive titanium oxide is at least one selected from rutile type titanium oxide which becomes conductive by plasma spraying, a composite oxide of titanium oxide and other oxides, or titanium oxide which is made conductive by doping. It is an electrode substrate.

【0008】[0008]

【発明の実施の形態】すなわち、本発明の電極基体は、
チタン等の薄膜形成性金属またはその合金を電極基体と
した陽極反応として酸素を発生する陽極であって、チタ
ン等の基体上に、白金族金属またはその酸化物を含む層
を形成し、次いで白金族金属またはその酸化物を含む層
上に、導電性の酸化チタンをプラズマ溶射により被覆し
た酸素発生反応が生じる酸性電解液中において使用可能
な陽極を製造するために用いることができる陽極用の基
体である。そして、本発明の電極基体には、導電性の酸
化チタンをプラズマ溶射によって形成した層を電解液が
貫通しても、白金族の金属もしくは白金族の金属酸化物
の層が形成されているので、電極基体の表面が腐食した
り不働態化することはなく、長寿命の電極の製造が可能
となる。
BEST MODE FOR CARRYING OUT THE INVENTION That is, the electrode substrate of the present invention is
A thin film-forming metal such as titanium or an alloy thereof is used as an electrode substrate for generating oxygen as an anodic reaction, and a layer containing a platinum group metal or its oxide is formed on a substrate such as titanium, and then platinum is formed. Substrate for an anode that can be used for producing an anode that can be used in an acidic electrolyte in which an oxygen generation reaction occurs in which conductive titanium oxide is coated by plasma spraying on a layer containing a group metal or its oxide Is. Since the electrode substrate of the present invention has a layer of platinum group metal or platinum group metal oxide formed even when the electrolytic solution penetrates the layer formed by plasma spraying conductive titanium oxide, The surface of the electrode substrate is not corroded or passivated, and it is possible to manufacture a long-life electrode.

【0009】本発明の電極基体の製造に用いるチタン等
の金属基体は、サンドブラスト等によって表面を粗面化
した後に、酸洗浄等によって清浄化する。清浄後に電極
基体に形成する酸化チタンの溶射層は、数十μmの厚さ
を有するので、基体金属の表面アラサは、これと同程度
のJIS Rmax=50〜150μmであることが好
ましい。清浄化処理した金属基体には、白金族の金属も
しくは金属酸化物の被覆を形成する。白金族の金属もし
くは金属酸化物は、単一のものであっても複数のものを
含むものであっても良い。具体的には、白金、金等の金
属、パラジウム、ロジウム等の金属の酸化物を挙げるこ
とができ、これらの金属もしくは金属酸化物にはチタン
やタンタルの酸化物等を添加しても良い。
The metal substrate such as titanium used for manufacturing the electrode substrate of the present invention is roughened by sandblasting or the like and then cleaned by acid cleaning or the like. Since the sprayed layer of titanium oxide formed on the electrode substrate after cleaning has a thickness of several tens of μm, the surface roughness of the substrate metal is preferably JIS Rmax = 50 to 150 μm, which is comparable to this. A coating of a platinum group metal or metal oxide is formed on the cleaned metal substrate. The platinum group metal or metal oxide may be a single metal or a plurality of metal oxides. Specific examples include oxides of metals such as platinum and gold, and metals such as palladium and rhodium, and oxides of titanium or tantalum may be added to these metals or metal oxides.

【0010】また、白金族の金属もしくは金属酸化物の
層の形成は、白金族の金属を含有する化合物の熱分解、
めっき、蒸着等の方法によって形成することができる
が、熱分解によって形成することが好ましい。熱分解
は、白金族金属化合物を含有する溶液を塗布し、200
〜600℃の温度で焼成を行って、金属または酸化物の
層を形成する。焼成雰囲気は、使用する材料と形成すべ
き層に応じて適宜選定することができる。
The formation of the platinum group metal or metal oxide layer is carried out by thermal decomposition of a compound containing the platinum group metal,
It can be formed by a method such as plating or vapor deposition, but it is preferably formed by thermal decomposition. The thermal decomposition is performed by applying a solution containing a platinum group metal compound,
Firing is performed at a temperature of ~ 600 ° C to form a metal or oxide layer. The firing atmosphere can be appropriately selected depending on the material used and the layer to be formed.

【0011】白金族金属または酸化物層上に形成する導
電性の酸化チタン層は、酸化チタン粒子の溶射によって
形成することが好ましい。使用可能な酸化チタン粒子
は、ドープ等によって導電性を付与したもの以外にも、
精製したルチル粒子やプラズマ溶射用として市販されて
いる酸化チタンまたはルチル粒子であっても、プラズマ
溶射中に一部が還元され導電性を示すようので使用する
ことが可能である。使用する粒子の大きさは、平均粒径
が10〜200μmのものが好ましく、20〜100μ
mのものが特に好ましい。
The conductive titanium oxide layer formed on the platinum group metal or oxide layer is preferably formed by spraying titanium oxide particles. Titanium oxide particles that can be used are, in addition to those to which conductivity is imparted by dope or the like,
Even purified rutile particles and commercially available titanium oxide or rutile particles for plasma spraying can be used because they are partially reduced during plasma spraying and show conductivity. Regarding the size of the particles used, those having an average particle size of 10 to 200 μm are preferable, and 20 to 100 μm.
Particularly preferred is m.

【0012】また、溶射層は、白金族の金属またはその
化合物の層上に均一に付着し、そのの厚さは20〜20
0μmであることが好ましい。プラズマ溶射は、プラズ
マガスとしてアルゴンと水素の混合気体を使用すること
が好ましい。
The sprayed layer is uniformly deposited on the platinum group metal or its compound layer and has a thickness of 20 to 20.
It is preferably 0 μm. For plasma spraying, it is preferable to use a mixed gas of argon and hydrogen as the plasma gas.

【0013】以上のようにして得られた電極基体には、
電極触媒物質を含む溶液を塗布して熱分解することによ
って電極触媒被覆を形成することができるが、電極基体
上にには、電極触媒層の形成の前に酸化タンタルと酸化
チタン等からなる保護層を形成することができる。とく
に、電極触媒被覆は種々のものを形成することができる
が、酸化イリジウムと酸化タンタルを含有する被覆を形
成することが好ましい。
The electrode substrate obtained as described above includes
An electrode catalyst coating can be formed by applying a solution containing an electrode catalyst substance and thermally decomposing it, but a protective layer consisting of tantalum oxide and titanium oxide is formed on the electrode substrate before forming the electrode catalyst layer. Layers can be formed. In particular, various electrode catalyst coatings can be formed, but it is preferable to form a coating containing iridium oxide and tantalum oxide.

【0014】[0014]

【実施例】以下に本発明の実施例を示し、本発明を説明
する。 実施例1 チタン板を#120鉄グリットによってブラストを行っ
て表面粗度 JISRmax=110μmとし、さらに
85℃の25%硫酸中で酸洗を行って表面に残留してい
るグリットを除くとともに、活性化した。次いでチタン
板の表面に、塩化白金酸のイソプロピルアルコール溶液
を刷毛によりに塗布し、室温にて10分保持後、空気に
水素を15%混合した気体の送気下において300℃で
10分加熱熱分解を行った。この操作を4回繰り返して
2g/m2 の白金層を形成した。
EXAMPLES The present invention will be described below by showing Examples of the present invention. Example 1 A titanium plate was blasted with # 120 iron grit to have a surface roughness of JIS Rmax = 110 μm, and then pickled in 25% sulfuric acid at 85 ° C. to remove the grit remaining on the surface and to activate it. did. Then, an isopropyl alcohol solution of chloroplatinic acid was applied to the surface of the titanium plate with a brush and kept at room temperature for 10 minutes, and then heated at 300 ° C. for 10 minutes while feeding a gas containing 15% hydrogen in air. It was disassembled. This operation was repeated 4 times to form a platinum layer of 2 g / m 2 .

【0015】次いで、一酸化炭素と二酸化炭素の混合気
体中において1000℃で還元処理した平均粒径50μ
mの酸化チタンをプラズマ溶射によって全面に溶射して
厚さ100μmの溶射層を形成した。該粒子の溶射はプ
ラズマ溶射ガン(Metco社製)を用い、溶射条件は
電流500A、電圧60〜70V、プラズマガスはアル
ゴンと水素の混合気体を用い、原料供給量は、20g/
分、ピッチ5mm、および溶射ガンと基体との距離は1
00mmであった。
Next, an average particle size of 50 μm which has been subjected to reduction treatment in a mixed gas of carbon monoxide and carbon dioxide at 1000 ° C.
m titanium oxide was sprayed on the entire surface by plasma spraying to form a sprayed layer having a thickness of 100 μm. A plasma spray gun (manufactured by Metco) was used for spraying the particles, the spraying conditions were a current of 500 A, a voltage of 60 to 70 V, the plasma gas was a mixed gas of argon and hydrogen, and the raw material supply rate was 20 g /
Min, pitch 5 mm, and the distance between the spray gun and substrate is 1
It was 00 mm.

【0016】得られた電極基体の特性を評価するため
に、電極基体表面にチタン85モル%、タンタル15モ
ル%を含む4塩化チタンと5塩化タンタルの塩酸水溶液
を塗布し、空気中において560℃で15分間加熱し
た。この操作を3回繰り返した。さらに、この表面に塩
化イリジウム酸をタンタルブトキシドのエチルアルコー
ル溶液に、イリジウム:タンタル=70:30(モル
比)となるように溶解した塗布液を塗布し、空気中にお
いて530℃で10分間焼成した。この操作を15回繰
り返して電極を作製した。得られた電極を75℃におい
て20重量%の硫酸中で浸漬試験を行った。1000時
間後に試料を取り出したところ、本実施例の電極ではわ
ずかな重量減少はあったものの、その他の変化はまった
く見られなかった。
In order to evaluate the characteristics of the obtained electrode substrate, a hydrochloric acid aqueous solution of titanium tetrachloride and tantalum pentachloride containing 85 mol% of titanium and 15 mol% of tantalum is applied to the surface of the electrode substrate and the temperature is 560 ° C. in air. Heated for 15 minutes. This operation was repeated 3 times. Further, a coating solution prepared by dissolving iridium chloride in an ethyl alcohol solution of tantalum butoxide so as to be iridium: tantalum = 70: 30 (molar ratio) was applied to the surface, and baked in air at 530 ° C. for 10 minutes. . This operation was repeated 15 times to prepare an electrode. The obtained electrode was subjected to an immersion test at 75 ° C. in 20% by weight sulfuric acid. When the sample was taken out after 1000 hours, the electrode of this example showed a slight weight loss, but no other change was observed.

【0017】また、75℃において20重量%の硫酸を
電解液として陽極として電流密度200A/dm2 で電
気分解を行ったところ、通電開始後2150時間で電圧
が上昇し、電気分解が継続できなくなった。電解終了後
電極基体上の物質を分析したところ、電極触媒物質が消
耗しているのを確認することができた。
When electrolysis was carried out at a current density of 200 A / dm 2 using 20% by weight of sulfuric acid as an anode at 75 ° C., the voltage increased 2150 hours after the start of energization and the electrolysis could not be continued. It was When the substance on the electrode substrate was analyzed after the completion of electrolysis, it could be confirmed that the electrode catalyst substance was consumed.

【0018】比較例1 白金層を設けなかった点を除き実施例1と同様にして電
極を作製し、同様に試験を行った。浸漬試験では、チタ
ン部分に腐食が発生していた。また、電気分解試験を行
ったところ、1520時間で電圧が上昇し、電気分解を
継続することができなくなった。電気分解終了後、電極
基体上の被覆について調べたところ、溶射層と基体金属
の間が腐食していた。また、電極触媒物質は約30%残
っており、腐食が短寿命の原因であることを確認するこ
とができた。
Comparative Example 1 An electrode was prepared and tested in the same manner as in Example 1 except that the platinum layer was not provided. In the immersion test, the titanium portion was corroded. Moreover, when an electrolysis test was conducted, the voltage increased in 1520 hours, and the electrolysis could not be continued. After the electrolysis was completed, the coating on the electrode substrate was examined, and it was found that there was corrosion between the sprayed layer and the substrate metal. In addition, about 30% of the electrode catalyst substance remained, and it was confirmed that corrosion was the cause of the short life.

【0019】実施例2 チタン板の表面に塩化パラジウムの30重量%塩酸溶液
を塗布し、乾燥の後に空気を通気ながら520℃で10
分間の加熱焼成を行った。塗布、乾燥、加熱焼成の操作
を4回繰り返して3g/m2 の酸化パラジウムを含む被
覆層を形成した。なお、得られた被覆層には基体のチタ
ン板の溶出によると思われる酸化チタンがパラジウムに
対して約10重量%含まれていた。さらに650℃で1
時間加熱安定化してから実施例1と同様にしてプラズマ
溶射を行い厚さ50μmの溶射層を形成した。溶射に
は、15重量%の酸化タンタルを含み5×10-2Ωcm
の導電性を示す平均粒径50μm、最大粒径150μm
の酸化チタンの焼結体の粒子を使用した。 得られた電
極基体上に実施例1同様に電極触媒物質の被覆を形成
し、実施例1と同様にして浸漬試験を行ったところ、変
化はまったく見られなかった。また、同様に電気分解試
験を行ったところ、通電開始後2300時間の電気分解
を行うことができた。
Example 2 A 30% by weight hydrochloric acid solution of palladium chloride was applied to the surface of a titanium plate, and after drying, air was passed through the titanium plate at 520 ° C. for 10 hours.
It was heated and baked for 1 minute. The operations of coating, drying and heating and firing were repeated 4 times to form a coating layer containing 3 g / m 2 of palladium oxide. The obtained coating layer contained about 10% by weight of titanium oxide, which is considered to be due to the elution of the titanium plate of the substrate, with respect to palladium. 1 at 650 ° C
After heating and stabilizing for a period of time, plasma spraying was performed in the same manner as in Example 1 to form a sprayed layer having a thickness of 50 μm. 5 × 10 -2 Ωcm containing 15 wt% tantalum oxide for thermal spraying
Average particle size of 50μm and maximum particle size of 150μm
The particles of the titanium oxide sintered body were used. When a coating of an electrode catalyst substance was formed on the obtained electrode substrate in the same manner as in Example 1 and an immersion test was conducted in the same manner as in Example 1, no change was observed. Further, when an electrolysis test was conducted in the same manner, it was possible to perform electrolysis 2300 hours after the start of energization.

【0020】比較例2 酸化パラジウム層を設けなかった点を除き実施例2と同
様にして電極を作製し、同様に試験を行った。浸漬試験
では、被覆層が剥離した。また、チタン部分に腐食が発
生していた。また、電気分解試験を行ったところ、12
00時間で電圧が上昇し、電気分解を継続することがで
きなくなった。電気分解終了後、電極基体上の被覆につ
いて調べたところ、溶射層と基体金属の間が腐食してい
た。
Comparative Example 2 An electrode was prepared and tested in the same manner as in Example 2 except that the palladium oxide layer was not provided. In the immersion test, the coating layer peeled off. In addition, the titanium portion was corroded. Moreover, when an electrolysis test was performed,
At 00 hours, the voltage increased and it became impossible to continue electrolysis. After the electrolysis was completed, the coating on the electrode substrate was examined, and it was found that there was corrosion between the sprayed layer and the substrate metal.

【0021】[0021]

【発明の効果】本発明の電極基体は、金属基体上に白金
族の金属またはその酸化物からなる被覆を形成した後
に、導電性の酸化チタンの溶射層を形成したので、酸性
電解液中において酸素発生用の陽極の基体として用いた
場合であっても、基体と導電性の酸化チタンの溶射層と
の間での腐食が生じにくく、長寿命の陽極を得ることが
できる。
EFFECT OF THE INVENTION In the electrode substrate of the present invention, a conductive titanium oxide sprayed layer is formed after forming a coating of a platinum group metal or its oxide on a metal substrate. Even when it is used as a base body of an anode for oxygen generation, corrosion between the base body and a conductive titanium oxide sprayed layer hardly occurs, and a long-life anode can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C25D 17/10 101 C25D 17/10 101A // C25D 1/04 311 1/04 311 (58)調査した分野(Int.Cl.7,DB名) C25D 17/12 C23C 4/10 C23C 28/00 C25B 11/10 C25C 7/02 307 C25D 17/10 101 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C25D 17/10 101 C25D 17/10 101A // C25D 1/04 311 1/04 311 (58) Fields investigated (Int.Cl. 7 , DB name) C25D 17/12 C23C 4/10 C23C 28/00 C25B 11/10 C25C 7/02 307 C25D 17/10 101

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸素発生反応が起こる陽極用の電極基体
において、金属基体上に白金族金属またはその酸化物を
含む層を形成した後に、導電性の酸化チタンの溶射層を
形成したことを特徴とする電極基体。
1. In an electrode substrate for an anode in which an oxygen generation reaction occurs, a layer containing a platinum group metal or its oxide is formed on a metal substrate, and then a sprayed layer of conductive titanium oxide is formed. And an electrode substrate.
【請求項2】 白金族金属が白金であり、白金族金属の
酸化物が酸化パラジウムであるであることを特徴とする
請求項1記載の電極基体。
2. The electrode substrate according to claim 1, wherein the platinum group metal is platinum, and the platinum group metal oxide is palladium oxide.
【請求項3】 導電性の酸化チタンが、プラズマ溶射に
より導電性となるルチル型酸化チタン、酸化チタンと他
の酸化物との複合酸化物、もしくはドープによって導電
化した酸化チタンから選ばれた少なくとも1種であるこ
とを特徴とする請求項1の電極基体。
3. The conductive titanium oxide is at least selected from rutile type titanium oxide which becomes conductive by plasma spraying, a composite oxide of titanium oxide and another oxide, or titanium oxide which is made conductive by doping. The electrode substrate according to claim 1, which is one kind.
JP28540495A 1995-11-01 1995-11-01 Electrode substrate Expired - Fee Related JP3422885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28540495A JP3422885B2 (en) 1995-11-01 1995-11-01 Electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28540495A JP3422885B2 (en) 1995-11-01 1995-11-01 Electrode substrate

Publications (2)

Publication Number Publication Date
JPH09125291A JPH09125291A (en) 1997-05-13
JP3422885B2 true JP3422885B2 (en) 2003-06-30

Family

ID=17691090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28540495A Expired - Fee Related JP3422885B2 (en) 1995-11-01 1995-11-01 Electrode substrate

Country Status (1)

Country Link
JP (1) JP3422885B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527939B1 (en) * 1999-06-28 2003-03-04 Eltech Systems Corporation Method of producing copper foil with an anode having multiple coating layers
KR20020061136A (en) * 2001-01-16 2002-07-23 주식회사 한솔 a manufacturing of electrolytic arrangement for see water technigue
KR20110011001A (en) * 2009-07-27 2011-02-08 일진머티리얼즈 주식회사 Insoluble anode and method of preparing insoluble anode
RU2487198C1 (en) * 2012-05-22 2013-07-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Дальневосточный федеральный университет" Metal oxide electrode, method of making said electrode and use
KR101443486B1 (en) * 2013-01-04 2014-09-24 인하대학교 산학협력단 Manufacturing method of DSA anode
US11668017B2 (en) 2018-07-30 2023-06-06 Water Star, Inc. Current reversal tolerant multilayer material, method of making the same, use as an electrode, and use in electrochemical processes

Also Published As

Publication number Publication date
JPH09125291A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
US5435896A (en) Cell having electrodes of improved service life
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
US6527939B1 (en) Method of producing copper foil with an anode having multiple coating layers
JP2009512781A (en) Method for forming an electrocatalytic surface on an electrode and the electrode
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
US6391477B1 (en) Electroless autocatalytic platinum plating
JP2002030495A (en) Electrode characterized by surface catalytic layer having extremely high adhesive property
US5324407A (en) Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
JP3422885B2 (en) Electrode substrate
US5164062A (en) Electrocatalytic cathodes and method of preparation
EP0493326A2 (en) Substrate of improved melt sprayed surface morphology
JPH04231491A (en) Electric catalyzer cathode and its manufacture
JP3259869B2 (en) Electrode substrate for electrolysis and method for producing the same
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JPH10298792A (en) Anode for generating oxygen in electrolyte containing fluoride or fluoride complex anion
JPH09125292A (en) Electrode substrate
JP3422884B2 (en) Electrode for electrolysis
US5066380A (en) Electrocatalytic cathodes and method of preparation
JP3044797B2 (en) Manufacturing method of anode for oxygen generation
JP3257872B2 (en) Electrode substrate for electrolysis and method for producing the same
US20030116431A1 (en) Electrode
JPH06146047A (en) Anode for generating oxygen and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees