JPH06146047A - Anode for generating oxygen and its production - Google Patents

Anode for generating oxygen and its production

Info

Publication number
JPH06146047A
JPH06146047A JP4295726A JP29572692A JPH06146047A JP H06146047 A JPH06146047 A JP H06146047A JP 4295726 A JP4295726 A JP 4295726A JP 29572692 A JP29572692 A JP 29572692A JP H06146047 A JPH06146047 A JP H06146047A
Authority
JP
Japan
Prior art keywords
tantalum
intermediate layer
mol
oxide
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4295726A
Other languages
Japanese (ja)
Inventor
Toshio Muranaga
外志雄 村永
Shigeo Asada
茂雄 麻田
Kuniaki Hayashi
邦昭 林
Hiroki Imoto
裕樹 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP4295726A priority Critical patent/JPH06146047A/en
Publication of JPH06146047A publication Critical patent/JPH06146047A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop the insoluble anode having excellent durability in an acidic plating bath of sulfuric acid by providing an electrode active layer consisting of a mixture composed of IrO2 and Ta2O5 via an intermediate layer consisting of a thin film of a mixture composed of SiO2 and Ta on the surface of a base body made of a valve metal. CONSTITUTION:The surface of the base body made of the valve metals, such as Ti, Ta, Nb and Zr, as the insoluble anode to be used at the time of plating a material to be plated as cathode with Sn, Zn, Cr, etc., by using an acidic plating liquid consisting of sulfuric acid contg. metal ions of Sn, Zn, Cr, etc., is provided with the intermediate layer consisting of the thin film of the mixture composed of the SiO2 and the Ta by a physical vapor growth method, such as sputtering method, and thereafter, a soln. prepd. by dissolving salts of Ir and Ta into ethyl alcohol, etc., is applied thereon and after the coating is dried, the base body is heated to 380 to 500 deg.C in air or oxygen-contg. atmosphere to thermally decompose the metal salts, by which the electrode active layer consisting of 30 to 8Omol% IrO2 and 20 to 70mol% Ta2O5 is formed. The insoluble anode having a long life is obtd. without being attacked by the acidic plating liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素発生を伴う電解工
程、特にスズ,亜鉛,クロム等により鋼板の電気メッキ
を行う際に硫酸酸性浴中で使用される不溶性陽極とその
製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insoluble anode used in a sulfuric acid acidic bath for electroplating a steel sheet with oxygen, particularly tin, zinc, chromium or the like, and a method for producing the same. .

【0002】[0002]

【従来の技術】スズ,亜鉛,クロム等により鋼板の電気
メッキを行う際に使用される陽極として、現在鉛又は鉛
合金が使用されているが、鉛は比較的消耗が速く、溶解
した鉛によるメッキ液の汚染,メッキ被膜の劣化等の問
題がある。これに代る陽極として白金メッキ陽極や白金
箔クラッド陽極が検討されているが白金は消耗が大きく
未だ解決に至っていない。そのため消耗の少ない貴金属
及びその酸化物を電極触媒とした不溶性陽極が種々提案
されている。
2. Description of the Related Art Lead or lead alloy is currently used as an anode used for electroplating steel sheets with tin, zinc, chromium, etc. However, lead is relatively rapidly consumed and is caused by molten lead. There are problems such as contamination of the plating solution and deterioration of the plating film. Platinum-plated anodes and platinum foil clad anodes have been investigated as alternative anodes, but platinum has been exhausted and has not been solved yet. For this reason, various insoluble anodes have been proposed which use noble metals and oxides thereof, which consume less, as an electrode catalyst.

【0003】しかしながら、経済性,加工性の面から広
く用いられているチタン及びその合金を基体として単純
に電極触媒を被覆しただけの電極では、使用中に陽極よ
り発生する酸素により電極触媒層と基体間に導電性の無
い酸化物層が形成され、残存する電極触媒量が十分にあ
っても電極としての機能が無くなってしまい、ついには
電極触媒層の剥離を来たし使用不能になるという不都合
を生じる。このために電極触媒の被覆量を多くする傾向
にあるが、高価な貴金属を使用することを考えるとその
利用効率は決して高いものとは言えない。そのため基体
と電極触媒層との間に種々の物質の中間層を設けて基体
を保護し、電極の耐久性を向上させる多くの改良手段が
提案されている。
However, in an electrode which is widely used in terms of economical efficiency and workability and which is simply coated with an electrocatalyst using titanium and its alloy as a substrate, an electrode catalyst layer is formed by oxygen generated from the anode during use. A non-conductive oxide layer is formed between the substrates, and even if the remaining amount of the electrode catalyst is sufficient, the function as an electrode is lost, and finally the electrode catalyst layer is peeled off and becomes unusable. Occurs. For this reason, the coating amount of the electrode catalyst tends to be increased, but the utilization efficiency is not so high considering the use of expensive noble metal. Therefore, many improvement means have been proposed which provide an intermediate layer of various substances between the substrate and the electrode catalyst layer to protect the substrate and improve the durability of the electrode.

【0004】例えば特公昭51−19429号公報では
導電性支持基材と電極活性物質被覆との中間層に白金−
イリジウム合金やコバルト,マンガン,パラジウム,
鉛,白金の酸化物からなる酸素不浸透層を設けて電極の
不働態防止を試みている。しかし中間被覆物質自体に酸
素発生の触媒活性があるので透過してくる電解液と反応
して中間層で酸素発生反応が生じ、電極被覆の密着性及
び不働態防止効果は十分ではなかった。
For example, in Japanese Patent Publication No. 51-19429, platinum is used as an intermediate layer between a conductive support substrate and an electrode active material coating.
Iridium alloy, cobalt, manganese, palladium,
We are trying to prevent the passive state of the electrode by providing an oxygen impermeable layer made of oxides of lead and platinum. However, since the intermediate coating material itself has a catalytic activity for oxygen generation, it reacts with the permeating electrolytic solution to cause an oxygen generation reaction in the intermediate layer, and the adhesion of the electrode coating and the passivation preventing effect were not sufficient.

【0005】また特開昭57−192281号公報には
チタン又はチタン合金を基体とし、金属酸化物よりなる
電極被覆を有する電極において、その中間層としてタン
タル及び/又はニオブの導電性酸化物層を設けた酸素発
生を伴なう電解用電極が提案されているが、タンタル又
はニオブの酸化物層は不働態化を防止するのに十分なも
のとは言えない。
Further, in JP-A-57-192281, an electrode having a base of titanium or a titanium alloy and having an electrode coating made of a metal oxide has a conductive oxide layer of tantalum and / or niobium as an intermediate layer. Although an electrolysis electrode provided with oxygen generation provided is proposed, the tantalum or niobium oxide layer is not sufficient to prevent passivation.

【0006】本発明者らはTiOx(xは1.5以上で
2.0より小)で表わされる非化学量論的な化合物を含
む酸化チタンとシリカとを含有する中間被覆層がチタン
基材の不働態化防止に効果があることを見出し特許出願
を行った(特開平3−271386号)。この皮膜の製
造には溶射法が必要であり、出来た皮膜は若干の気泡を
含み、基材を完全に電解液から遮断することは不可能で
あり、電極の寿命は増加したとはいえ未だ十分なもので
はなかった。
The present inventors have found that the intermediate coating layer containing titanium oxide containing a non-stoichiometric compound represented by TiOx (x is 1.5 or more and less than 2.0) and silica is a titanium base material. Was found to be effective in preventing the immobilization of the above-mentioned, and filed a patent application (JP-A-3-271386). This coating requires a thermal spraying method, the resulting coating contains some air bubbles, and it is impossible to completely shield the substrate from the electrolyte solution, but the life of the electrode has been increased It wasn't enough.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は酸素発
生に対して十分な触媒活性があり、硫酸酸性溶液中での
電解に対して十分な耐久性のある酸素発生用陽極を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oxygen generating anode having sufficient catalytic activity for oxygen generation and having sufficient durability for electrolysis in a sulfuric acid acidic solution. It is in.

【0008】[0008]

【課題を解決するための手段】本発明者らは硫酸酸性電
解液中で使用する不溶性陽極において一般に使用される
チタン基体の酸化を防ぐためガラス質のシリカと金属タ
ンタルよりなる導電性の中間被覆層を設け、表面層の電
極触媒が残存しなくなるまで使用できる陽極を完成し、
長寿命化を可能ならしめたものである。
The present inventors have found that the conductive intermediate coating of vitreous silica and metallic tantalum is used to prevent the oxidation of titanium substrates commonly used in insoluble anodes used in sulfuric acid electrolytes. Layer, complete the anode that can be used until the electrode catalyst of the surface layer does not remain,
This is what makes it possible to extend the service life.

【0009】すなわち本発明はバルブ金属又はその合金
よりなる導電性金属基体上にシリカとタンタルとの混合
物よりなる薄膜中間層を設け、その上に酸化イリジウム
30〜80モル%と酸化タンタル20〜70モル%との
混合酸化物よりなる電極活性層を設けたことを特徴とす
る酸素発生用陽極及びその製法である。
That is, according to the present invention, a thin film intermediate layer made of a mixture of silica and tantalum is provided on a conductive metal substrate made of a valve metal or its alloy, and 30 to 80 mol% of iridium oxide and 20 to 70 of tantalum oxide are provided thereon. The present invention relates to an oxygen generating anode and a method for producing the same, in which an electrode active layer made of a mixed oxide with mol% is provided.

【0010】導電性金属基体としてはチタン,タンタ
ル,ジルコニウム,ニオブ等の不働態皮膜を形成するバ
ルブ金属又はその合金であり、通常は経済性,電気的機
械的性質や加工性の点からチタン及び/又はその合金が
好ましい。電極の形状としては板状,棒状,エキスパン
ド状,パンチング状等種々の形状が可能である。
The conductive metal substrate is a valve metal or its alloy forming a passive film such as titanium, tantalum, zirconium, niobium, etc. Usually, titanium or titanium is used from the viewpoint of economy, electromechanical properties and workability. / Or alloys thereof are preferred. The electrode may have various shapes such as a plate shape, a rod shape, an expanded shape, and a punching shape.

【0011】基体表面はグリッドブラスト,ショットブ
ラスト又はサンドブラスト処理が施される。ブラスト材
としてはアルミナ,炭化ケイ素,サンド等が利用され粒
子径は100〜1000μm(粗粒MAX#30〜20
0)程度が適当である。ブラスト処理後、表面を清浄に
するため超音波清浄するとよい。
The surface of the substrate is grid-blasted, shot-blasted or sand-blasted. Alumina, silicon carbide, sand or the like is used as the blast material, and the particle size is 100 to 1000 μm (coarse-grain MAX # 30 to 20).
0) is suitable. After blasting, ultrasonic cleaning may be used to clean the surface.

【0012】シリカとタンタルとの混合物よりなる薄膜
中間層の皮膜は物理的気相成長法(Physical vapor dep
osition 法),すなわちスパッタリング法,イオンプレ
ーティング法又は真空蒸着法によって形成される。特に
スパッタリング法が好ましい。薄膜中間層の厚みは0.
5ミクロン以上、好ましくは1ミクロン以上が必要であ
り、5ミクロン以下、特に3ミクロン以下の厚さで十分
である。導電性を良好にするためにはタンタルの含有量
が10モル%以上であればよい。
The thin film intermediate layer made of a mixture of silica and tantalum is formed by physical vapor deposition.
osition method), that is, a sputtering method, an ion plating method, or a vacuum evaporation method. The sputtering method is particularly preferable. The thickness of the thin film intermediate layer is 0.
A thickness of 5 microns or more, preferably 1 micron or more is required, and a thickness of 5 micron or less, particularly 3 micron or less is sufficient. In order to improve the conductivity, the tantalum content should be 10 mol% or more.

【0013】中間層の表面に形成される電極活性層は酸
化イリジウム及び酸化タンタルの混合物よりなり、酸化
イリジウムは30〜80モル%、好ましくは40〜80
モル%、酸化タンタルは20〜70モル%、好ましくは
20〜60モル%の範囲である。酸化イリジウムが30
モル%未満では酸素発生の触媒能が劣化し、80モル%
を超えると皮膜の密着性が劣り、電解中における剥離,
脱落が多く電極としての寿命が短くなる。
The electrode active layer formed on the surface of the intermediate layer is composed of a mixture of iridium oxide and tantalum oxide, and the iridium oxide content is 30-80 mol%, preferably 40-80.
Mol% and tantalum oxide are in the range of 20 to 70 mol%, preferably 20 to 60 mol%. Iridium oxide is 30
If it is less than 80% by mole, the catalytic ability of oxygen generation deteriorates.
If it exceeds, the adhesion of the film will be poor and peeling during electrolysis,
Many of them fall off, which shortens the life of the electrode.

【0014】電極活性層は塩化イリジウム酸,塩化イリ
ジウム,塩化タンタル等の金属塩をエチルアルコール,
ブチルアルコール,プロピルアルコール等の溶媒に溶か
して所定組成の混合溶液を調製し、ハケ塗り,ロール塗
り,スプレー塗り又は浸漬等の方法により塗布し熱分解
処理を行うことによって形成される。塗布後溶媒を蒸発
させるため100〜150℃で約10〜20分間乾燥
し、空気又は酸素雰囲気の電気炉中で360〜550
℃、好ましくは380〜500℃で10〜30分間熱分
解処理を行う。熱処理温度が上記範囲未満では熱分解が
殆んど起らず、上記範囲を超えると基体金属と中間層を
なすタンタル又はタンタル合金の酸化が進行して損傷を
受ける。この様にして被覆した電極触媒層は5g/m2
以上あれば酸素発生に対して触媒能,寿命ともに良好と
なる。
The electrode active layer is formed by adding a metal salt such as iridium chloride, iridium chloride or tantalum chloride to ethyl alcohol,
It is formed by dissolving it in a solvent such as butyl alcohol or propyl alcohol to prepare a mixed solution having a predetermined composition, applying it by a method such as brush coating, roll coating, spray coating, or dipping, and performing thermal decomposition treatment. After application, the solvent is evaporated to dry at 100 to 150 ° C. for about 10 to 20 minutes, and then 360 to 550 in an electric furnace of air or oxygen atmosphere.
C., preferably 380 to 500.degree. C. for 10 to 30 minutes for thermal decomposition treatment. If the heat treatment temperature is less than the above range, almost no thermal decomposition occurs, and if it exceeds the above range, the tantalum or tantalum alloy forming the intermediate layer with the base metal is oxidized and damaged. The electrode catalyst layer coated in this way was 5 g / m 2
If it is above, the catalytic ability and life for oxygen generation will be good.

【0015】本発明の陽極は電気メッキの際の電流密度
が10A/dm2 以上で使用することが好ましく、最大
で300A/dm2 まで使用可能である。
The anode of the present invention is preferably used with a current density of 10 A / dm 2 or more during electroplating, and can be used up to 300 A / dm 2 .

【0016】[0016]

【作用】本発明陽極の中間層はスパッタリング法,イオ
ンプレーティング法又は真空蒸着法のような物理的気相
成長法により形成することができるので、シリカがガラ
ス質であることと相いまって皮膜は極めて緻密となる。
すなわち中間層の気孔率はほぼ零となり溶射法による場
合のように数%〜数10%にはならない。したがって基
体金属が電解液からほぼ完全に保護されるので腐食損傷
が生じない。特に高電流密度になる程、本発明による中
間層の効果は大きい。
Since the intermediate layer of the anode of the present invention can be formed by a physical vapor deposition method such as a sputtering method, an ion plating method or a vacuum vapor deposition method, the fact that silica is vitreous The film becomes extremely dense.
That is, the porosity of the intermediate layer is almost zero and does not reach several percent to several tens percent as in the case of the thermal spraying method. Therefore, the base metal is almost completely protected from the electrolytic solution and no corrosion damage occurs. In particular, the higher the current density, the greater the effect of the intermediate layer according to the present invention.

【0017】[0017]

【実施例】以下実施例,比較例により本発明を詳述す
る。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples.

【0018】実施例1,比較例1 市販チタン板(1×10×0.1cm)をアセトンにて
脱脂後、アルミナグリット(#30)を使用して、圧力
4kg/cm2 でブラスト処理を行った。これを基板と
し高周波マグネトロンスパッタリング装置(〜3×10
-3Torr, アルゴンガス周波数13.56MHZ,印
加電圧2kVの条件)を用い、55モル%SiO2 −4
5モル%Taターゲットを使用してスパッタリングを行
い、厚さ3ミクロンのタンタル含有シリカの中間被覆層
をチタン基体状に形成させた。その表面に下記組成の溶
液を塗布した。 五塩化タンタル 0.32g 塩化イリジウム酸 1.00g 塩酸 0.5 ml ブチルアルコール 10 ml
Example 1, Comparative Example 1 A commercially available titanium plate (1 × 10 × 0.1 cm) was degreased with acetone and then blasted with alumina grit (# 30) at a pressure of 4 kg / cm 2. It was Using this as a substrate, a high-frequency magnetron sputtering device (up to 3 x 10
-3 Torr, argon gas frequency 13.56 MHZ, applied voltage 2 kV), and 55 mol% SiO 2 -4
Sputtering was performed using a 5 mol% Ta target to form a 3 micron thick tantalum-containing silica intermediate coating layer on the titanium substrate. A solution having the following composition was applied to the surface. Tantalum pentachloride 0.32 g Iridium chloride 1.00 g Hydrochloric acid 0.5 ml Butyl alcohol 10 ml

【0019】塗布後、これを120℃で20分間乾燥
し、次いで450℃の電気炉中で20分間熱処理するこ
とにより、Ta2 5(30モル%)−IrO2 (70モ
ル%)の混合酸化物よりなる皮膜を得た。この操作を1
0回くり返して酸化イリジウムとして12g/m2 含有
する電極活性層を得た。電極活性層と中間層との密着性
は良好であった。比較として中間層を設けなかった以外
は同様の処理を行った電極を作製した。
After coating, this was dried at 120 ° C. for 20 minutes and then heat-treated in an electric furnace at 450 ° C. for 20 minutes to mix Ta 2 O 5 (30 mol%)-IrO 2 (70 mol%). A film made of oxide was obtained. This operation 1
By repeating 0 times, an electrode active layer containing 12 g / m 2 of iridium oxide was obtained. The adhesion between the electrode active layer and the intermediate layer was good. For comparison, an electrode was prepared in the same manner except that the intermediate layer was not provided.

【0020】これらの電極を50℃,100g/lの硫
酸溶液で陽極として用い、白金板を陰極として電流密度
200A/dm2 の条件で加速電解試験を行った。槽電
圧が5V上昇するまでの時間を電極寿命として判定し
た。本発明電極は1330時間使用できたが、中間層を
設けなかった電極は70時間の寿命であった。
An accelerated electrolysis test was conducted under the conditions of a current density of 200 A / dm 2 using a platinum plate as a cathode and a sulfuric acid solution of 100 g / l at 50 ° C. as these electrodes. The time until the cell voltage increased by 5 V was determined as the electrode life. The electrode of the present invention could be used for 1330 hours, while the electrode without the intermediate layer had a life of 70 hours.

【0021】比較例2 実施例1と同様のブラスト処理を行ったチタン基板に粒
径20〜30μmのシリカゲル(50重量%)と粒径2
0〜30μmの酸化チタン(50重量%)の均一混合粉
末をプラズマ溶射ガンで100μmの厚みに溶射し、そ
の上に実施例1と同様の電極活性層を設けた。この電極
を実施例1と同様の加速電解試験を行ったところ760
時間の寿命であった。
Comparative Example 2 A titanium substrate which had been subjected to the same blasting treatment as in Example 1 was subjected to silica gel (50 wt%) having a particle size of 20 to 30 μm and a particle size of 2
A uniform mixed powder of titanium oxide (50% by weight) of 0 to 30 μm was sprayed with a plasma spray gun to a thickness of 100 μm, and an electrode active layer similar to that of Example 1 was provided thereon. When this electrode was subjected to the same accelerated electrolysis test as in Example 1, the result was 760.
It was a lifetime of time.

【0022】実施例2〜6,比較例3,4 中間層の被覆は実施例1と同様にして電極活性層の組成
を表1のように変化させて酸化イリジウムとして12g
/m2 含有する電極を作製し、実施例1と同様の試験を
行った。表1より電極活性層のIrO2 組成は30モル
%以上がよく、また90モル%になると寿命が短かくな
っていることが判る。
Examples 2 to 6, Comparative Examples 3 and 4 The coating of the intermediate layer was performed in the same manner as in Example 1 except that the composition of the electrode active layer was changed as shown in Table 1 to obtain 12 g of iridium oxide.
An electrode containing / m 2 was produced and the same test as in Example 1 was performed. From Table 1, it can be seen that the IrO 2 composition of the electrode active layer is preferably 30 mol% or more, and when it is 90 mol%, the life becomes short.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明における陽極はバルブ金属基体上
にスパッタリング,イオンプレーティング又は真空蒸着
等の方法によりシリカとタンタルとの混合物よりなる緻
密な薄膜中間層が形成されるので、硫酸酸性の電解液中
において液の浸透が殆んど無く、かつ硫酸酸性電解液に
腐食されない。それ故、中間層上に電極活性層を被覆し
て酸素発生用陽極として使用すると基体金属の腐食損傷
が起らず電極触媒の減少のみにより陽極としての寿命が
決定される。したがって電極触媒を最大限使用すること
が可能となり陽極の長寿命化を図りうる。
In the anode of the present invention, a dense thin film intermediate layer made of a mixture of silica and tantalum is formed on a valve metal substrate by a method such as sputtering, ion plating or vacuum deposition. The liquid hardly penetrates into the liquid and is not corroded by the sulfuric acid acidic electrolyte. Therefore, when the intermediate layer is coated with an electrode active layer and used as an anode for oxygen generation, corrosion damage of the base metal does not occur and the life of the anode is determined only by the reduction of the electrode catalyst. Therefore, it is possible to maximize the use of the electrode catalyst, and it is possible to extend the life of the anode.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バルブ金属又はその合金よりなる導電性
金属基体上にシリカとタンタルとの混合物よりなる薄膜
中間層を設け、その上に酸化イリジウム30〜80モル
%と酸化タンタル20〜70モル%との混合酸化物より
なる電極活性層を設けたことを特徴とする酸素発生用陽
極。
1. A thin film intermediate layer made of a mixture of silica and tantalum is provided on a conductive metal substrate made of a valve metal or its alloy, and 30 to 80 mol% of iridium oxide and 20 to 70 mol% of tantalum oxide are provided thereon. An oxygen generating anode comprising an electrode active layer made of a mixed oxide of
【請求項2】 バルブ金属又はその合金がチタン,タン
タル,ニオブ,ジルコニウムより選ばれた金属又はこれ
らの合金である請求項1に記載の酸素発生用陽極。
2. The oxygen generating anode according to claim 1, wherein the valve metal or its alloy is a metal selected from titanium, tantalum, niobium and zirconium, or an alloy thereof.
【請求項3】 バルブ金属又はその合金よりなる導電性
金属基体上にシリカとタンタルとの混合物よりなる薄膜
中間層を物理的気相成長法により被着せしめ、その上に
酸化イリジウム30〜80モル%と酸化タンタル20〜
70モル%との混合酸化物よりなる電極活性層をイリジ
ウム及びタンタルの金属塩の熱分解により被着させるこ
とを特徴とする酸素発生用陽極の製法。
3. A thin film intermediate layer made of a mixture of silica and tantalum is deposited on a conductive metal substrate made of a valve metal or its alloy by physical vapor deposition, and 30 to 80 mol of iridium oxide is deposited thereon. % And tantalum oxide 20-
A method for producing an oxygen generating anode, characterized in that an electrode active layer comprising a mixed oxide of 70 mol% is deposited by thermal decomposition of a metal salt of iridium and tantalum.
【請求項4】 物理的気相成長法がスパッタリング法,
イオンプレーティング法又は真空蒸着法である請求項3
に記載の酸素発生用陽極の製法。
4. The physical vapor deposition method is a sputtering method,
An ion plating method or a vacuum vapor deposition method.
The method for producing an oxygen generating anode according to 1.
JP4295726A 1992-11-05 1992-11-05 Anode for generating oxygen and its production Pending JPH06146047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295726A JPH06146047A (en) 1992-11-05 1992-11-05 Anode for generating oxygen and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295726A JPH06146047A (en) 1992-11-05 1992-11-05 Anode for generating oxygen and its production

Publications (1)

Publication Number Publication Date
JPH06146047A true JPH06146047A (en) 1994-05-27

Family

ID=17824378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295726A Pending JPH06146047A (en) 1992-11-05 1992-11-05 Anode for generating oxygen and its production

Country Status (1)

Country Link
JP (1) JPH06146047A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813199A (en) * 1994-06-27 1996-01-16 Permelec Electrode Ltd Chromium plating method
KR101224191B1 (en) * 2011-04-21 2013-01-21 주식회사 욱영전해씨스템 manufacturing method of insoluble electrode and manufacturing device of the insoluble electrode
CN111088493A (en) * 2019-12-26 2020-05-01 西安泰金工业电化学技术有限公司 Preparation method of titanium anode with titanium-based coating
CN113668010A (en) * 2021-08-25 2021-11-19 山西铱倍力科技有限公司 Oxygen evolution anode for industrial electrolysis and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813199A (en) * 1994-06-27 1996-01-16 Permelec Electrode Ltd Chromium plating method
KR101224191B1 (en) * 2011-04-21 2013-01-21 주식회사 욱영전해씨스템 manufacturing method of insoluble electrode and manufacturing device of the insoluble electrode
CN111088493A (en) * 2019-12-26 2020-05-01 西安泰金工业电化学技术有限公司 Preparation method of titanium anode with titanium-based coating
CN113668010A (en) * 2021-08-25 2021-11-19 山西铱倍力科技有限公司 Oxygen evolution anode for industrial electrolysis and preparation method thereof

Similar Documents

Publication Publication Date Title
US5435896A (en) Cell having electrodes of improved service life
AU2006303250B2 (en) Method for forming an electrocatalytic surface on an electrode and the electrode
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
WO2001000905A1 (en) Method of producing copper foil
JPH05171483A (en) Manufacture of anode for generating oxygen
EP0955395A1 (en) Electrolyzing electrode and process for the production thereof
JPH06146047A (en) Anode for generating oxygen and its production
JP3430479B2 (en) Anode for oxygen generation
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH0762585A (en) Electrolytic electrode substrate and its production
JP3422885B2 (en) Electrode substrate
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JPH0499294A (en) Oxygen generating anode and its production
JPH0533177A (en) Production of anode for generating oxygen
JPH062194A (en) Electroplating method
CA2801793C (en) Substrate coating on one or more sides
JP3422884B2 (en) Electrode for electrolysis
JP2003293196A (en) Electrode for electrolysis and production method therefor
JPH06128781A (en) High durable electrode for electrolysis
JPH09125292A (en) Electrode substrate
JPH06346267A (en) Electrode for generating oxygen and its production
JPH0572478B2 (en)
JPH0681198A (en) Insoluble electrode and its production
JPH06122988A (en) Electrolytic electrode and its production