JP3430479B2 - Anode for oxygen generation - Google Patents

Anode for oxygen generation

Info

Publication number
JP3430479B2
JP3430479B2 JP32109094A JP32109094A JP3430479B2 JP 3430479 B2 JP3430479 B2 JP 3430479B2 JP 32109094 A JP32109094 A JP 32109094A JP 32109094 A JP32109094 A JP 32109094A JP 3430479 B2 JP3430479 B2 JP 3430479B2
Authority
JP
Japan
Prior art keywords
tantalum
electrode
intermediate layer
metal
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32109094A
Other languages
Japanese (ja)
Other versions
JPH07229000A (en
Inventor
邦昭 林
貴弘 遠藤
外志雄 村永
隆一 音川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP32109094A priority Critical patent/JP3430479B2/en
Publication of JPH07229000A publication Critical patent/JPH07229000A/en
Application granted granted Critical
Publication of JP3430479B2 publication Critical patent/JP3430479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素発生を伴う電解工
程、主として亜鉛、錫または銅の電気めっきやステンレ
ス鋼の表面処理に使用される不溶性陽極に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insoluble anode used in an electrolysis process involving generation of oxygen, mainly in electroplating zinc, tin or copper and surface treatment of stainless steel.

【0002】[0002]

【従来の技術】鋼板の電気亜鉛めっき用陽極として、現
在鉛又は鉛合金が使用されているが、鉛は比較的消耗が
速く、溶け出した鉛によるめっき液の汚染、めっき被膜
の劣化等の問題がある。これに代わる陽極として、貴金
属酸化物を電極活性物質とした不溶性陽極が種々提案さ
れている。しかしながら、単純に電極活性物質をコーテ
ィングし、酸素雰囲気下で焼成することにより作製した
だけの電極では、電解中に電解液が電極触媒層にしみ込
み、基体表面で発生する酸素により電極被覆層と金属基
体間に絶縁性の不動態膜が形成され、残存する電極活性
物質の量が十分であっても電極としての機能がなくなっ
てしまうという不都合を生じる。このために、電極活性
物質として、高価な貴金属を使用することを考えるとそ
の経済性は決して良いものであるとはいえない。
2. Description of the Related Art Lead or a lead alloy is currently used as an anode for electrogalvanizing steel sheets. Lead is consumed relatively quickly, and the dissolved lead causes contamination of the plating solution and deterioration of the plating film. There's a problem. As an alternative anode, various insoluble anodes using a noble metal oxide as an electrode active substance have been proposed. However, in an electrode that is simply prepared by coating an electrode active substance and firing it in an oxygen atmosphere, the electrolytic solution permeates the electrode catalyst layer during electrolysis, and the oxygen generated on the substrate surface causes the electrode coating layer to be formed. An insulative passivation film is formed between the metal substrates, which causes a disadvantage that the function as an electrode is lost even if the remaining amount of the electrode active substance is sufficient. Therefore, considering the use of an expensive noble metal as the electrode active material, its economic efficiency is not good at all.

【0003】この問題を解決するために、特開平2−2
82491号公報には金属タンタルをスパッタリング法
等により中間層を形成させ、更に電極活性物質を被覆し
た電極が基体の不働態化を防ぐのに有効であると提案さ
れている。また、特開平2−247393号公報には中
間層として粒界のない非晶質層が形成され、その例とし
てチタン、タンタル等の非晶質層をスパッタリング法に
より被着させた電極が提案されている。特開昭53−9
5180号公報には蒸着、イオン鍍金、陰極スパッタリ
ングなどの手法でチタン基体上にタングステン・タンタ
ル混合被膜をコーティングし、さらにロジウム薄膜を蒸
着した電極が提案されている。しかし、これらの電極の
中間層に例示される金属タンタルの種類については全く
開示されていない。
In order to solve this problem, Japanese Patent Laid-Open No. 2-2
It is proposed in Japanese Patent No. 82491 that an electrode formed by forming an intermediate layer of metal tantalum by a sputtering method or the like and further coating an electrode active substance is effective for preventing passivation of a substrate. Further, JP-A-2-247393 proposes an electrode in which an amorphous layer having no grain boundary is formed as an intermediate layer, and an example thereof is an electrode formed by depositing an amorphous layer of titanium, tantalum or the like by a sputtering method. ing. JP-A-53-9
In Japanese Patent No. 5180, there is proposed an electrode in which a titanium substrate is coated with a tungsten / tantalum mixed film by a method such as vapor deposition, ion plating, and cathode sputtering, and a rhodium thin film is vapor deposited. However, there is no disclosure of the kind of metal tantalum exemplified in the intermediate layer of these electrodes.

【0004】特開平4−301062号公報には電極基
体と電極活性層との密着性の向上のために、バルブ金属
上にプラズマ溶射によりチタン被膜を形成した電極が提
案されている。特開昭56−112458号公報にはチ
タン基体上にタンタルをプラズマ溶射した後、ルテニウ
ム系酸化物を熱分解法で形成した電極が提案されてい
る。特開昭48−40676号公報には電極基板上に電
解環境下において耐久性を有するチタン、タンタルなど
の金属をプラズマ溶射などの手法で溶射被覆し、その上
に電極活性物質を沈着した被覆電極が提案されている。
しかし、チタン、タンタル被膜のプラズマ溶射層は疎構
造であるため、亜鉛メッキラインのようにメッキ液流速
の大きいシステムの場合、長時間使用における耐久性に
欠けることも認められている。また、亜鉛めっきライン
等において、片面めっきの場合や両面のめっき量に差を
つける場合には上下陽極間に電位差が生じ、低電位側陽
極が陰極化する。金属チタンや金属タンタル(α−タン
タル)は容易に水素脆化するため、電解中、陰極化によ
り発生した水素の影響で電極が劣化する。
Japanese Patent Laid-Open No. 4-301062 proposes an electrode in which a titanium coating is formed on the valve metal by plasma spraying in order to improve the adhesion between the electrode base and the electrode active layer. Japanese Patent Application Laid-Open No. 56-112458 proposes an electrode in which ruthenium oxide is formed by a thermal decomposition method after plasma spraying tantalum on a titanium substrate. Japanese Patent Application Laid-Open No. 48-40676 discloses a coated electrode in which a metal such as titanium or tantalum, which has durability in an electrolytic environment, is spray-coated by a technique such as plasma spraying, and an electrode active substance is deposited on the metal. Is proposed.
However, since the plasma sprayed layer of the titanium or tantalum coating has a sparse structure, it is also recognized that the system having a high plating solution flow rate such as a zinc plating line lacks durability in long-term use. Further, in a galvanizing line or the like, in the case of single-sided plating or when the plating amounts on both sides are made different, a potential difference occurs between the upper and lower anodes, and the low potential side anode becomes a cathode. Since metal titanium and metal tantalum (α-tantalum) are easily embrittled by hydrogen, the electrode is deteriorated by the effect of hydrogen generated by cathodization during electrolysis.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、主と
して電気めっき用陽極として検討されている酸素発生用
不溶性電極において問題とされている基体の不動態化と
陰分極による電極の劣化を防ぎ、長寿命の電極を提供す
ることにある。
The object of the present invention is to prevent the deterioration of the electrode due to the passivation of the substrate and the negative polarization, which is a problem in the insoluble electrode for oxygen generation, which is mainly studied as the anode for electroplating. , To provide a long-life electrode.

【0006】[0006]

【課題を解決するための手段】本発明者らは、酸素発生
用不溶性電極において、チタン基体と電極活性物質被覆
層との間にスパッタリング法によりβ−タンタル中間層
を形成した陽極が、α−タンタル中間層タイプの種々の
電極、例えばイオンプレーティングやプラズマ溶射、ス
パッタリング法で被覆したα−タンタル層を有する陽極
のみならず、タンタル基板そのものに電極活性物質を被
覆した電極よりも優れた機能を持つことを見出し、本発
明を完成したものである。
The present inventors have found that in an insoluble electrode for oxygen generation, an anode having a β-tantalum intermediate layer formed between a titanium substrate and an electrode active material coating layer by a sputtering method is α- Various electrodes of the tantalum intermediate layer type, such as an anode having an α-tantalum layer coated by ion plating, plasma spraying, or a sputtering method, as well as an electrode having an electrode active substance coated on the tantalum substrate itself, have more excellent functions. The present invention has been completed by finding that it has.

【0007】 本発明はすなわち、金属チタンまたはそ
の合金からなる導電性金属基体上に、β−タンタルを5
0%以上含む金属タンタルの薄膜中間層をスパッタリン
グ法により被着させ、さらにその表面に白金族金属酸化
物を含む電極活性物質被覆層を形成させてなる、β−タ
ンタルを50%以上含む金属タンタルの薄膜中間層を有
した耐陰分極性に優れた酸素発生用陽極である。
In the present invention, β-tantalum is added on a conductive metal substrate made of titanium metal or its alloy.
A β-ta layer is obtained by depositing a thin film intermediate layer of metal tantalum containing 0% or more by a sputtering method, and further forming an electrode active substance coating layer containing a platinum group metal oxide on the surface thereof .
With a thin film intermediate layer of metallic tantalum containing 50% or more of tantalum.
Is an excellent oxygen generating anode shade polarizable you.

【0008】本発明における導電性電極基体はチタン又
はその合金が用いられ、金属チタン又はTi−Ta、T
i−Ta−Nb、Ti−Pd等のチタン基合金が好適で
ある。この基体の形状は板状、有孔板状、棒状、網状な
ど所望のものとすることができる。
Titanium or its alloy is used for the conductive electrode substrate in the present invention, and titanium metal or Ti-Ta, T is used.
Titanium-based alloys such as i-Ta-Nb and Ti-Pd are suitable. The substrate may have any desired shape such as plate, perforated plate, rod or net.

【0009】次に本発明電極の中間層をなすβ−タンタ
ルを50%以上含む金属タンタル薄膜(以下単にβ−タ
ンタル薄膜又は被膜という)はスパッタリング法により
形成される。スパッタリングとしては高周波スパッタリ
ング、直流二極スパッタリングともに可能であり、マグ
ネトロンスパッタリングであればさらに好ましい。β−
タンタル薄膜の膜厚は1〜5μmであることが望まし
い。1μm未満では十分に被着されず、また5μmを越
えるとスパッタリング加工の困難性などの問題がある。
具体的にはアルゴンガス雰囲気下、1×10-2Torr
以下の高真空中で高周波放電する。このとき、基体温度
は400℃以下、さらに残留ガスを十分に取り除いてや
る必要がある。このスパッタリングを一定時間以上続け
ることにより基体上に1μm以上のβ−タンタル被膜が
形成される。また、全圧が1×10 -2Torrのアルゴ
ン雰囲気中に分圧が1×10-5Torr以下となるよう
に窒素ガス又は酸素ガスを供給し、スパッタリングを一
定時間以上続けることにより基体上に1μm以上のβ−
タンタル被膜が形成される。このときの基体温度は50
0℃以下が好ましい。窒素ガス又は酸素ガスの分圧が1
×10-5Torr以上では皮膜中に数%以上のα−タン
タルが混在してくる。さらに1×10-4Torr以上の
分圧になると窒化物または酸化物が形成されてしまう。
直流二極スパッタリングの場合は、アルゴンガス雰囲気
下、1×10-2Torr以下の高真空中で、基体の温度
を300℃以下程度に保持することにより所定のβ−タ
ンタル被膜を形成することができる。
Next, β-tanta forming the intermediate layer of the electrode of the present invention
Metal tantalum thin film containing 50% or more of
Thin film or coating)
It is formed. High frequency sputtering for sputtering
Both DC and DC bipolar sputtering are possible.
More preferred is netron sputtering. β-
It is desirable that the thickness of the tantalum thin film be 1 to 5 μm.
Yes. If it is less than 1 μm, it does not adhere sufficiently, and if it exceeds 5 μm.
However, there are problems such as difficulty in sputtering processing.
Specifically, in an argon gas atmosphere, 1 × 10-2Torr
High frequency discharge in the following high vacuum. At this time, the substrate temperature
Is 400 ° C or below, and the residual gas should be sufficiently removed.
Need to Continue this sputtering for more than a certain time
As a result, a β-tantalum film of 1 μm or more is formed on the substrate.
It is formed. Also, the total pressure is 1 x 10 -2Torr's Argo
Partial pressure is 1 × 10 in the atmosphere-FiveBe below Torr
Nitrogen gas or oxygen gas is supplied to the
By continuing for a fixed time or more, β- of 1 μm or more on the substrate
A tantalum coating is formed. The substrate temperature at this time is 50
It is preferably 0 ° C or lower. The partial pressure of nitrogen gas or oxygen gas is 1
× 10-FiveAbove Torr, several percent or more of α-tan in the film
Tar is mixed. 1 x 10-FourMore than Torr
At partial pressure, nitrides or oxides are formed.
Argon gas atmosphere for DC bipolar sputtering
Bottom 1 × 10-2Substrate temperature in high vacuum below Torr
Is maintained at about 300 ° C or lower,
An internal coating can be formed.

【0010】次に、このようにして電極活性能を持たな
い中間層の表面に電気化学的に活性を有する白金族金属
酸化物を含む電極活性層(触媒層)を設ける。酸素発生
に伴う電極に適した電極活性物質として白金族金属酸化
物又はこれらとチタン、タンタル等バルブ金属との混合
酸化物が好適である。混合酸化物中の白金族金属とバル
ブ金属の重量比は白金族金属が10〜97重量%、バル
ブ金属が3〜90重量%の範囲が好ましい。また白金族
金属の混合酸化物中の含有量が1〜300g/m2 であ
るように被覆する事が好ましい。代表的な例としてはイ
リジウム−タンタル混合酸化物、イリジウムーチタン混
合酸化物、イリジウム−ルテニウム混合酸化物、イリジ
ウム−ルテニウム−チタン混合酸化物、ルテニウム−チ
タン混合酸化物、ルテニウム−タンタル混合酸化物等が
挙げられる。特に好ましいのは酸化イリジウムが金属換
算で70〜95重量%と酸化タンタルが金属換算で5〜
30重量%の混合酸化物の場合であり、さらに該混合酸
化物中にイリジウムとして2〜200g/m2 であるよ
うに被覆する場合である。
Next, an electrode active layer (catalyst layer) containing an electrochemically active platinum group metal oxide is provided on the surface of the intermediate layer having no electrode activity in this way. Platinum group metal oxides or mixed oxides of these with valve metals such as titanium and tantalum are suitable as electrode active substances suitable for electrodes associated with oxygen generation. The weight ratio of the platinum group metal to the valve metal in the mixed oxide is preferably 10 to 97% by weight of the platinum group metal and 3 to 90% by weight of the valve metal. Further, it is preferable to coat the platinum group metal so that the content of the platinum group metal in the mixed oxide is 1 to 300 g / m 2 . Typical examples are iridium-tantalum mixed oxide, iridium-titanium mixed oxide, iridium-ruthenium mixed oxide, iridium-ruthenium-titanium mixed oxide, ruthenium-titanium mixed oxide, ruthenium-tantalum mixed oxide. Is mentioned. Particularly preferred is 70 to 95% by weight of iridium oxide in terms of metal, and 5% tantalum oxide in terms of metal.
This is the case of 30% by weight of the mixed oxide, and the case of coating the mixed oxide so that the amount of iridium is 2 to 200 g / m 2 .

【0011】このようにして電極活性物質の被覆層とし
ては従来から用いられている熱分解法、電気化学的酸化
法、粉末焼結法等を適用できるが、熱分解法が好まし
い。すなわち、これらの金属塩溶液を数回塗布乾燥し最
終的に350〜550℃の温度で加熱処理する。このよ
うにしてβ−タンタル薄膜の中間層を有する本発明電極
を得ることが出来る。
Thus, as the coating layer of the electrode active substance, the conventionally used thermal decomposition method, electrochemical oxidation method, powder sintering method and the like can be applied, but the thermal decomposition method is preferable. That is, these metal salt solutions are applied and dried several times, and finally heat-treated at a temperature of 350 to 550 ° C. In this way, the electrode of the present invention having the intermediate layer of the β-tantalum thin film can be obtained.

【0012】[0012]

【作用】本発明電極の中間層を形成するβ−タンタルの
結晶構造は正方晶型であり、体心立方晶型のα−タンタ
ルに比べて耐食性に優れ、電気的特性に優れている。す
なわち、長時間の運転や電極の短絡により劣化が生じて
いたα−タンタル中間層型の不溶性電極よりもβ−タン
タル中間層型不溶性電極のほうが安定であることが認め
られた。そしてαとβ型のタンタルが混在する場合該中
間層におけるβ−タンタルの含有率は50%以上であれ
ば陰分極化に対する耐久性が顕著に優れている事が明ら
かとなった。なお、金属タンタルの結晶型は地金などを
はじめ、α型が一般的であり、スパッタリング法以外の
方法でβ−タンタルを形成させることは困難である。こ
こで使用したβ−タンタルの含有率はX線回折分析にお
いてβ−タンタルの回折ピーク(002)とα−タンタ
ルの回析ピーク(110)の面積比より算出したもので
ある。
The crystal structure of β-tantalum forming the intermediate layer of the electrode of the present invention is tetragonal, and is superior in corrosion resistance and electrical characteristics to body-centered cubic α-tantalum. That is, it was confirmed that the β-tantalum intermediate layer type insoluble electrode was more stable than the α-tantalum intermediate layer type insoluble electrode which had been deteriorated due to long-term operation or electrode short circuit. When α and β-type tantalum are mixed, it was revealed that the durability against negative polarization is remarkably excellent when the β-tantalum content in the intermediate layer is 50% or more. In addition, the crystal form of metal tantalum is generally α-type such as ingot, and it is difficult to form β-tantalum by a method other than the sputtering method. The content rate of β-tantalum used here is calculated from the area ratio of the diffraction peak of β-tantalum (002) and the diffraction peak of α-tantalum (110) in the X-ray diffraction analysis.

【0013】[0013]

【実施例】次に実施例、比較例により本発明を具体的に
説明する。 実施例1 大きさ50mm×10mm×1.5mmtの市販のチタ
ン板をアセトン中で超音波洗浄により脱脂した。次に、
#30のアランダムを用い、4kgf/cm2で約10
分間チタンの両面にブラスト処理を施した。このチタン
板を流水中で一昼夜洗い、乾燥したものを電極基体とし
て用いた。このチタン板を、高周波マグネトロンスパッ
タリング装置に装着した。このとき、径100mm×3
mmtのタンタルターゲットと基板とを40mmの距離
に配置し、チャンバー内圧力1×10-6Torr以下と
した。チャンバー内にアルゴンガスを吹き込み、1×1
-2Torrとしたのち、13.56MHzの高周波ス
パッタリングを約60分間続けた。このとき、高周波投
入電力は200W(0.3kV)、基板温度は170℃
であった。この操作で、1m2 当たり約30g、厚さ約
2μmのタンタル被膜が形成された。得られた被膜の表
面をX線回折法(XRD)により分析した。その結果、
β−タンタルの回折パターンが認められた。このように
して作製した電極基体に下記に示す液組成の電極被覆液
を調整し、塗布した。 TaCl5 0.32g H2 IrCl6 ・6H2 O 1.00g 35% HCl 1.0ml n−CH3 (CH2 3 OH 10.0ml これを120℃で10分間乾燥したのち、500℃に保
持した電気炉中で20分間焼成した。この電極活性物質
の被覆操作を10回繰り返して30g−Ir/m2 の酸
化イリジウムを活性物質とする電極を作製した(触媒層
の重量組成比はIr/Ta=7/3)。この電極の触媒
被覆層の先端を10×10mmに切り出し、他の部分を
シールしたものを寿命試験用陽極として用いた。このよ
うにして作製した電極の電解寿命加速試験を行った。浴
条件は70℃、pH1.2の100g/dm3 のNa2
SO4 溶液とした。陰極にはジルコニウム板を用いた。
電解方法は定電流電解法とし、電流密度は300A/d
2 とした。同じ仕様の電極を5本以上作製し、これら
の電極の電解開始電圧と比較して槽電圧が5V上昇した
時間の平均を電極寿命とした。試験後の電極の蛍光X線
分析の結果、残存触媒量は約14g−Ir/m2 であ
り、触媒消耗速度は2.80mg−Ir/m2 hrとな
った。電極寿命及び触媒利用率を表1に示す。触媒利用
率は電極寿命到達時での触媒の減少量の当初の触媒量に
対する比率で表わした。
EXAMPLES The present invention will be described in detail with reference to Examples and Comparative Examples. Example 1 A commercially available titanium plate having a size of 50 mm × 10 mm × 1.5 mmt was degreased by ultrasonic cleaning in acetone. next,
Approximately 10 at 4 kgf / cm 2 using # 30 alundum
Both sides of the titanium were blasted for minutes. The titanium plate was washed in running water for a whole day and night and dried, and used as an electrode substrate. This titanium plate was attached to a high frequency magnetron sputtering device. At this time, diameter 100 mm x 3
The mmt tantalum target and the substrate were arranged at a distance of 40 mm, and the chamber internal pressure was set to 1 × 10 −6 Torr or less. Argon gas is blown into the chamber, 1 × 1
After setting to 0 -2 Torr, high frequency sputtering at 13.56 MHz was continued for about 60 minutes. At this time, the high frequency input power is 200 W (0.3 kV) and the substrate temperature is 170 ° C.
Met. By this operation, a tantalum film having a thickness of about 2 μm and a thickness of about 30 g per 1 m 2 was formed. The surface of the obtained coating film was analyzed by X-ray diffraction (XRD). as a result,
A β-tantalum diffraction pattern was observed. An electrode coating liquid having the following liquid composition was prepared and applied to the electrode substrate thus prepared. TaCl 5 0.32 g H 2 IrCl 6 · 6H 2 O 1.00 g 35% HCl 1.0 ml n-CH 3 (CH 2 ) 3 OH 10.0 ml This was dried at 120 ° C. for 10 minutes and then kept at 500 ° C. It baked in the electric furnace for 20 minutes. This coating operation of the electrode active material was repeated 10 times to prepare an electrode having 30 g-Ir / m 2 of iridium oxide as the active material (the weight composition ratio of the catalyst layer was Ir / Ta = 7/3). The tip of the catalyst coating layer of this electrode was cut out to 10 × 10 mm, and the other portion was sealed and used as the anode for life test. An electrolytic life acceleration test of the electrode thus manufactured was performed. The bath conditions are 70 ° C., 100 g / dm 3 Na 2 at pH 1.2.
SO 4 solution. A zirconium plate was used as the cathode.
The electrolysis method is constant current electrolysis, and the current density is 300 A / d.
It was set to m 2 . Five or more electrodes having the same specifications were prepared, and the average of the times when the cell voltage increased by 5 V as compared with the electrolysis start voltage of these electrodes was defined as the electrode life. As a result of fluorescent X-ray analysis of the electrode after the test, the amount of residual catalyst was about 14 g-Ir / m 2 and the catalyst consumption rate was 2.80 mg-Ir / m 2 hr. Table 1 shows the electrode life and the catalyst utilization rate. The catalyst utilization rate was expressed as the ratio of the amount of catalyst decrease at the end of electrode life to the initial amount of catalyst.

【0014】実施例2 電極被覆液の組成を下記とした以外は実施例1と全く同
様にしてβ−タンタル薄膜の中間層を有する電極を作製
した。 TaCl5 0.18g H2 IrCl6 ・6H2 O 1.00g 35% HCl 1.0ml n−CH3 (CH2 3 OH 10.0ml 実施例1と同様の電極寿命加速試験を行った結果を表1
に示す。
Example 2 An electrode having an intermediate layer of a β-tantalum thin film was prepared in exactly the same manner as in Example 1 except that the composition of the electrode coating liquid was changed to the following. TaCl 5 0.18 g H 2 IrCl 6 · 6H 2 O 1.00 g 35% HCl 1.0 ml n-CH 3 (CH 2 ) 3 OH 10.0 ml The results of the same electrode life acceleration test as in Example 1 were performed. Table 1
Shown in.

【0015】実施例3 電極被覆液の組成を下記とした以外は実施例1と全く同
様にしてβ−タンタル薄膜の中間層を有する電極を作製
した。 TaCl5 0.08g H2 IrCl6 ・6H2 O 1.00g 35% HCl 1.0ml n−CH3 (CH2 3 OH 10.0ml 実施例1と同様の電極寿命加速試験を行った結果を表1
に示す。
Example 3 An electrode having an intermediate layer of β-tantalum thin film was prepared in exactly the same manner as in Example 1 except that the composition of the electrode coating liquid was changed to the following. TaCl 5 0.08 g H 2 IrCl 6 · 6H 2 O 1.00 g 35% HCl 1.0 ml n-CH 3 (CH 2 ) 3 OH 10.0 ml The results of the same electrode life acceleration test as in Example 1 were performed. Table 1
Shown in.

【0016】実施例4 高周波スパッタリングを約35分間続け、1m2 当たり
約16g、厚さ約1μmのβ−タンタル薄膜の中間層を
形成させた以外は実施例1と全く同様にして電極を作製
し、同様の電解寿命加速試験を行った。結果を表1に示
す。
Example 4 An electrode was prepared in the same manner as in Example 1 except that high frequency sputtering was continued for about 35 minutes, and an intermediate layer of β-tantalum thin film having a thickness of about 1 μm and a thickness of about 16 g per 1 m 2 was formed. The same electrolytic life acceleration test was performed. The results are shown in Table 1.

【0017】実施例5 高周波スパッタリングを約150分間続け、1m2 当た
り約75g、厚さ約5μmのβ−タンタル薄膜の中間層
を形成させた以外は実施例1と全く同様にして電極を作
製し、同様の電極寿命加速試験を行った。結果を表1に
示す。以上の実施例1〜5ではX線回折測定によりβ/
(α+β)が65%であった。
Example 5 An electrode was prepared in exactly the same manner as in Example 1 except that high frequency sputtering was continued for about 150 minutes, and an intermediate layer of β-tantalum thin film having a thickness of about 5 μm and a thickness of about 5 μm per 1 m 2 was formed. The same electrode life acceleration test was performed. The results are shown in Table 1. In Examples 1 to 5 above, β / was determined by X-ray diffraction measurement.
(Α + β) was 65%.

【0018】比較例1 実施例1と同様の処理を施したチタン板を準備した。こ
のチタン板をターゲットから20mmの位置に配置した
以外は、実施例1と同様の方法でタンタルスパッタリン
グを行った。得られた被膜のXRDを測定した結果、α
−タンタルの回折パターンが認められた。この表面に実
施例1と同じ組成の電極被覆液を調製し、30g−Ir
/m2 塗布して電極を作製した。実施例1と同様の電解
寿命加速試験を行い試験後の電極の蛍光X線分析の結
果、残存触媒量は約20g−Ir/m2 であり、触媒消
耗速度は2.67mg−Ir/m2 hrとなった。電極
寿命及び触媒利用率を表1に示す。
Comparative Example 1 A titanium plate treated in the same manner as in Example 1 was prepared. Tantalum sputtering was performed in the same manner as in Example 1 except that this titanium plate was placed 20 mm from the target. As a result of measuring the XRD of the obtained coating, α
-A tantalum diffraction pattern was observed. An electrode coating solution having the same composition as in Example 1 was prepared on this surface, and 30 g-Ir
/ M 2 was applied to prepare an electrode. The same electrolytic life acceleration test as in Example 1 was performed, and as a result of the fluorescent X-ray analysis of the electrode after the test, the residual catalyst amount was about 20 g-Ir / m 2 , and the catalyst consumption rate was 2.67 mg-Ir / m 2. It became hr. Table 1 shows the electrode life and the catalyst utilization rate.

【0019】比較例2 実施例1と同様の処理を施したチタン板を準備した。次
に、線径1.2mmのタンタル線を用いてア−ク溶射機
で溶射を行い、厚み50μmのタンタル溶射層(中間
層)を得た。この被膜のXRDを測定した結果、α−タ
ンタルの回折パターンが認められた。この電極基体に実
施例1と同じ電極被覆液を30g−Ir/m2 塗布し、
比較用の電極を作製した。実施例1と同様の電解寿命加
速試験を行った結果を表1に示す。
Comparative Example 2 A titanium plate treated in the same manner as in Example 1 was prepared. Next, a tantalum wire having a wire diameter of 1.2 mm was used for thermal spraying with an arc sprayer to obtain a tantalum sprayed layer (intermediate layer) having a thickness of 50 μm. As a result of measuring the XRD of this coating, a diffraction pattern of α-tantalum was recognized. 30 g-Ir / m 2 of the same electrode coating liquid as in Example 1 was applied to this electrode substrate,
An electrode for comparison was prepared. The results of the same electrolytic life acceleration test as in Example 1 are shown in Table 1.

【0020】比較例3 実施例1と同様の処理を施したチタン板を準備した。次
に、線径1.2mmのタンタル線を用いて減圧プラズマ
溶射を行い、厚み50μmのタンタル溶射層(中間層)
を得た。この被膜のXRDを測定した結果、α−タンタ
ルの回折パターンが認められた。この電極基体に実施例
1と同じ電極被覆液を30g−Ir/m 2 塗布し、比較
用の電極を作製した。実施例1と同様の電解寿命加速試
験を行った結果を表1に示す。以上の比較例1〜3に於
けるX線回折測定ではα−タンタルのみの回折ピークが
観察された。
Comparative Example 3 A titanium plate that had been subjected to the same treatment as in Example 1 was prepared. Next
In addition, a tantalum wire with a wire diameter of 1.2 mm is used for decompression plasma.
50 nm thick tantalum sprayed layer (intermediate layer)
Got As a result of measuring the XRD of this coating, α-tanta
The diffraction pattern of Le was observed. Example of this electrode substrate
30 g-Ir / m of the same electrode coating liquid as 1 2Apply and compare
The electrode for was produced. Electrolytic life acceleration test similar to that of Example 1
The results of the tests are shown in Table 1. In Comparative Examples 1 to 3 above
In X-ray diffraction measurement, the diffraction peak of α-tantalum alone
Was observed.

【0021】比較例4 実施例1と同様の処理を施したチタン板を準備し、その
表面に直接実施例1と同じ液組成の電極被覆液を30g
−Ir/m2 塗布した電極を作製した。実施例1と同様
の電解寿命加速試験を行った結果を表1に示す。
Comparative Example 4 A titanium plate treated in the same manner as in Example 1 was prepared, and 30 g of an electrode coating liquid having the same liquid composition as in Example 1 was directly applied to the surface of the titanium plate.
An electrode coated with -Ir / m 2 was prepared. The results of the same electrolytic life acceleration test as in Example 1 are shown in Table 1.

【0022】実施例6 実施例1と同様の電極を作製し、極性反転試験を行っ
た。浴条件は50℃、pH1.2の100g/dm3
Na2 SO4 水溶液とした。また、対極には白金板を使
用した。電解方法は電流密度200A/dm2 とし、2
0分毎に5分間20A/dm2 の逆電流を流して測定し
た。正通電の際の槽電圧が開始電圧と比較して5V上昇
した時間を電極寿命とした。この極性反転試験は電極の
陰分極に対する耐久性について検討したものであり、結
果を表2に示す。
Example 6 An electrode similar to that of Example 1 was prepared and a polarity reversal test was conducted. The bath conditions were 50 ° C. and 100 g / dm 3 Na 2 SO 4 aqueous solution having a pH of 1.2. A platinum plate was used as the counter electrode. The electrolysis method was set to a current density of 200 A / dm 2 and 2
The measurement was performed by applying a reverse current of 20 A / dm 2 every 0 minutes for 5 minutes. The electrode life was defined as the time when the cell voltage during positive energization increased by 5 V compared to the starting voltage. This polarity reversal test was conducted to examine the durability of the electrode against negative polarization, and the results are shown in Table 2.

【0023】比較例5〜8 比較例1〜4と同じ電極を作製し、それぞれ実施例6と
同様の極性反転試験を行った結果を表2に示す。
Comparative Examples 5 to 8 The same electrodes as those of Comparative Examples 1 to 4 were prepared and the same polarity reversal test as in Example 6 was conducted. The results are shown in Table 2.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】以上の各実施例、比較例の結果(表1、表
2)によって明らかなようにβ−タンタルを中間層とし
た各実施例はスパッタリング法によるα−タンタル中間
層を設けた比較例1に比較して約2倍の電極寿命、特に
極性反転試験では約5倍の電極寿命を示す。また、溶射
法、減圧プラズマ法によって形成されたα−タンタル中
間層を有する電極に比較しても、これらの電極が遥かに
膜厚が大であるにも拘らず電極寿命が上記と同程度の差
異を有する。
As is clear from the results of the above Examples and Comparative Examples (Table 1 and Table 2), each Example using β-tantalum as an intermediate layer is a Comparative Example in which an α-tantalum intermediate layer is provided by a sputtering method. The electrode life is about twice as long as that of No. 1, especially about 5 times as long as the polarity reversal test. Further, even when compared with an electrode having an α-tantalum intermediate layer formed by a thermal spraying method or a low pressure plasma method, the electrode life is similar to the above although the film thickness of these electrodes is much larger. Have a difference.

【0027】実験例1〜6(但し、実験例1〜4は実施
例7、実験例5,6は比較例9に該当) 以下の実験例1〜6の電極を作製し実施例6と同様の極
性反転試験を行った。結果を表3に示す。 実験例1 実施例1と同様の処理を施したチタン板を準備した。こ
のチタン板をターゲットから40mmの位置に配置し、
チャンバー内圧力1×10-6Torr以下とした。チャ
ンバー内に分圧1.0×10-5Torrの窒素ガスを吹
き込み、更にアルゴンガスを吹き込んでチャンバー内圧
力を1×10-2Torrとした。つぎに、高周波投入電
力200W(0.3kV)、基体温度400℃の条件で
13.56MHzの高周波スパッタリングを約90分間
続けた。この操作で1m2 当たり約50g、厚さ3μm
のタンタル被膜が形成された。得られた被膜の表面をX
線回折法により分析した。その結果α−タンタル約17
%を含むβ−タンタル約83%の存在が認められた。こ
のようにして作製した電極基体上に実施例1と全く同様
の方法で触媒層を形成した。
Experimental Examples 1 to 6 (however, Experimental Examples 1 to 4 correspond to Example 7 and Experimental Examples 5 and 6 correspond to Comparative Example 9) The electrodes of the following Experimental Examples 1 to 6 were prepared and the same as Example 6. The polarity reversal test was performed. The results are shown in Table 3. Experimental Example 1 A titanium plate treated in the same manner as in Example 1 was prepared. This titanium plate is placed 40 mm from the target,
The pressure inside the chamber was set to 1 × 10 −6 Torr or less. Nitrogen gas with a partial pressure of 1.0 × 10 −5 Torr was blown into the chamber, and then argon gas was blown into the chamber to adjust the pressure inside the chamber to 1 × 10 −2 Torr. Next, high-frequency input power of 200 W (0.3 kV) and high-temperature sputtering of 13.56 MHz were continued for about 90 minutes under conditions of a substrate temperature of 400 ° C. This operation 1 m 2 per about 50 g, the thickness of 3μm
A tantalum coating of X on the surface of the obtained film
It was analyzed by the line diffraction method. As a result, α-tantalum is about 17
The presence of about 83% of β-tantalum containing 0.1% was confirmed. A catalyst layer was formed on the thus-prepared electrode substrate by the same method as in Example 1.

【0028】実験例2 実施例1と同様の処理を施したチタン板を準備した。こ
のチタン板をターゲットから20mmの位置に配置し、
チャンバー内の窒素ガスの分圧を1.75×10-5To
rrとした以外は実験例1と同様にして、高周波投入電
力200W(0.3kV)、基体温度400℃の条件で
13.56MHzの高周波スパッタリングを約150分
間続けた。この操作で1m2 当たり約80g、厚さ約5
μmのタンタル被膜が形成された。得られた被膜の表面
をX線回折法により分析した。その結果α−タンタル約
48%を含むβ−タンタル約52%の存在が認められ
た。このようにして作製した電極基体上に実施例2と全
く同様の方法で触媒層を形成した。 実験例3 触媒層の組成および量を実施例3と同様にし、実験例2
と同様のβ−タンタル薄膜の中間層を有する電極を作製
した。
Experimental Example 2 A titanium plate treated in the same manner as in Example 1 was prepared. This titanium plate is placed 20 mm from the target,
The partial pressure of nitrogen gas in the chamber is 1.75 × 10 -5 To
In the same manner as in Experimental Example 1 except that rr was used, high-frequency sputtering was continued for about 150 minutes at a high-frequency input power of 200 W (0.3 kV) and a substrate temperature of 400 ° C. With this operation, about 80 g per 1 m 2 and thickness about 5
A μm tantalum coating was formed. The surface of the obtained coating film was analyzed by the X-ray diffraction method. As a result, the presence of about 52% of β-tantalum including about 48% of α-tantalum was recognized. A catalyst layer was formed on the thus prepared electrode substrate by the same method as in Example 2. Experimental Example 3 The composition and amount of the catalyst layer were the same as in Example 3, and Experimental Example 2
An electrode having an intermediate layer of β-tantalum thin film similar to that was prepared.

【0029】実験例4 触媒層の組成および量を実施例4と同様にし、実験例2
と同様のβ−タンタル薄膜の中間層を有する電極を作製
した。 実験例5 実施例1と同様の処理を施したチタン板を準備した。こ
のチタン板をターゲットから20mmの位置に配置し、
チャンバー内の窒素ガスの分圧を1.9×10 -5Tor
rとした以外は実験例1と同様にして、高周波投入電力
200W(0.3kV)、基体温度400℃の条件で1
3.56MHzの高周波スパッタリングを約60分間続
けた。この操作で1m2 当たり約30g、厚さ約2μm
のタンタル被膜が形成された。得られた被膜の表面をX
線回折法により分析した。その結果α−タンタル約62
%を含むβ−タンタル約38%の存在が認められた。こ
のようにして作製した電極基体に実施例1と全く同様に
して触媒層を作製した。
Experimental Example 4 The composition and amount of the catalyst layer were the same as in Example 4, and Experimental Example 2 was used.
An electrode with an intermediate layer of β-tantalum thin film similar to
did. Experimental example 5 A titanium plate that had been subjected to the same treatment as in Example 1 was prepared. This
Place the titanium plate of 20 mm from the target,
The partial pressure of nitrogen gas in the chamber is 1.9 × 10 -FiveTor
High-frequency input power in the same manner as in Experimental Example 1 except that r was used.
1 at 200 W (0.3 kV) and substrate temperature of 400 ° C
High-frequency sputtering at 3.56 MHz continued for about 60 minutes
I got it. 1m by this operation2Approximately 30 g, thickness of approximately 2 μm
A tantalum coating of X on the surface of the obtained film
It was analyzed by the line diffraction method. As a result, α-tantalum about 62
The presence of about 38% of β-tantalum containing 0.1% was confirmed. This
The electrode substrate manufactured in the same manner as in Example 1
Then, a catalyst layer was prepared.

【0030】実験例6 触媒層の組成および量を実施例3と同様にし、実験例5
と同様のβ−タンタル薄膜の中間層を有する電極を作製
した。
Experimental Example 6 The composition and amount of the catalyst layer were the same as in Example 3, and Experimental Example 5
An electrode having an intermediate layer of β-tantalum thin film similar to that was prepared.

【0031】[0031]

【表3】 [Table 3]

【0032】次にβ−タンタルが50%以上含まれる薄
膜中間層を有する電極の寿命試験を行った。 実施例8,9 β−タンタル薄膜の中間層の厚さが2μmおよび1μm
とした以外は実験例1と同様の方法で薄膜中間層を形成
し次に実施例2および実施例3と同様の方法で触媒層を
形成し各々実施例8および実施例9とした。実施例1と
同様の電極寿命加速試験を行った結果を表4に示す。
Next, a life test of an electrode having a thin film intermediate layer containing 50% or more of β-tantalum was conducted. Examples 8, 9 The thickness of the intermediate layer of the β-tantalum thin film is 2 μm and 1 μm.
Other than the above, a thin film intermediate layer was formed by the same method as in Experimental Example 1, and then a catalyst layer was formed by the same method as in Example 2 and Example 3 to obtain Example 8 and Example 9, respectively. The results of the same electrode life acceleration test as in Example 1 are shown in Table 4.

【0033】[0033]

【表4】 [Table 4]

【0034】以上よりβ−タンタルが50%以上含まれ
るタンタル薄膜中間層を有する電極は極性反転による陰
極化に強く、特にβ−タンタルが80%以上でしかも酸
化イリジウム−酸化タンタル混合酸化物触媒層の組成が
酸化イリジウムが金属換算で80〜95%、酸化タンタ
ルが金属換算で20〜5%の時電極寿命が大きく延びる
事が分った。
From the above, an electrode having a tantalum thin film intermediate layer containing β-tantalum in an amount of 50% or more is resistant to cathodization by polarity reversal, particularly β-tantalum in an amount of 80% or more and an iridium oxide-tantalum oxide mixed oxide catalyst layer. It was found that when the composition of iridium oxide is 80 to 95% in terms of metal and the tantalum oxide is 20 to 5% in terms of metal, the electrode life is greatly extended.

【0035】[0035]

【発明の効果】本発明による酸素発生用陽極において、
β−タンタルをスパッタリングにより形成した中間層
は、基体をなすチタンの電解酸化を防ぐとともに、それ
自体の持つ強い耐食性と耐電解酸化性及び良好な導電性
を有する。また、極性反転試験の結果からも当電極の陰
極化に対しても非常に有効であることが認められる。さ
らに中間層上に熱分解被覆した電極活性層は中間層と良
好な密着性を保ち、酸素発生に対する触媒活性が大であ
り、かつ中間層と同様に硫酸系溶液に対する耐食性に優
れている。以上の効果はα−タンタルをスパッタリング
により形成した中間層を有する陽極に比べ特に顕著であ
る。
In the oxygen generating anode according to the present invention,
The intermediate layer formed by sputtering β-tantalum prevents electrolytic oxidation of titanium forming the substrate, and has strong corrosion resistance and electrolytic oxidation resistance of itself and good conductivity. In addition, the results of the polarity reversal test also confirm that it is very effective for making this electrode a cathode. Further, the electrode active layer obtained by thermally decomposing the intermediate layer has good adhesion to the intermediate layer, has a large catalytic activity for oxygen generation, and is excellent in corrosion resistance to a sulfuric acid solution like the intermediate layer. The above effects are particularly remarkable as compared with an anode having an intermediate layer formed by sputtering α-tantalum.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 音川 隆一 兵庫県尼崎市武庫の里2丁目7−1− 304 (56)参考文献 特開 平6−306669(JP,A) 特開 平5−230682(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryuichi Otokawa               2-7-1, Mukonosato, Amagasaki City, Hyogo Prefecture               304                (56) References JP-A-6-306669 (JP, A)                 JP-A-5-230682 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属チタンまたはその合金からなる導電
性金属基体上に、β−タンタルを50%以上含む金属タ
ンタルの薄膜中間層をスパッタリング法により被着さ
せ、さらにその表面に白金族金属酸化物を含む電極活性
物質被覆層を形成させてなる、β−タンタルを50%以
上含む金属タンタルの薄膜中間層を有した耐陰分極性に
優れた酸素発生用陽極。
1. A thin film intermediate layer of metallic tantalum containing 50% or more of β-tantalum is deposited on a conductive metallic substrate made of metallic titanium or its alloy by a sputtering method, and a platinum group metal oxide is further deposited on the surface thereof. 50% or more of β-tantalum formed by forming an electrode active substance coating layer containing
An oxygen generating anode having a thin film intermediate layer of metallic tantalum contained above and excellent in negative polarization resistance.
【請求項2】 金属タンタルの薄膜中間層の膜厚を1〜
5μmとした請求項1に記載の酸素発生用陽極。
2. A metal tantalum thin film intermediate layer having a thickness of 1 to
The anode for oxygen generation according to claim 1, which has a thickness of 5 μm.
【請求項3】 電極活性物質が酸化イリジウムが金属換
算で70〜95重量%と酸化タンタルが金属換算で5〜
30重量%から成る混合酸化物である請求項1又は2記
載の酸素発生用陽極。
3. Iridium oxide as the electrode active substance is 70 to 95% by weight in terms of metal, and tantalum oxide is 5 to 5% in terms of metal.
The oxygen generating anode according to claim 1 or 2, which is a mixed oxide composed of 30% by weight.
JP32109094A 1993-12-24 1994-12-26 Anode for oxygen generation Expired - Lifetime JP3430479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32109094A JP3430479B2 (en) 1993-12-24 1994-12-26 Anode for oxygen generation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-326439 1993-12-24
JP32643993 1993-12-24
JP32109094A JP3430479B2 (en) 1993-12-24 1994-12-26 Anode for oxygen generation

Publications (2)

Publication Number Publication Date
JPH07229000A JPH07229000A (en) 1995-08-29
JP3430479B2 true JP3430479B2 (en) 2003-07-28

Family

ID=26570358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32109094A Expired - Lifetime JP3430479B2 (en) 1993-12-24 1994-12-26 Anode for oxygen generation

Country Status (1)

Country Link
JP (1) JP3430479B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129822A (en) * 1996-09-09 2000-10-10 Ferdman; Alla Insoluble titanium-lead anode for sulfate electrolytes
JP3458781B2 (en) * 1999-07-06 2003-10-20 ダイソー株式会社 Manufacturing method of metal foil
JP2009068059A (en) * 2007-09-12 2009-04-02 Sanyo Shinku Kogyo Kk Electrode for electrolysis
TWI453306B (en) 2008-03-31 2014-09-21 Permelec Electrode Ltd Manufacturing process of electrodes for electrolysis
EP2107137B1 (en) 2008-03-31 2014-10-08 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
CN103233242B (en) * 2013-03-30 2016-04-13 浙江工业大学 A kind of DSA/ lead alloy combined electrode and its preparation method and application
CN108866610B (en) * 2018-06-01 2023-08-15 马赫内托特殊阳极(苏州)有限公司 Electrolytic anode
CN117646270B (en) * 2024-01-29 2024-04-12 宝鸡钛普锐斯钛阳极科技有限公司 Titanium anode suitable for organic additive application system and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07229000A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
US6527939B1 (en) Method of producing copper foil with an anode having multiple coating layers
MXPA01003960A (en) Cathode for electrolysing aqueous solutions.
AU706571B2 (en) Cathode for use in electrolytic cell
JP2505563B2 (en) Electrode for electrolysis
JPH02247393A (en) Electrolytic electrode with durability and its production
JP3430479B2 (en) Anode for oxygen generation
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JPH05171483A (en) Manufacture of anode for generating oxygen
JPH0762585A (en) Electrolytic electrode substrate and its production
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JP3458781B2 (en) Manufacturing method of metal foil
JP3513657B2 (en) Insoluble anode
JP3149629B2 (en) Oxygen generating electrode
JPH05156480A (en) Production of oxygen generating anode
JPH0343353B2 (en)
JP2002275697A (en) Anode for generating oxygen
JP3661924B2 (en) Oxygen generating anode
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
EP0770709B1 (en) Low hydrogen over voltage cathode and process for production thereof
JP3941898B2 (en) Activated cathode and method for producing the same
JPH06128781A (en) High durable electrode for electrolysis
JPH06146047A (en) Anode for generating oxygen and its production
JPH0978297A (en) Production of anode for generating oxygen
JPH09157879A (en) Electrolyzing electrode and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

EXPY Cancellation because of completion of term