JP3149629B2 - Oxygen generating electrode - Google Patents

Oxygen generating electrode

Info

Publication number
JP3149629B2
JP3149629B2 JP14996293A JP14996293A JP3149629B2 JP 3149629 B2 JP3149629 B2 JP 3149629B2 JP 14996293 A JP14996293 A JP 14996293A JP 14996293 A JP14996293 A JP 14996293A JP 3149629 B2 JP3149629 B2 JP 3149629B2
Authority
JP
Japan
Prior art keywords
electrode
iridium
oxide
tantalum
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14996293A
Other languages
Japanese (ja)
Other versions
JPH073497A (en
Inventor
邦昭 林
裕樹 井本
外志雄 村永
隆一 音川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP14996293A priority Critical patent/JP3149629B2/en
Publication of JPH073497A publication Critical patent/JPH073497A/en
Application granted granted Critical
Publication of JP3149629B2 publication Critical patent/JP3149629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は酸素発生を伴う電解工
程、主として亜鉛、錫、またはクロムの電気めっき、あ
るいはステンレス鋼板の表面処理に使用される不溶性陽
極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insoluble anode used in an electrolysis process involving the generation of oxygen, mainly for electroplating zinc, tin or chromium, or for surface treatment of stainless steel sheets.

【0002】[0002]

【従来の技術】綱板の電気亜鉛めっき用陽極としては現
在鉛又は鉛合金が使用されているが、鉛は比較的消耗が
速く、溶け出した鉛によるめっき液の汚染、めっき被膜
の劣化等の問題がある。 これに代わる陽極としてバル
ブ金属基体に白金めっきを行った電極や白金箔クラッド
電極が検討されているが、白金は消耗が大きく解決に至
っていない。そのために消耗の少ない貴金属及びその化
合物を電極触媒物質としてバルブ金属基体上に塗布した
不溶性陽極が種々提案されており、酸化タンタルと酸化
イリジウムとの混合酸化物よりなる被膜が電極触媒物質
として有望である。
2. Description of the Related Art Lead or a lead alloy is currently used as an electrogalvanizing anode of a steel sheet. Lead is consumed relatively quickly, and the dissolved lead contaminates a plating solution and deteriorates a plating film. There is a problem. Electrodes obtained by plating platinum on a valve metal substrate or platinum foil clad electrodes are being studied as alternative anodes, but platinum has been exhausted greatly and has not been solved yet. For this purpose, various insoluble anodes in which a noble metal and its compound with low consumption are coated on a valve metal substrate as an electrode catalyst material have been proposed, and a film made of a mixed oxide of tantalum oxide and iridium oxide is promising as an electrode catalyst material. is there.

【0003】例えばUSP4437948号明細書、特
開昭63−203800号公報には酸化イリジウムと酸
化タンタルとの混合物被膜をチタン製基材上に形成され
てなる電極が記載されている。 しかしながら、その被
膜はイリジウムとタンタルの各塩化物溶液を基材上に塗
布して酸化性雰囲気中で加熱分解することにより形成さ
れている。 この方法による混合被膜は層内に多数のク
ラックを持つ。 そのため、使用中にクラックを通じて
電解液が被膜と金属基体(例えばチタン金属)間に浸透
し、チタン金属基体表面に電気絶縁層が形成されるとい
う欠点があった。すなわち、酸化タンタルと酸化イリジ
ウムとの混合被膜とチタン金属表面間に電気絶縁層が形
成されると、まだ電極触媒層が電解に充分な量残存して
いても電解電圧が上昇するために電解が不可能となる。
このクラックの状態を図2に示す。 電極触媒物質と
して高価な貴金属を使用することを考えるとそのコスト
効率は決して良いものであるとはいえない。
For example, US Pat. No. 4,437,948 and JP-A-63-203800 describe an electrode in which a mixture film of iridium oxide and tantalum oxide is formed on a titanium base material. However, the film is formed by applying a chloride solution of each of iridium and tantalum on a substrate and thermally decomposing it in an oxidizing atmosphere. Mixed coatings by this method have numerous cracks in the layer. Therefore, there is a disadvantage that the electrolyte penetrates between the coating and the metal substrate (for example, titanium metal) through cracks during use, and an electric insulating layer is formed on the surface of the titanium metal substrate. In other words, when an electric insulating layer is formed between the mixed coating of tantalum oxide and iridium oxide and the titanium metal surface, the electrolysis voltage increases even though the electrode catalyst layer still remains in a sufficient amount for electrolysis, so that electrolysis is performed. Impossible.
The state of this crack is shown in FIG. Considering the use of expensive noble metals as electrode catalyst materials, their cost efficiency is far from good.

【0004】このような欠点を改良するために、基体と
電極触媒層との間にバルブ金属又はその酸化物を含む中
間層を設けた電極も種々提案されている。 例えば特開
昭63−235493号公報には酸化イリジウムと酸化
タンタルとからなる中間層と酸化イリジウムの電極触媒
層を設けた電極が記載されている。 しかしこの中間層
は電極触媒層と同じく溶液を塗布した後焼き付けによる
熱分解法により形成され、その効果は十分なものではな
い。 このような熱分解法以外にも溶射法、イオンプレ
ーティング法、スパッタリング法等が知られており、例
えば特開平2−247393号公報には、真空スパッタ
リング法によりバルブ金属酸化物よりなる中間層を設け
その上に熱分解法により電極触媒層を設けた電極が記載
されている。 この電極の触媒層内にはクラックが存在
するため電解液の浸入は抑制できない。 また特開平4
−214899号には電極母材表面にバルブ金属層を形
成し、その表面に酸化イリジウムのスパッタ被膜を形成
し、さらにその上にイリジウム化合物の塗布焼き付け
(熱分解法)による酸化イリジウム被膜を形成した電
極、又はその形成順序を逆にした電極が記載されてい
る。 しかしこの電極もスパッタリング法と熱分解法と
を併用した二層構造であり電極寿命の点で未だ問題があ
る。
In order to improve such disadvantages, various types of electrodes having an intermediate layer containing a valve metal or an oxide thereof between a substrate and an electrode catalyst layer have been proposed. For example, JP-A-63-235493 describes an electrode provided with an intermediate layer composed of iridium oxide and tantalum oxide and an electrode catalyst layer of iridium oxide. However, this intermediate layer is formed by a thermal decomposition method by baking after applying a solution like the electrode catalyst layer, and its effect is not sufficient. In addition to such a thermal decomposition method, a thermal spraying method, an ion plating method, a sputtering method, and the like are known. For example, JP-A-2-247393 discloses an intermediate layer formed of a valve metal oxide by a vacuum sputtering method. An electrode in which an electrode catalyst layer is provided thereon by a pyrolysis method is described. Since cracks are present in the catalyst layer of this electrode, infiltration of the electrolyte cannot be suppressed. In addition, JP
In JP-A-214899, a valve metal layer was formed on the surface of an electrode base material, a sputtered film of iridium oxide was formed on the surface, and an iridium oxide film was formed thereon by coating and baking an iridium compound (pyrolysis method). An electrode or an electrode whose formation order is reversed is described. However, this electrode also has a two-layer structure using both the sputtering method and the thermal decomposition method, and there is still a problem in terms of electrode life.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は主とし
て電気めっき用陽極として使用されている酸素発生用不
溶性電極において問題となっている金属基体の不働態化
を防ぎ、長寿命の電極を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a long-life electrode which prevents passivation of a metal substrate which is a problem in an insoluble electrode for oxygen generation which is mainly used as an anode for electroplating. Is to do.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記のよ
うな問題点を解決するために種々検討した結果、従来の
熱分解法による電極触媒層を有する酸素発生用電極と比
較し、特にスパッタリング法による電極触媒層を基体表
面に設けた電極は電極触媒物質の利用効率が向上し電極
の寿命が長くなることを見出し本発明を完成したもので
ある。
Means for Solving the Problems The present inventors have conducted various studies to solve the above-mentioned problems, and as a result, compared with a conventional oxygen generating electrode having an electrode catalyst layer formed by a pyrolysis method, In particular, the present inventors have found that an electrode having an electrode catalyst layer formed on the surface of a substrate by a sputtering method improves the utilization efficiency of the electrode catalyst substance and prolongs the life of the electrode, thereby completing the present invention.

【0007】本発明はすなわち、バルブ金属又はその合
金よりなる導電性金属基体上に、スパッタリング法によ
り酸化イリジウム及び酸化タンタルよりなる混合酸化物
被膜を電極触媒層として設けたことを特徴とする酸素発
生用電極である。
According to the present invention, there is provided an oxygen generation method comprising providing a mixed oxide film made of iridium oxide and tantalum oxide as an electrode catalyst layer on a conductive metal substrate made of a valve metal or an alloy thereof by a sputtering method. Electrode.

【0008】本発明の電極基体に使用される金属基体と
してはバルブ金属(チタン、タンタル、ジルコニウム、
ニオブ等)又はその合金が用いられるが、経済的な面か
らは金属チタン又はその合金、例えばチタン−タンタ
ル、チタン−ニオブ、チタン−パラジウムが好ましい。
その形状は板状、棒状、エキスパンド状、多孔板状等
種々の形状をとり得る。
The metal substrate used for the electrode substrate of the present invention includes a valve metal (titanium, tantalum, zirconium,
Niobium or the like or an alloy thereof is used, but from the economical viewpoint, titanium metal or an alloy thereof, for example, titanium-tantalum, titanium-niobium, or titanium-palladium is preferable.
The shape can be various shapes such as a plate shape, a rod shape, an expanded shape, a perforated plate shape, and the like.

【0009】酸化タンタルと酸化イリジウムとの混合酸
化物を形成するためのスパッタリング方法は高周波スパ
ッタリング、直流2極スパッタリング共に可能である。
例えば、高周波スパッタリングで成膜する場合は、タ
ーゲットにタンタルとイリジウムの金属粉末を混合しホ
ットプレス等で加工したもの、もしくは数個の小さなイ
リジウム金属板を大きなタンタル金属板の上にのせたも
の等が用いられる。 アルゴンと酸素の混合ガス雰囲気
下、1 Pa以下の高真空中で高周波放電することで、バル
ブ金属基板表面への反応性スパッタリングを行う。この
際、基板表面を乾式ブラストなどの手法で適当に粗くす
ることにより酸化タンタルや酸化イリジウムの密着強度
が向上する。
A sputtering method for forming a mixed oxide of tantalum oxide and iridium oxide can be performed by both high frequency sputtering and direct current bipolar sputtering.
For example, when forming a film by high frequency sputtering, a target is prepared by mixing tantalum and iridium metal powder and processing by hot pressing or the like, or several small iridium metal plates are placed on a large tantalum metal plate. Is used. Reactive sputtering is performed on the surface of the valve metal substrate by performing high-frequency discharge in a high vacuum of 1 Pa or less under a mixed gas atmosphere of argon and oxygen. At this time, by appropriately roughening the substrate surface by a method such as dry blasting, the adhesion strength of tantalum oxide or iridium oxide is improved.

【0010】このように基体上に形成された電極触媒層
は酸化イリジウムを20モル%以上含み、残余が酸化タ
ンタルよりなる、好ましくは酸化イリジウムが20〜9
5モル%、酸化タンタルが80〜5モル%、より好まし
くは酸化イリジウムが30〜90モル%、酸化タンタル
が70〜10モル%である。 この範囲においてもっと
も電極寿命の長い電極を得ることができる。
[0010] The electrode catalyst layer thus formed on the substrate contains at least 20 mol% of iridium oxide, and the remainder is made of tantalum oxide, preferably 20 to 9 iridium oxide.
5 mol%, 80 to 5 mol% of tantalum oxide, more preferably 30 to 90 mol% of iridium oxide, and 70 to 10 mol% of tantalum oxide. Within this range, an electrode having the longest electrode life can be obtained.

【0011】上記のスパッタリング法による電極触媒層
の厚みは0.3〜10μm程度の薄膜であり、この被膜
を走査型電子顕微鏡で観察したところ図1に示されるよ
うに全くクラックは認められない(図1においては電極
表面の金属酸化物の各微粒子が成長して円盤状に隆起し
た状態を点線で示す)。 従ってこの被膜を電極触媒と
して使用した場合、大部分の触媒層が消耗しない限り被
膜と電極基板間への電解液の浸透は起こり難く電極の長
寿命化を図ることができる。
The thickness of the electrode catalyst layer formed by the above-mentioned sputtering method is a thin film of about 0.3 to 10 μm. When this coating film is observed with a scanning electron microscope, no cracks are observed as shown in FIG. 1 ( In FIG. 1, dotted lines show the state in which each metal oxide fine particle on the electrode surface grows and protrudes in a disk shape). Therefore, when this coating film is used as an electrode catalyst, the electrolyte does not easily penetrate between the coating film and the electrode substrate unless most of the catalyst layer is consumed, and the life of the electrode can be extended.

【0012】[0012]

【実施例】本発明電極及び従来法による電極を用いて電
解寿命試験を行った。試験条件を一定にするため電極表
面上のイリジウム元素の量を30 g/m2に固定した。イリ
ジウムの定量にはエネルギー分散型X線マイクロアナラ
イザ(EDX)および蛍光X線分析装置を用いた。電極
の先端を10 × 10 mmに切り出し、他の部分をシールし
たものを寿命試験用陽極として用いた。電解方法は定電
流電解法とし、電流密度は 200 A/dm2、電解液はpH=1.
2でNa2SO4を100 g/Lとした。 電解電圧が初期電圧か
ら5 V上昇した時点でその電極の寿命到達とした。
EXAMPLE An electrolytic life test was performed using the electrode of the present invention and an electrode according to a conventional method. The amount of the iridium element on the electrode surface was fixed at 30 g / m 2 to keep the test conditions constant. For the determination of iridium, an energy dispersive X-ray microanalyzer (EDX) and a fluorescent X-ray analyzer were used. The tip of the electrode was cut into a size of 10 × 10 mm, and the other part sealed was used as an anode for a life test. The electrolysis method is a constant current electrolysis method, the current density is 200 A / dm 2 , and the electrolyte is pH = 1.
In step 2, Na 2 SO 4 was adjusted to 100 g / L. When the electrolysis voltage increased by 5 V from the initial voltage, the life of the electrode was determined to be reached.

【0013】実施例1 50 × 10 × 1.5 mm のチタン板をアセトン中で超音波
洗浄により脱脂する。次に、#30のアルミナを用い、
4 kgf/cm2で約10分間チタンの両面に乾式ブラスト処理
を施した。このチタン板を水で洗い、さらに、再びアセ
トン中で超音波洗浄したものを電極基体として用いた。
このチタン板を乾燥後、高周波スパッタリング装置に
装着した。 径100 mm、厚さ3 mmのタンタル板上に3個
の径20 mm、厚さ1 mmのイリジウム板をのせてターゲッ
トとした。 電極基体をこのターゲットの上方25 mmの
距離に配置した。 チャンバー内にアルゴンと酸素との
混合ガス(混合比1:1)を吹き込み、1 Paとしたの
ち、13.56 MHz の高周波をかけ、スパッタリングを開始
する。そのまま4時間スパッタリングを続けた後、放電
を止めた。この操作で厚さ5 μmの酸化タンタル−酸化
イリジウムの混合被膜が形成された。 こうして得ら
れた混合被膜の表面をエネルギー分散型X線マイクロア
ナライザ(EDX)により分析したところ、イリジウム
とタンタルとのモル比は7:3、イリジウム元素量は30
g/m2であることが判明した。 電極の寿命は151日で
あった。
Example 1 A 50 × 10 × 1.5 mm titanium plate is degreased by ultrasonic cleaning in acetone. Next, using # 30 alumina,
Dry blasting was performed on both sides of titanium at 4 kgf / cm 2 for about 10 minutes. This titanium plate was washed with water and then ultrasonically washed again in acetone, and used as an electrode substrate.
After drying this titanium plate, it was mounted on a high frequency sputtering device. A target was prepared by placing three iridium plates each having a diameter of 20 mm and a thickness of 1 mm on a tantalum plate having a diameter of 100 mm and a thickness of 3 mm. The electrode substrate was placed at a distance of 25 mm above this target. A mixed gas of argon and oxygen (mixing ratio: 1: 1) is blown into the chamber to 1 Pa, and then a high frequency of 13.56 MHz is applied to start sputtering. After continuing the sputtering for 4 hours, the discharge was stopped. By this operation, a mixed film of tantalum oxide-iridium oxide having a thickness of 5 μm was formed. When the surface of the mixed film thus obtained was analyzed by an energy dispersive X-ray microanalyzer (EDX), the molar ratio of iridium to tantalum was 7: 3, and the amount of iridium element was 30.
It was found to be g / m 2. The life of the electrode was 151 days.

【0014】実施例2 実施例1のイリジウム板を1個使用する以外は、実施例
1と全く同様にしてイリジウムとタンタルとのモル比が
3:7のスパッタリング法による酸化イリジウム−酸化
タンタル触媒層を設けたチタン電極を作製し同様の試験
を行った。 電極の寿命は122日であった。
Example 2 An iridium oxide-tantalum oxide catalyst layer formed by a sputtering method in which the molar ratio of iridium to tantalum is 3: 7 in the same manner as in Example 1 except that one iridium plate of Example 1 is used. A titanium electrode provided with was prepared and the same test was performed. The life of the electrode was 122 days.

【0015】実施例3 実施例1のイリジウム板を2個使用する以外は、実施例
1と全く同様にしてイリジウムとタンタルとのモル比が
6:4の酸化イリジウム−酸化タンタル触媒層を設けた
チタン電極を作製し同様の試験を行ったところ電極の寿
命は140日であった。
Example 3 An iridium oxide-tantalum oxide catalyst layer having a molar ratio of iridium to tantalum of 6: 4 was provided in exactly the same manner as in Example 1 except that two iridium plates of Example 1 were used. When a titanium electrode was prepared and subjected to the same test, the life of the electrode was 140 days.

【0016】実施例4 実施例1のイリジウム板を4個使用する以外は、実施例
1と全く同様にしてイリジウムとタンタルとのモル比が
85:15の酸化イリジウム−酸化タンタル触媒層を設
けたチタン電極を作製し同様の試験を行ったところ電極
の寿命は135日であった。
Example 4 An iridium oxide-tantalum oxide catalyst layer having a molar ratio of iridium to tantalum of 85:15 was provided in exactly the same manner as in Example 1 except that four iridium plates of Example 1 were used. When a titanium electrode was prepared and subjected to the same test, the life of the electrode was 135 days.

【0017】実施例5 電極基板としてチタン板の代わりにタンタル板を使用し
ターゲットとなるイリジウム板を3個使用した以外は実
施例1と全く同様にしてイリジウムとタンタルとのモル
比が7:3の酸化イリジウム−酸化タンタル触媒層を設
けたタンタル電極を作製し同様の試験を行ったところ電
極の寿命は209日であった。
Example 5 The same procedure as in Example 1 was repeated except that a tantalum plate was used instead of a titanium plate as an electrode substrate and three iridium plates serving as targets were used, and the molar ratio of iridium to tantalum was 7: 3. A tantalum electrode provided with an iridium oxide-tantalum oxide catalyst layer was prepared and subjected to the same test. The life of the electrode was 209 days.

【0018】比較例1 従来法である熱分解法による電極触媒層をチタン電極基
体上に作製するために、下記に示す液組成の電極被覆液
を調製し、実施例1と同様の処理を施した50 ×10 ×
1.5 mmのチタン板上に塗布した。 TaCl5 0.32 g H2IrCl6・6H2O 1.00 g conc.HCl 1.0 ml n-CH3(CH2)3OH 10.0 ml これを120℃で10分間乾燥したのち、490℃に保持した電
気炉中で20分間焼成した。この電極触媒物質の被覆操作
を25回繰り返して酸化イリジウム−酸化タンタルを触媒
物質とする電極を作製した(触媒層のモル比はIr/Ta=7/
3、触媒量はイリジウム元素換算で30g/m2)(図2参
照)。 この電極の先端を10 X 10 mmに切り出し、他の
部分をシールしたものを寿命試験用陽極として用いた。
実施例1と同条件で電解試験を行った結果、95日経過後
に槽電圧の急激な上昇が認められた。この電極を電解槽
から取り出し、蛍光X線分光器で残存触媒量を測定した
結果、イリジウム元素換算で約20g/m2もの触媒が残って
いた。すなわち、電解電圧の上昇は触媒の消失ではな
く、下地のチタン面と触媒層の境界付近へ電解液が浸透
し、チタン面が酸化され、絶縁層を形成したため通電不
能になったと考えられる。
COMPARATIVE EXAMPLE 1 In order to form an electrode catalyst layer on a titanium electrode substrate by a conventional pyrolysis method, an electrode coating solution having the following liquid composition was prepared and treated in the same manner as in Example 1. 50 × 10 ×
It was applied on a 1.5 mm titanium plate. TaCl 5 0.32 g H 2 IrCl 6 · 6H 2 O 1.00 g conc.HCl 1.0 ml n-CH 3 (CH 2) 3 OH 10.0 ml After it was dried for 10 minutes at 120 ° C., an electric furnace kept at 490 ° C. For 20 minutes. This coating operation of the electrode catalyst material was repeated 25 times to produce an electrode using iridium oxide-tantalum oxide as the catalyst material (the molar ratio of the catalyst layer was Ir / Ta = 7 /
3. The amount of catalyst is 30 g / m 2 in terms of iridium element (see FIG. 2). The tip of this electrode was cut out to 10 × 10 mm, and the other part sealed was used as an anode for a life test.
As a result of conducting an electrolysis test under the same conditions as in Example 1, a sharp rise in the cell voltage was observed after 95 days. The electrode was taken out of the electrolytic cell, and the amount of the remaining catalyst was measured by a fluorescent X-ray spectrometer. As a result, about 20 g / m 2 of the catalyst in terms of iridium element remained. That is, it is considered that the increase in the electrolysis voltage was not due to the disappearance of the catalyst, but the permeation of the electrolyte near the boundary between the underlying titanium surface and the catalyst layer, the oxidation of the titanium surface, and the formation of an insulating layer, thereby preventing the passage of electricity.

【0019】比較例2 径100 mm、厚さ2 mmのイリジウム板をターゲットとして
用いて50 × 10 × 1.5mmのチタン電極基体上に、実施
例1と同様のスパッタリングの条件でIrO2被膜をイリジ
ウム元素の量が30 g/m2になるように形成した。電極寿
命は37日であった。 Ta2O5が含まれていない場合には
寿命は短くなる事を示している。
Comparative Example 2 An IrO 2 film was coated on a 50 × 10 × 1.5 mm titanium electrode substrate under the same sputtering conditions as in Example 1 using an iridium plate having a diameter of 100 mm and a thickness of 2 mm as a target. It was formed so that the amount of elements was 30 g / m 2 . The electrode life was 37 days. When Ta 2 O 5 is not contained, the service life is shortened.

【0020】比較例3 比較例1と同様の塗布焼成による熱分解法で同組成の酸
化イリジウム−酸化タンタル触媒層を形成し、更にその
上にスパッタリング法により比較例2と同様の条件で厚
さ0.1μmの酸化イリジウム層を形成した(電極A)。
また、チタン電極基体上にスパッタ法により厚さ0.1μ
mの酸化イリジウム層を形成した後、その上に比較例1
と同様の塗布焼成による熱分解法で同組成の酸化イリジ
ウム−酸化タンタル触媒層を形成した(電極B)。 電
極Aと電極Bの焼成により形成した酸化イリジウム−酸
化タンタル触媒層中のイリジウム元素の量は30 g/m2
ある。 実施例1と同様の電解寿命試験を行ったとこ
ろ、寿命は電極Aが95日、電極Bが97日であった。
Comparative Example 3 An iridium oxide-tantalum oxide catalyst layer having the same composition was formed by the same thermal decomposition method by coating and baking as in Comparative Example 1, and the thickness was further increased by sputtering under the same conditions as in Comparative Example 2. An iridium oxide layer of 0.1 μm was formed (electrode A).
In addition, a thickness of 0.1 μm was formed on the titanium electrode substrate by sputtering.
m after forming an iridium oxide layer of Comparative Example 1
An iridium oxide-tantalum oxide catalyst layer of the same composition was formed by the same thermal decomposition method as in (1) above (electrode B). The amount of the iridium element in the iridium oxide-tantalum oxide catalyst layer formed by baking the electrodes A and B is 30 g / m 2 . When the same electrolytic life test as in Example 1 was performed, the life was 95 days for the electrode A and 97 days for the electrode B.

【0021】[0021]

【発明の効果】本発明の酸素発生用電極は電極活性の高
い酸化イリジウム−酸化タンタルの混合層をスパッタリ
ング法により基体上に設けてなるので、全くクラックや
細孔部の無い緻密な電極触媒被膜が形成され、バルブ金
属の電極基体を電解液から保護する事ができ、電極寿命
が長くなる効果が得られる。 また従来のように中間層
を設ける必要もなく比較的簡易な工程で電極を製造する
ことができる。
The electrode for oxygen generation according to the present invention is obtained by forming a mixed layer of iridium oxide-tantalum oxide having a high electrode activity on a substrate by a sputtering method, so that a dense electrode catalyst film having no cracks or pores at all. Is formed, and the electrode base of the valve metal can be protected from the electrolytic solution, and the effect of extending the electrode life can be obtained. In addition, the electrode can be manufactured by a relatively simple process without providing an intermediate layer as in the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電極触媒層の表面を走査型電子顕微鏡で
観察した状態の模写図である。
FIG. 1 is a schematic view of a state where the surface of an electrode catalyst layer of the present invention is observed with a scanning electron microscope.

【図2】従来法で作製した電極触媒層の表面を走査型電
子顕微鏡で観察した状態の模写図である。
FIG. 2 is a schematic view of a state in which the surface of an electrode catalyst layer manufactured by a conventional method is observed with a scanning electron microscope.

【符号の説明】[Explanation of symbols]

1 結晶成長を示す隆起部 2 クラック(幅:0.3μm) 1 Raised part showing crystal growth 2 Crack (width: 0.3 μm)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭46−21884(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C25D 17/10 - 17/12 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-B-46-21884 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) C25D 17/10-17/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バルブ金属又はその合金よりなる導電性
金属基体上に、スパッタリング法により酸化イリジウム
および酸化タンタルの混合酸化物被膜を電極触媒層とし
て設けたことを特徴とする酸素発生用電極。
An oxygen generating electrode comprising a conductive metal substrate made of a valve metal or an alloy thereof and a mixed oxide film of iridium oxide and tantalum oxide provided as an electrode catalyst layer by a sputtering method.
【請求項2】 混合酸化物被膜の組成が酸化イリジウム
20〜95モル%、酸化タンタル80〜5モル%である
請求項1に記載の酸素発生用電極。
2. The oxygen generating electrode according to claim 1, wherein the composition of the mixed oxide film is 20 to 95 mol% of iridium oxide and 80 to 5 mol% of tantalum oxide.
JP14996293A 1993-06-22 1993-06-22 Oxygen generating electrode Expired - Fee Related JP3149629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14996293A JP3149629B2 (en) 1993-06-22 1993-06-22 Oxygen generating electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14996293A JP3149629B2 (en) 1993-06-22 1993-06-22 Oxygen generating electrode

Publications (2)

Publication Number Publication Date
JPH073497A JPH073497A (en) 1995-01-06
JP3149629B2 true JP3149629B2 (en) 2001-03-26

Family

ID=15486415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14996293A Expired - Fee Related JP3149629B2 (en) 1993-06-22 1993-06-22 Oxygen generating electrode

Country Status (1)

Country Link
JP (1) JP3149629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019128A1 (en) 2004-08-19 2006-02-23 Japan Science And Technology Agency Metal oxide electrode catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188361B2 (en) * 1994-06-27 2001-07-16 ペルメレック電極株式会社 Chrome plating method
CN103741165B (en) * 2014-01-26 2016-06-29 福州大学 A kind of active coating embedding ruthenium titanium oxide and preparation method thereof
CN114875458B (en) * 2022-05-19 2023-04-18 西安泰金新能科技股份有限公司 Noble metal anode for electrolytic copper foil and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019128A1 (en) 2004-08-19 2006-02-23 Japan Science And Technology Agency Metal oxide electrode catalyst

Also Published As

Publication number Publication date
JPH073497A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
KR101383524B1 (en) Method for forming an electrocatalytic surface on an electrode and the electrode
EP0046727B1 (en) Improved anode with lead base and method of making same
WO2003078694A1 (en) Electrode for generation of hydrogen
Singh et al. Preparation of thin Co3O4 films on Ni and their electrocatalytic surface properties towards oxygen evolution
Jovanović et al. The roles of the ruthenium concentration profile, the stabilizing component and the substrate on the stability of oxide coatings
JPH02247393A (en) Electrolytic electrode with durability and its production
WO1996024705A1 (en) Cathode for use in electrolytic cell
JP3149629B2 (en) Oxygen generating electrode
JP3430479B2 (en) Anode for oxygen generation
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
FI63604C (en) STABIL ELEKTROD FOER ELEKTROKEMISKA TILLAEMPNINGAR
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JPH06128781A (en) High durable electrode for electrolysis
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
Bakambo et al. Exploration of the thermally prepared Iridium oxide (IrO2) and tantalum pentoxide (Ta2O5) coated titanium anode in the oxygen evolution reactions (OER)
JP2729835B2 (en) Method for forming ceramic film on aluminum substrate surface
WO2024073866A1 (en) Electrode, and use and preparation method thereof
EP4183903A1 (en) Oxygen-generating electrode
JPS58120790A (en) Production of electrode for electrolysis
JP3067606B2 (en) Manufacturing method of anode for oxygen generation
JPH06146047A (en) Anode for generating oxygen and its production
JP2003293196A (en) Electrode for electrolysis and production method therefor
JPH06306669A (en) High durable electrode for electrolysis and production thereof
JP2777677B2 (en) Method for producing iridium oxide film / metal bonded body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees