JP3661924B2 - Oxygen generating anode - Google Patents

Oxygen generating anode Download PDF

Info

Publication number
JP3661924B2
JP3661924B2 JP29140399A JP29140399A JP3661924B2 JP 3661924 B2 JP3661924 B2 JP 3661924B2 JP 29140399 A JP29140399 A JP 29140399A JP 29140399 A JP29140399 A JP 29140399A JP 3661924 B2 JP3661924 B2 JP 3661924B2
Authority
JP
Japan
Prior art keywords
anode
electrode
oxide
titanium
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29140399A
Other languages
Japanese (ja)
Other versions
JP2001073197A (en
Inventor
惠民 孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP29140399A priority Critical patent/JP3661924B2/en
Publication of JP2001073197A publication Critical patent/JP2001073197A/en
Application granted granted Critical
Publication of JP3661924B2 publication Critical patent/JP3661924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は酸素発生を伴う電解工程、主として亜鉛、錫または銅の電気メッキやステンレス鋼の表面処理に使用される不溶性陽極に関するものである。
【0002】
【従来の技術】
鋼板の高速電気めっき用陽極として、現在鉛又は鉛合金が使用されているが、鉛は比較的消耗が速く、溶け出した鉛によるメッキ液の汚染、メッキ皮膜の劣化等の問題がある。これに代わる陽極として、貴金属酸化物を電極活性物質とした不溶性陽極が種々提案されている。しかしながら、一般に、この種の電極は、電解液中に有機物が存在すると、電極表面の活性物質が著しく溶解あるいは被毒されることが広く知られている。銅箔の電解製造や錫メッキの分野では、一般に電解浴中に有機物が存在するため、電流密度が5kA/m以下と比較的低いにもかかわらず、電極活性物質の消耗速度は速く、高価な貴金属をその活性物質として使用するには、その経済性は決してよいものではない。
【0003】
この問題を解決するために、特開平3−240987号公報には、導電性基体上に酸化イリジウム、酸化タンタルからなる下地層を形成させ、その上に必要に応じて酸化イリジウム層を設け、更に酸化チタン、酸化タンタル、酸化錫、酸化ジルコニウム等の酸化物層を設けた電極が耐有機物電解用として提案されている。しかし、酸化チタン、酸化タンタル、酸化錫、酸化ジルコニウム等は、導電率が低く、触媒としての活性は非常に乏しい。また、下地層との組成が異なるため、長期にわたって、密着性を維持するのが困難である。また、特開平2−194192号公報には、電気錫メッキ方法として、フェノールスルホン酸を含有する電解浴で、イリジウム酸化物とチタン、タンタル、ニオブ、錫の少なくとも1つの酸化物からなる不溶性陽極を使用する方法が提案されている。しかし、ここで使用される不溶性陽極の酸化物被覆層の組成及び作用については全く開示されていない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、主として電気メッキ用又は電解金属箔製造用陽極として検討されている貴金属酸化物を電極活性物質とした酸素発生用不溶性陽極において問題とされている、電解浴中に存在する有機物による電極活性物質の劣化を防ぎ、長寿命の電極を提供することにある。
【0005】
【課題を解決するための手段】
本発明によれば、チタン又はその合金からなる導電性金属を基体とし、表面層としてイリジウム40〜95原子%、チタン、タンタル、ニオブ、ジルコニウムから選ばれた少なくとも1種の金属5〜30原子%及び錫1〜30原子%の各金属の酸化物よりなる混合酸化物の電極活性物質被覆層を形成してなり、有機物を含んだ電解液中で使用されることを特徴とする酸素発生用陽極が提供され、また、導電性金属基体表面の中心線平均粗さRaが3〜8μmである上記酸素発生用陽極が提供される。また、上記有機物を含んだ電解液が電気錫メッキ浴である上記酸素発生用陽極が提供される。
【0006】
【発明の実施の形態】
本発明における導電性電極基体は、金属チタン又はTi−Ta、Ti−Ta−Nb、Ti−Pd等のチタン基合金が好適に用いられる。この基体の形状は板状、有孔板状、棒状、網状、など所望のものとすることができる。この金属基体の物理的な粗面化にはグリットブラスト、ショットブラスト又はサンドブラスト処理が適用される。これらのブラスト材としてはアルミナ、ジルコニア、炭化ケイ素、スチール、サンド等が使用され、その粒子径は200〜1000μm程度が適当である。次にシュウ酸、硫酸等を用いて化学処理による粗面化を行う。処理後の表面粗度は、電極の耐久性にとって重要な要素であり、中心線平均粗さRaは3〜8μm、好ましくは4〜6μmの凹凸を有するようにし、その際のピークカウントPcは40〜60/cm程度が望ましい。
【0007】
次に上記導電性基体上に、電気化学的に活性を有するイリジウム40〜95原子%、チタン、タンタル、ニオブ、ジルコニウムの中から選ばれた少なくとも1種の金属5〜30原子%及び錫1〜30原子%の各金属の酸化物の混合酸化物からなる電極活性物質被覆層(触媒層)を設ける。錫が1原子%未満では、有機物に対する耐久性が低下するし、また、錫が30原子%を越えると、触媒層自体の導電性が著しく低下すると同時に耐久性も低下する。イリジウムが40原子%未満では酸素発生触媒能が劣化し、95原子%を越えると皮膜の密着性が損なわれる。
【0008】
電極活性物質の被覆層の形成方法としては従来から用いられている熱分解法、電気化学的酸化法、粉末焼結法等を適用できるが、熱分解法が好ましい。すなわち、塩化第一錫、塩化イリジウム、塩化チタン、塩化タンタル、塩化ニオブ、オキシ塩化ジルコニウム等の金属塩をエチルアルコール、ブチルアルコール等の溶媒に溶解して所定組成の混合溶液としたものを塗布する。次いで100〜150℃で数分間乾燥し、空気又は酸素雰囲気の電気炉中で350〜550℃で10〜20分間熱分解処理を行う。以上の操作を数回行うことにより本発明電極を得ることができる。
【0009】
本発明電極を酸素発生用陽極として使用する典型的な例は電気錫メッキ浴である。錫メッキ浴中には光沢剤としてp−フェノールスルホン酸等を含有し、通常の陽極では有機物皮膜が形成されやすい。本発明の酸素発生用陽極を使用する場合、その触媒成分の1つである酸化錫が有機物皮膜の蓄積を防止するので電極寿命の向上に効果を奏することができる。
【0010】
【作用】
本発明電極の触媒層を形成している活性物質である酸化イリジウムは、不均一レドックス反応型の酸素発生触媒で、酸素発生に対する触媒活性には非常に優れている。もう一つの構成成分である酸化錫は、ラジカル反応型の酸素発生触媒で、有機物の影響を殆ど受けない。さらにチタン、タンタル、ニオブ、ジルコニウムの様なバルブ金属の中から選ばれた少なくとも1種の金属の酸化物を混合することにより、触媒層の強度を高め、導電性基体の表面粗度を所定の範囲に保つことにより、触媒層の耐久性を向上させている。これにより、有機物を含んだ電解浴中で酸素発生用陽極として使用する場合、有機物による劣化を受けず、低い酸素過電圧で長期間電解が可能である。
【0011】
【実施例】
次に実施例、比較例により本発明を具体的に説明する。
実施例1〜6、比較例1〜3
大きさ 50mm×10mm×1.5mmの市販のチタン板をアセトン中で超音波洗浄により脱脂した。次に、アルミナグリッドを用い、4kgf/cmで約10分間チタンの両面にブラスト処理を施した。次に20重量%硫酸を用いて65℃で2時間チタン板を化学処理した。このチタン板を流水中で一昼夜洗い、乾燥したものを電極基体として用いた(得られた基体表面の中心線平均粗さRaは表1に示す)。このようにして作製した電極基体に表1に示した組成比に相当する所定割合の塩化イリジウム酸、塩化錫とブチルチタネート、塩化タンタル、塩化ニオブ、オキシ塩化ジルコニウムの中から選ばれた1つの化合物とをブタノールに溶解し、電極被覆液を調製し、塗布した。これを120℃で10分間乾燥したのち、500℃に保持した電気炉中で20分間焼成した。この電極活性物質の被覆操作を10回繰り返して金属イリジウム換算で10g/mの酸化イリジウムを活性物質とする電極を作製した。また、比較のため、表1に示す塩化錫を省略した組成、上記バルブ金属を省略した組成及び組成比が本発明の範囲外である組成の電極活性物質被覆層を設けた電極を作製した。上記に示した、熱分解法による成膜過程において、一般に錫化合物は、その一部が蒸発または昇華により消失されることが知られている。そのため、塗布液の組成と最終的に得られた皮膜の組成は異なるので、得られた各電極活性物質被覆層について蛍光X線分析法により組成比を求め、表1に示した。これら電極の触媒被覆層の先端部10×10mmを残し、他の部分をシールしたものを寿命試験用陽極として用いた。
【0012】
このようにして作製した電極の電解寿命加速試験を行った。浴温度は60℃、浴組成はp−フェノールスルホン酸80g/L、硫酸第一錫40g/L、pH0.8の溶液(PSA浴)、及びメタスルホン酸5vol%、カテコール10g/L、硫酸第一錫40g/L、pH0.8の溶液(MSA浴)の2種類を使用し浴は2m/秒の流速とした。陰極にはジルコニウム板を用いた。電解方法は定電流電解法とし、電流密度は200A/dmとした。同じ仕様の電極を5本以上作製し電極寿命の平均値を求めた。各電極の電解開始電圧と比較して槽電圧が5V上昇した時間を電極寿命とした。電極寿命の平均値を表1に示す。
【0013】
【表1】

Figure 0003661924
【0014】
以上の各実施例、比較例の結果(表1)によって明らかなよう本発明電極は、有機物存在下の錫メッキ浴の電解において、著しく長い寿命を示す。特にRaが3〜8の電極においては(実施例1〜4)、比較例の約4倍の長寿命を示している。
【0015】
【発明の効果】
電解浴中に存在する有機物による劣化を防ぐとともに、それ自体の持つ強い耐食性と耐電解酸化性及び良好な導電性を有する。また、導電性基体表面の中心線平均粗さRaを3〜8μmとすれば、電極活性層と基体との密着性、酸素発生に対する触媒活性、電解浴に対する耐食性においてより好ましい結果を与える。本発明は特に電気錫メッキの際の陽極として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insoluble anode used in an electrolysis process involving oxygen generation, mainly for electroplating zinc, tin or copper, or for surface treatment of stainless steel.
[0002]
[Prior art]
Currently, lead or a lead alloy is used as an anode for high-speed electroplating of a steel sheet. However, lead is relatively quickly consumed, and there are problems such as contamination of the plating solution by the dissolved lead and deterioration of the plating film. Various insoluble anodes using noble metal oxides as electrode active materials have been proposed as alternative anodes. However, in general, it is widely known that this type of electrode is capable of significantly dissolving or poisoning the active substance on the electrode surface when an organic substance is present in the electrolytic solution. In the field of electrolytic production of copper foil and tin plating, since organic substances are generally present in the electrolytic bath, the consumption rate of the electrode active material is fast and expensive despite the relatively low current density of 5 kA / m 2 or less. In order to use a noble metal as its active substance, its economy is never good.
[0003]
In order to solve this problem, Japanese Patent Laid-Open No. 3-240987 discloses that a base layer made of iridium oxide or tantalum oxide is formed on a conductive substrate, and an iridium oxide layer is provided on the base layer as necessary. An electrode provided with an oxide layer such as titanium oxide, tantalum oxide, tin oxide, zirconium oxide, etc. has been proposed for organic electrolysis resistance. However, titanium oxide, tantalum oxide, tin oxide, zirconium oxide, and the like have low electrical conductivity and very poor activity as a catalyst. In addition, since the composition differs from that of the underlayer, it is difficult to maintain adhesion over a long period of time. JP-A-2-194192 discloses, as an electrotin plating method, an insoluble anode comprising an iridium oxide and at least one oxide of titanium, tantalum, niobium, and tin in an electrolytic bath containing phenolsulfonic acid. A method to use is proposed. However, the composition and action of the oxide coating layer of the insoluble anode used here are not disclosed at all.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an organic substance present in an electrolytic bath, which is a problem in an insoluble anode for oxygen generation using a noble metal oxide as an electrode active substance, which has been studied mainly as an anode for electroplating or electrolytic metal foil production. It is to provide a long-life electrode by preventing the deterioration of the electrode active material due to.
[0005]
[Means for Solving the Problems]
According to the present invention, a conductive metal made of titanium or an alloy thereof is used as a base, and as a surface layer, at least one metal selected from iridium 40 to 95 atomic%, titanium, tantalum, niobium, and zirconium 5 to 30 atomic%. And an electrode active material coating layer of a mixed oxide composed of an oxide of each metal of 1 to 30 atomic percent of tin , and used in an electrolyte containing an organic substance. In addition, the above-mentioned anode for oxygen generation is provided in which the center line average roughness Ra of the surface of the conductive metal substrate is 3 to 8 μm. In addition, the oxygen generating anode is provided in which the electrolytic solution containing the organic substance is an electrotin plating bath.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As the conductive electrode substrate in the present invention, metal titanium or titanium-based alloys such as Ti—Ta, Ti—Ta—Nb, Ti—Pd are preferably used. The substrate may have any desired shape such as a plate shape, a perforated plate shape, a rod shape, or a net shape. Grit blasting, shot blasting or sand blasting is applied to the physical roughening of the metal substrate. As these blast materials, alumina, zirconia, silicon carbide, steel, sand and the like are used, and the particle diameter is suitably about 200 to 1000 μm. Next, roughening is performed by chemical treatment using oxalic acid, sulfuric acid, or the like. The surface roughness after the treatment is an important factor for the durability of the electrode. The center line average roughness Ra is 3 to 8 μm, preferably 4 to 6 μm, and the peak count Pc at that time is 40 About 60 / cm is desirable.
[0007]
Next, on the conductive substrate, electrochemically active iridium 40 to 95 atomic%, at least one metal selected from titanium, tantalum, niobium and zirconium 5 to 30 atomic% and tin 1 to An electrode active material coating layer (catalyst layer) made of a mixed oxide of oxides of 30 atomic% of each metal is provided. When the tin content is less than 1 atomic%, the durability against organic substances is lowered, and when the tin content exceeds 30 atomic%, the conductivity of the catalyst layer itself is remarkably lowered and the durability is also lowered. When iridium is less than 40 atomic%, the oxygen generation catalytic ability deteriorates, and when it exceeds 95 atomic%, the adhesion of the film is impaired.
[0008]
Conventionally used thermal decomposition methods, electrochemical oxidation methods, powder sintering methods, and the like can be applied as a method for forming the electrode active material coating layer, and the thermal decomposition method is preferred. That is, a mixed solution having a predetermined composition prepared by dissolving a metal salt such as stannous chloride, iridium chloride, titanium chloride, tantalum chloride, niobium chloride, zirconium oxychloride in a solvent such as ethyl alcohol or butyl alcohol is applied. . Next, drying is performed at 100 to 150 ° C. for several minutes, and thermal decomposition is performed at 350 to 550 ° C. for 10 to 20 minutes in an electric furnace in an air or oxygen atmosphere. The electrode of the present invention can be obtained by performing the above operation several times.
[0009]
A typical example of using the electrode of the present invention as an anode for oxygen generation is an electrotin plating bath. The tin plating bath contains p-phenolsulfonic acid or the like as a brightener, and an organic film is easily formed on a normal anode. When the oxygen generating anode of the present invention is used, tin oxide, which is one of the catalyst components, prevents the organic film from accumulating, so that it is effective in improving the electrode life.
[0010]
[Action]
Iridium oxide, which is an active substance forming the catalyst layer of the electrode of the present invention, is a heterogeneous redox reaction type oxygen generating catalyst, and is very excellent in catalytic activity for oxygen generation. Another component, tin oxide, is a radical reaction type oxygen generating catalyst and is hardly affected by organic substances. Further, by mixing an oxide of at least one metal selected from valve metals such as titanium, tantalum, niobium and zirconium, the strength of the catalyst layer is increased, and the surface roughness of the conductive substrate is set to a predetermined level. By keeping the range, the durability of the catalyst layer is improved. As a result, when used as an anode for oxygen generation in an electrolytic bath containing an organic material, electrolysis can be performed for a long time with a low oxygen overvoltage without being deteriorated by the organic material.
[0011]
【Example】
Next, the present invention will be specifically described with reference to Examples and Comparative Examples.
Examples 1-6, Comparative Examples 1-3
A commercially available titanium plate having a size of 50 mm × 10 mm × 1.5 mm t was degreased by ultrasonic cleaning in acetone. Next, using an alumina grid, blasting was performed on both surfaces of titanium at 4 kgf / cm 2 for about 10 minutes. Next, the titanium plate was chemically treated with 20 wt% sulfuric acid at 65 ° C. for 2 hours. This titanium plate was washed in running water all day and night and dried to use as an electrode substrate (the center line average roughness Ra of the obtained substrate surface is shown in Table 1). One compound selected from iridium acid chloride, tin chloride and butyl titanate, tantalum chloride, niobium chloride and zirconium oxychloride in a predetermined proportion corresponding to the composition ratio shown in Table 1 on the electrode substrate thus prepared. Were dissolved in butanol, and an electrode coating solution was prepared and applied. This was dried at 120 ° C. for 10 minutes and then baked in an electric furnace maintained at 500 ° C. for 20 minutes. This electrode active material coating operation was repeated 10 times to produce an electrode using 10 g / m 2 of iridium oxide as the active material in terms of metal iridium. For comparison, an electrode provided with an electrode active material coating layer having a composition in which the tin chloride shown in Table 1 was omitted, the composition in which the valve metal was omitted, and a composition ratio outside the scope of the present invention was prepared. In the film formation process by the thermal decomposition method shown above, it is generally known that a part of the tin compound is lost by evaporation or sublimation. Therefore, since the composition of the coating solution and the composition of the finally obtained film are different, the composition ratios of the obtained electrode active material coating layers were determined by fluorescent X-ray analysis and are shown in Table 1. These electrodes were used as a life test anode, with the tip portion of the catalyst coating layer remaining 10 × 10 mm and the other portions sealed.
[0012]
The electrode thus produced was subjected to an electrolytic life acceleration test. The bath temperature is 60 ° C., the bath composition is p-phenolsulfonic acid 80 g / L, stannous sulfate 40 g / L, pH 0.8 solution (PSA bath), metasulfonic acid 5 vol%, catechol 10 g / L, sulfuric acid first Two types of solutions of 40 g / L of tin and pH 0.8 (MSA bath) were used, and the bath had a flow rate of 2 m / sec. A zirconium plate was used for the cathode. Electrolytic process is a constant current electrolysis, the current density was set to 200A / dm 2. Five or more electrodes having the same specifications were produced, and the average value of electrode life was obtained. The time when the cell voltage increased by 5 V compared with the electrolysis start voltage of each electrode was defined as the electrode life. Table 1 shows the average electrode lifetime.
[0013]
[Table 1]
Figure 0003661924
[0014]
As is apparent from the results of the above Examples and Comparative Examples (Table 1), the electrode of the present invention exhibits a significantly long life in the electrolysis of a tin plating bath in the presence of an organic substance. In particular, the electrodes having Ra of 3 to 8 (Examples 1 to 4) show a life that is about four times longer than that of the comparative example.
[0015]
【The invention's effect】
While preventing the deterioration by the organic substance which exists in an electrolytic bath, it has the strong corrosion resistance and electrolytic oxidation resistance which it has, and favorable electroconductivity. Further, when the center line average roughness Ra of the surface of the conductive substrate is 3 to 8 μm, more favorable results are obtained in the adhesion between the electrode active layer and the substrate, the catalytic activity against oxygen generation, and the corrosion resistance against the electrolytic bath. The present invention is particularly useful as an anode during electrotin plating.

Claims (3)

チタン又はその合金からなる導電性金属を基体とし、表面層としてイリジウム40〜95原子%、チタン、タンタル、ニオブ、ジルコニウムから選ばれた少なくとも1種の金属5〜30原子%及び錫1〜30原子%の各金属の酸化物よりなる混合酸化物の電極活性物質被覆層を形成してなり、有機物を含んだ電解液中で使用されることを特徴とする酸素発生用陽極。A conductive metal made of titanium or an alloy thereof is used as a base, and as a surface layer, iridium is 40 to 95 atomic%, at least one metal selected from titanium, tantalum, niobium and zirconium is 5 to 30 atomic% and tin is 1 to 30 atoms An anode for generating oxygen , comprising an electrode active material coating layer of a mixed oxide composed of an oxide of each metal and used in an electrolyte containing an organic substance . 導電性金属基体表面の中心線平均粗さRaが3〜8μmである請求項1に記載の酸素発生用陽極。The anode for oxygen generation according to claim 1, wherein the center line average roughness Ra of the surface of the conductive metal substrate is 3 to 8 µm. 有機物含有電解液が電気錫メッキ浴である請求項1又は2に記載の酸素発生用陽極。The oxygen-generating anode according to claim 1 or 2, wherein the organic substance-containing electrolyte is an electrotin plating bath.
JP29140399A 1999-09-06 1999-09-06 Oxygen generating anode Expired - Lifetime JP3661924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29140399A JP3661924B2 (en) 1999-09-06 1999-09-06 Oxygen generating anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29140399A JP3661924B2 (en) 1999-09-06 1999-09-06 Oxygen generating anode

Publications (2)

Publication Number Publication Date
JP2001073197A JP2001073197A (en) 2001-03-21
JP3661924B2 true JP3661924B2 (en) 2005-06-22

Family

ID=17768455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29140399A Expired - Lifetime JP3661924B2 (en) 1999-09-06 1999-09-06 Oxygen generating anode

Country Status (1)

Country Link
JP (1) JP3661924B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102838191B (en) * 2012-09-27 2013-08-28 昆明理工大学 Method for preparing composite anode material
CN114592218A (en) * 2022-02-25 2022-06-07 广州鸿葳科技股份有限公司 Titanium-based anode and preparation method and application thereof
CN114774998A (en) * 2022-04-08 2022-07-22 西安泰金工业电化学技术有限公司 Preparation method of low-noble-metal Ir-Ta composite oxide coating anode

Also Published As

Publication number Publication date
JP2001073197A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
Zhang et al. Review of oxide coated catalytic titanium anodes performance for metal electrowinning
JP4554542B2 (en) Electrode for electrolysis
JPH0559580A (en) Electrode for electrolysis
JP2505563B2 (en) Electrode for electrolysis
JP7097042B2 (en) Electrode for chlorine generation
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JPH04231491A (en) Electric catalyzer cathode and its manufacture
JP2768904B2 (en) Oxygen generating electrode
JP3661924B2 (en) Oxygen generating anode
JP3212334B2 (en) Electrode substrate for electrolysis, electrode for electrolysis, and methods for producing them
JP3430479B2 (en) Anode for oxygen generation
US5665218A (en) Method of producing an oxygen generating electrode
JP6222121B2 (en) Method for producing insoluble electrode
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH0499294A (en) Oxygen generating anode and its production
JP3654204B2 (en) Oxygen generating anode
FI58657B (en) METALLANOD FOER ELECTROCHEMICAL PROCESSER
JPH02179891A (en) Anode for generate oxygen and production thereof
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JP6011996B2 (en) Electrode for electrolysis and method for producing electrode for electrolysis
JPH02282490A (en) Oxygen generating anode and production thereof
JP3941898B2 (en) Activated cathode and method for producing the same
JP3213833B2 (en) Electrolytic pickling method for stainless steel plate and electrode used for it
JP3067606B2 (en) Manufacturing method of anode for oxygen generation

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

R150 Certificate of patent or registration of utility model

Ref document number: 3661924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term