JP2722263B2 - Electrode for electrolysis and method for producing the same - Google Patents

Electrode for electrolysis and method for producing the same

Info

Publication number
JP2722263B2
JP2722263B2 JP1262942A JP26294289A JP2722263B2 JP 2722263 B2 JP2722263 B2 JP 2722263B2 JP 1262942 A JP1262942 A JP 1262942A JP 26294289 A JP26294289 A JP 26294289A JP 2722263 B2 JP2722263 B2 JP 2722263B2
Authority
JP
Japan
Prior art keywords
electrode
lead dioxide
platinum
coating layer
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1262942A
Other languages
Japanese (ja)
Other versions
JPH03126884A (en
Inventor
孝之 島宗
正生 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PERUMERETSUKU DENKYOKU KK
Original Assignee
PERUMERETSUKU DENKYOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PERUMERETSUKU DENKYOKU KK filed Critical PERUMERETSUKU DENKYOKU KK
Priority to JP1262942A priority Critical patent/JP2722263B2/en
Publication of JPH03126884A publication Critical patent/JPH03126884A/en
Application granted granted Critical
Publication of JP2722263B2 publication Critical patent/JP2722263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電解用電極とその製造方法、特に陽極酸化
反応を伴う電解用に使用する陽極酸化性能に優れた電解
用不溶性電極とその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to an electrode for electrolysis and a method for producing the same, and more particularly to an insoluble electrode for electrolysis having excellent anodic oxidation performance used for electrolysis accompanied by an anodic oxidation reaction, and production thereof. About the method.

(従来技術とその問題点) 電解反応に使用される不溶性電極としては、耐食性と
安定性に優れた炭素電極が古くから使用さてきた。しか
し該炭素電極は酸素発生反応用として使用すると、発生
する酸素が電極物質である炭素と結合し二酸化炭素とし
て徐々に消耗するという問題点があった。該問題点を解
決するために陽分極雰囲気で極めて安定で消耗が全く生
じない金属チタンの使用が提案され、その表面に白金等
のメッキを施し実質的に極めて安定な白金メッキ層を形
成して電解用電極として使用されるに至った。該電極は
電解初期の電位変動はあるものの、安定性、長寿命性、
取扱いの容易性の点から広く使用されるに至り今日でも
種々の用途に幅広く利用されている。
(Prior art and its problems) As an insoluble electrode used for an electrolytic reaction, a carbon electrode excellent in corrosion resistance and stability has been used for a long time. However, when the carbon electrode is used for an oxygen generation reaction, there is a problem that generated oxygen is combined with carbon as an electrode material and gradually consumed as carbon dioxide. In order to solve this problem, it has been proposed to use metal titanium which is extremely stable in a positively polarized atmosphere and does not cause any consumption, and the surface of which is plated with platinum or the like to form a substantially extremely stable platinum plating layer. It has been used as an electrode for electrolysis. Although the electrode has potential fluctuations at the beginning of electrolysis, it has stability, long life,
It has been widely used from the viewpoint of easy handling, and is still widely used for various applications even today.

一方1965年には主として金属チタンを基材としその表
面の白金族金属酸化物を主とする被覆を形成して成るい
わゆる寸法安定性電極が提案され、該電極は主体が導電
性酸化物であり極めて低い過電圧と安定性のためにソー
ダ電解工業をはじめとする電解工業の分野で広く使用さ
れるに至り、現在では工業メッキ、有機電解等において
も広く使用されている。
On the other hand, in 1965, a so-called dimensionally stable electrode was proposed, in which a coating mainly composed of titanium metal as a base material and a platinum group metal oxide on its surface was formed, and the electrode was mainly composed of a conductive oxide. Due to its extremely low overvoltage and stability, it has been widely used in the field of the electrolytic industry including the soda electrolytic industry, and is now widely used in industrial plating, organic electrolysis and the like.

更に安価な材料として鉛及び鉛合金電極が知られてお
り、工業電解特に工業メッキの分野で広く使用されてい
る。該鉛電極のやや不安定である欠点を解消したより安
定な材料として二酸化鉛を主とする電極が開発され、該
二酸化鉛電極は電解的に極めて安定でその消耗も殆どな
いことから連続電解プロセスや水処理用として極めて優
秀な性能を有している。
Lead and lead alloy electrodes are known as inexpensive materials, and are widely used in the field of industrial electrolysis, particularly industrial plating. An electrode mainly composed of lead dioxide has been developed as a more stable material which has solved the disadvantages of the lead electrode, which is somewhat unstable, and the lead dioxide electrode is extremely stable electrolytically and hardly consumed. It has extremely excellent performance for water and water treatment.

上述の各電解用不溶性電極は工業電解分野における各
用途に応じて該電極の性能を勘案し選択して使用されて
いる。
Each of the above-mentioned insoluble electrodes for electrolysis is selected and used in consideration of the performance of the electrode according to each application in the field of industrial electrolysis.

例えば前記白金族金属酸化物電極はソーダ電解におい
ては、安定性及び触媒能ともほぼ完全で更にガス発生の
過電圧が極めて小さい画期的な電極といえるが、この電
極は陽極酸化例えば3価のクロムを6価のクロム酸へ陽
極酸化するため及びその他の陽極酸化プロセス用電極と
しては、その触媒活性が低く、又水溶液電解では水電解
反応による酸素発生が主反応となってしまうため、陽極
酸化用電極としては不十分である。この他に炭素電極も
それ自身の陽極酸化触媒としての機能が不十分である。
For example, the platinum group metal oxide electrode can be said to be an epoch-making electrode having almost perfect stability and catalytic ability in soda electrolysis and extremely small overvoltage for gas generation. This electrode is anodized, for example, trivalent chromium. For anodizing to hexavalent chromic acid and as an electrode for other anodic oxidation processes, its catalytic activity is low, and in aqueous solution electrolysis, oxygen generation by water electrolysis reaction is the main reaction. It is not enough as an electrode. In addition, the carbon electrode itself has insufficient function as an anodic oxidation catalyst.

白金被覆を形成したチタン電極は水電解反応としての
過電圧が高く陽極酸化反応用として望ましい高電位に保
持できるが、陽極酸化反応の選択性に乏しく、例えば鉛
陽極と比較して工業クロムメッキ浴では同じ電流密度に
対する電解電位はより高く維持されるが、3価クロムを
6価のクロム酸へ酸化する能力は極めて小さいという問
題点がある。
A titanium electrode with a platinum coating has a high overvoltage as a water electrolysis reaction and can be maintained at a desirable high potential for anodic oxidation reaction, but has poor selectivity of anodic oxidation reaction, for example, in an industrial chrome plating bath as compared with a lead anode. Although the electrolytic potential for the same current density is kept higher, there is a problem that the ability to oxidize trivalent chromium to hexavalent chromic acid is extremely small.

しかしながら該鉛電極は優れた陽極酸化性能を有する
反面、陽極として使用した場合の消耗は数mg/AHであ
り、種々の鉛合金を検討して安定化を図っているが、白
金や白金族金属酸化物陽極に対して103〜105倍程度の消
耗があり、溶出した鉛が電解液中にスラッジとして滞留
したり、メッキの場合にはメッキ層自身を汚染してしま
う等の欠点がある。
However, while the lead electrode has excellent anodic oxidation performance, the consumption when used as an anode is several mg / AH, and various lead alloys have been studied for stabilization. It consumes about 10 3 to 10 5 times more than the oxide anode, and has the disadvantage that the eluted lead stays as sludge in the electrolytic solution or, in the case of plating, contaminates the plating layer itself. .

該鉛電極の特性を保持しながら消耗の少ない鉛系電極
として基体に、二酸化鉛を被覆した二酸化鉛電極が実用
化されている。この二酸化鉛電極は作製条件等にも依存
するが、使用時の消耗度は鉛や鉛合金電極の約千分の一
以下で耐食性にも優れ、連続運転をしている限り極めて
優れた性能を示す。ところが該二酸化鉛電極は通電を停
止した電解浴中に放置すると自身の浸漬電位が約1.6Vv
s.NHEあり、PbO2→Pb++となって溶出するという欠点を
有し、常に陽分極させて約1.8Vvs.NHE以上に保持しなけ
ればならないという欠点があり、連続プロセスでは驚く
ほど安定である反面、グラビアロールクロムメッキ等に
使用される短時間でオフオンを繰り返す場合には寿命が
大きく短縮化されてしまうという欠点がある。
A lead dioxide electrode in which a substrate is coated with lead dioxide has been put into practical use as a lead-based electrode which retains the characteristics of the lead electrode and is less consumed. Although this lead dioxide electrode depends on the manufacturing conditions, etc., the consumption during use is about one-thousandth or less than that of lead and lead alloy electrodes, it has excellent corrosion resistance, and extremely excellent performance as long as it is operated continuously. Show. However, when the lead dioxide electrode is left in an electrolytic bath in which the current is stopped, its immersion potential is about 1.6 Vv
s.NHE has the disadvantage of eluting as PbO 2 → Pb ++ , has the disadvantage that it must always be positively polarized and maintained at about 1.8 V vs. NHE or more, and is surprisingly stable in continuous processes On the other hand, when turning off and on in a short time used for gravure roll chrome plating or the like, there is a disadvantage that the life is greatly shortened.

(発明の目的) 本発明は、二酸化鉛電極の有する欠点、つまり通電停
止状態で溶出し易いという欠点を解消し、陽極酸化プロ
セス用として使用できる十分な酸化触媒活性と長期にわ
たる耐久性ならびに取扱いの容易性を有する不溶性電極
及びその製造方法を提供することを目的とする。
(Object of the Invention) The present invention solves the drawbacks of the lead dioxide electrode, that is, the drawback that it is easily eluted when the power is turned off, and provides sufficient oxidation catalyst activity and long-term durability and handling that can be used for an anodic oxidation process. An object of the present invention is to provide an insoluble electrode having ease and a method for manufacturing the same.

(問題点を解決するための手段) 本発明は、第1に弁金属又は弁金属合金基体表面に、
二酸化鉛被覆層を形成し、更に該二酸化鉛被覆層上に多
孔性白金保護層を被覆して成る電解用電極であり、第2
に弁金属又は弁金属合金基体表面に、複数の二酸化鉛被
覆層及び複数の多孔性白金保護層を交互に形成して成る
電解用電極であり、第3の弁金属又は弁金属合金基体表
面に電着により二酸化鉛被覆層を形成し、更に該被覆層
表面に多孔性白金保護層を形成することを特徴とする電
解用電極の製造方法である。
(Means for Solving the Problems) The present invention firstly provides a valve metal or valve metal alloy substrate with
An electrolytic electrode comprising a lead dioxide coating layer formed thereon, and a porous platinum protective layer coated on the lead dioxide coating layer;
An electrode for electrolysis comprising a plurality of lead dioxide coating layers and a plurality of porous platinum protective layers alternately formed on the surface of a valve metal or a valve metal alloy substrate. A method for producing an electrode for electrolysis, comprising forming a lead dioxide coating layer by electrodeposition, and further forming a porous platinum protective layer on the surface of the coating layer.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明は、二酸化鉛電極の陽極酸化反応に対する触媒
活性が高いという特徴を生かしながら、白金保護層によ
り前記二酸化鉛電極を保護することにより、二酸化鉛単
独の電極の場合には通電停止時に二酸化鉛が溶出し寿命
の大幅な短縮に繋がってしまうという欠点を解消しよう
とするものである。
The present invention protects the lead dioxide electrode with a platinum protective layer while taking advantage of the feature that the lead dioxide electrode has a high catalytic activity with respect to the anodic oxidation reaction. Is eluted, which leads to a drastic shortening of the service life.

本発明の電極の基体としては、いわゆる弁金属又は弁
金属を主とする合金を使用する。該弁金属又はその合金
の中で特に望ましいのは、取扱いの容易性、耐食性等の
点からチタン及びチタン合金であり、用途に応じてニオ
ブ、タンタル等の他の弁金属又はその合金を使用するこ
とができる。この基体の形状は、用途及び電解槽の構造
を考慮して、板状エクスパンドメッシュ、穴明板又は簾
状等から適宜選択され、特に好ましい基体形状は数百μ
m〜1mm程度の厚い二酸化鉛被覆層を保持できるように
エクスパンドメッシュ、穴明板又は簾状体の表面積の大
きい三次元形状である。
As the base of the electrode of the present invention, a so-called valve metal or an alloy mainly containing a valve metal is used. Among the valve metals or alloys thereof, titanium and titanium alloys are particularly desirable in terms of ease of handling and corrosion resistance, and other valve metals such as niobium and tantalum or alloys thereof are used depending on the application. be able to. The shape of the substrate is appropriately selected from a plate-like expanded mesh, a perforated plate, a blind, and the like in consideration of the application and the structure of the electrolytic cell.
It is a three-dimensional shape having a large surface area of an expanded mesh, a perforated plate or a blind so as to hold a lead dioxide coating layer having a thickness of about m to 1 mm.

この電極基体表面に直接あるいは前処理を行った後、
二酸化鉛被覆層を形成する。
After directly or pre-treating this electrode substrate surface,
Form a lead dioxide coating layer.

該基体の前処理法としては、プラスト処理による表面
積拡大、酸洗による表面活性化、及び硫酸水溶液等の電
解液中で陰分極を行い基体表面から水素ガスを発生させ
て表面洗浄を行いかつ該水素ガスにより一部生成する水
素化物による活性化を行う方法等がある。
As a pretreatment method of the substrate, the surface cleaning is performed by enlarging the surface area by plast treatment, activating the surface by pickling, and performing negative polarization in an electrolytic solution such as a sulfuric acid aqueous solution to generate hydrogen gas from the substrate surface. There is a method of activating by hydride partially generated by hydrogen gas.

更に前記基体表面に二酸化鉛等の電極物質を被覆する
前に、該基体表面に下地層を形成して前記二酸化鉛被覆
層と前記基体間の密着性を向上させあるいは不働態化を
防止するようにしてもよい。該下地層としては、チタン
−タンタル複合酸化物等の半導体酸化物、酸化スズ等の
導電性酸化物、白金金属単味及び酸化ルテニウム、酸化
イリジウム等の白金族金属又はその酸化物あるいは白金
等を添加した前記半導性酸化物、更にα型二酸化鉛等が
含まれる。例えば白金を含む前記チタン−タンタル複合
酸化物層を形成するには、塩化チタンと塩化タンタルの
混合塩酸水溶液に塩化白金酸をモル比で同一量になるよ
うに添加しそれを予め前処理した基体表面に塗布し乾燥
後、450〜600℃で焼き付けを行えばよい。白金単味や酸
化イリジウム、酸化ルテニウム、酸化スズの場合も同様
の熱分解法あるいは他の従来法で得ることができる。
Further, before coating the substrate surface with an electrode material such as lead dioxide, an underlayer is formed on the substrate surface to improve the adhesion between the lead dioxide coating layer and the substrate or to prevent passivation. It may be. As the base layer, a semiconductor oxide such as a titanium-tantalum composite oxide, a conductive oxide such as tin oxide, a platinum metal simple and ruthenium oxide, a platinum group metal such as iridium oxide or an oxide thereof or platinum or the like. The added semiconductive oxide, and α-type lead dioxide and the like are included. For example, in order to form the titanium-tantalum composite oxide layer containing platinum, a chlorinated chloroplatinic acid is added to a mixed hydrochloric acid aqueous solution of titanium chloride and tantalum chloride in the same amount in a molar ratio, and the pretreated substrate is added. After applying to the surface and drying, baking may be performed at 450 to 600 ° C. Platinum alone, iridium oxide, ruthenium oxide, and tin oxide can be obtained by the same thermal decomposition method or other conventional methods.

形成する下地層はα型二酸化鉛であることが望まし
く、該α型二酸化鉛上に後述するβ型二酸化鉛の被覆層
を形成すると基体−下地層−被覆層間の密着性がより向
上する。前記基体上に該α型二酸化鉛の下地層を形成す
るには、例えば苛性ソーダ水溶液に酸化鉛(PbO)を溶
解させた液中で30〜50℃の温度で0.1〜5A/dm2の電流密
度で電着を行えばよく、これにより1〜200μm程度の
厚さのα型二酸化鉛の被覆を形成することができる。
The underlying layer to be formed is desirably α-type lead dioxide. When a later-described β-type lead dioxide coating layer is formed on the α-type lead dioxide, the adhesion between the substrate, the underlying layer and the coating layer is further improved. To form the base layer of the α-type lead dioxide on the substrate, for example, a current density of 0.1 to 5 A / dm 2 at a temperature of 30 to 50 ° C. in a solution of lead oxide (PbO) dissolved in an aqueous solution of caustic soda. The electrodeposition may be performed by the above method, whereby a coating of α-type lead dioxide having a thickness of about 1 to 200 μm can be formed.

次に前記基体又は下地層上に二酸化鉛被覆層を形成す
る。二酸化鉛にはα型二酸化鉛とβ型二酸化鉛の2種類
があるが、電解時の耐食性と安定性の点からβ型二酸化
鉛が優れている。
Next, a lead dioxide coating layer is formed on the base or underlayer. There are two types of lead dioxide, α-type lead dioxide and β-type lead dioxide, and β-type lead dioxide is superior in terms of corrosion resistance and stability during electrolysis.

この二酸化鉛粉末を前記基体上又は該基体上に形成さ
れた下地層上に被覆するには電着法を使用することが好
ましい。
In order to coat the lead dioxide powder on the substrate or the underlayer formed on the substrate, it is preferable to use an electrodeposition method.

該電着法による二酸化鉛被覆層の形成は常法に従って
行えばよく、例えば濃度200g/から飽和までの硝酸鉛
水溶液中、温度40〜80℃、電流密度0.2〜10A/dm2で陽分
極することにより得ることができる。被覆の厚さは用途
に応じて決定すればよく、望ましくは10〜500μm程度
とする。単一の操作で所望の厚さが得られない場合は、
電着を複数回繰り返せばよい。
The formation of the lead dioxide coating layer by the electrodeposition method may be performed according to a conventional method.For example, in a lead nitrate aqueous solution having a concentration of 200 g / to saturation, it is anodic polarized at a temperature of 40 to 80 ° C. and a current density of 0.2 to 10 A / dm 2. Can be obtained. The thickness of the coating may be determined according to the application, and is desirably about 10 to 500 μm. If the desired thickness is not obtained in a single operation,
Electrodeposition may be repeated several times.

次いで該二酸化鉛被覆層の表面に多孔性の白金保護層
を形成する。該白金保護層の形成法は特に限定されない
が、無電解メッキ、電気メッキ等の電気化学的方法や熱
分解法で形成することができる。電気化学的方法で厚さ
1μm以下の白金層を形成すると該白金層は多孔層にな
ることが知られている。無電解メッキにより白金保護層
を形成するには、例えば還元剤と白金塩を含む溶液を前
記二酸化鉛被覆層表面に塗布し該表面において前記白金
塩を還元して白金層を形成することができる。但しこの
方法によると使用する還元剤により前記二酸化鉛被覆層
の二酸化鉛が還元されて低次の鉛酸化物に変換されるこ
とがあるので取扱いに注意する必要がある。又電気メッ
キとしては、シアン法その他の方法がある。代表的に
は、シアン化白金5〜15g/、シアン化カリウム5〜15
g/及びリン酸二水素カリウム10〜30g/を含むシアン
液を電解液とし室温〜60℃で0.2〜10A/dm2程度の電流密
度で前記浴を撹拌しながらメッキを行うようにする。通
常この種のメッキでは、電流効率は70〜800%に達する
が、多孔性白金保護層を生成するという本発明の目的の
ためには電流密度を僅かに高く例えば1〜5A/dm2程度に
したりありは電着液中の白金含有量を若干低くすること
により、電流効率を50%程度に抑えることが好ましい。
Next, a porous platinum protective layer is formed on the surface of the lead dioxide coating layer. The method for forming the platinum protective layer is not particularly limited, but it can be formed by an electrochemical method such as electroless plating or electroplating or a thermal decomposition method. It is known that when a platinum layer having a thickness of 1 μm or less is formed by an electrochemical method, the platinum layer becomes a porous layer. In order to form a platinum protective layer by electroless plating, for example, a solution containing a reducing agent and a platinum salt can be applied to the surface of the lead dioxide coating layer, and the platinum salt can be reduced on the surface to form a platinum layer. . However, according to this method, it is necessary to be careful in handling since the lead dioxide of the lead dioxide coating layer may be reduced and converted into a lower-order lead oxide depending on the reducing agent used. As the electroplating, there are a cyan method and other methods. Typically, platinum cyanide 5 to 15 g /, potassium cyanide 5 to 15
g / and 10 to 30 g / potassium dihydrogen phosphate are used as an electrolytic solution, and plating is performed while stirring the bath at a current density of about 0.2 to 10 A / dm 2 at room temperature to 60 ° C. Usually, in this type of plating, the current efficiency reaches 70 to 800%, but for the purpose of the present invention to produce a porous platinum protective layer, the current density is slightly higher, for example, about 1 to 5 A / dm 2. In some cases, it is preferable to suppress the current efficiency to about 50% by slightly lowering the platinum content in the electrodeposition solution.

一方熱分解法により多孔性白金保護層を形成すること
もできる。
On the other hand, the porous platinum protective layer can be formed by a thermal decomposition method.

熱分解法による白金被覆形成は従来から行われている
方法であるが、電着法と比較して基体への白金の付着性
が良好でかつ薄く均一な被覆を形成できるという特徴が
ある。熱分解条件は基体上に形成した二酸化鉛被覆層の
二酸化鉛の分解が生じない限り特に限定されず形成され
る白金保護層と前記二酸化鉛被覆層との強固な附着性を
確保するため350℃程度以上の温度を加えることが望ま
しい。二酸化鉛の安定領域は290℃以下であり、それ以
上の温度では酸素を放出してPbO2→PbO、Pb2O3といった
低次の鉛酸化物に還元される恐れがあり、この還元を回
復するために更に化学酸化処理を行うことが望ましい。
典型的には、塩化白金酸のブタノール及び脱イオン水溶
液に前記二酸化鉛被覆層が形成された基体を浸漬しある
いは該基体に前記液を塗布し350〜600℃の温度望ましく
は原材料にもよるが450〜550℃の温度で焼成し熱分解を
行い、被覆を作製する。該被覆を次亜塩素酸ナトリウ
ム、リン酸水素ナトリウム等比較的強力な酸化剤の水溶
液に室温で2〜30分間浸漬して酸化処理を行う。この処
理によっても白金は酸化されずに金属状態で保持され、
加熱によりPbO2→PbO、Pb2O3に一部転化されていた鉛酸
化物が元の二酸化鉛に戻る。
The formation of a platinum coating by a thermal decomposition method is a conventional method, but is characterized in that platinum has good adhesion to a substrate and a thin uniform coating can be formed as compared with the electrodeposition method. The thermal decomposition conditions are not particularly limited as long as the lead dioxide of the lead dioxide coating layer formed on the substrate does not decompose, and the temperature is 350 ° C. in order to ensure strong adhesion between the formed platinum protective layer and the lead dioxide coating layer. It is desirable to apply a temperature higher than about. The stable region of lead dioxide is below 290 ° C, and at temperatures higher than that, oxygen may be released and reduced to lower-order lead oxides such as PbO 2 → PbO and Pb 2 O 3. For this purpose, it is desirable to further perform a chemical oxidation treatment.
Typically, the substrate on which the lead dioxide coating layer is formed is immersed in an aqueous solution of chloroplatinic acid butanol and deionized water, or the liquid is applied to the substrate, and the temperature is 350 to 600 ° C., preferably depending on the raw materials. It is calcined at a temperature of 450 to 550 ° C and pyrolyzed to produce a coating. The coating is oxidized by immersing the coating in an aqueous solution of a relatively strong oxidizing agent such as sodium hypochlorite and sodium hydrogen phosphate at room temperature for 2 to 30 minutes. This treatment also keeps the platinum in a metallic state without being oxidized,
The lead oxide partially converted into PbO 2 → PbO and Pb 2 O 3 by heating returns to the original lead dioxide.

該熱分解法による1回の操作では所望の厚さの白金保
護層が得られない場合には、複数回熱分解操作を繰り返
すことが好ましい。
When a platinum protective layer having a desired thickness cannot be obtained by one operation using the thermal decomposition method, it is preferable to repeat the thermal decomposition operation a plurality of times.

(実施例) 次に本発明方法による電解用電極の製造方法の実施例
を記載するが、該実施例は本発明を限定するものではな
い。
(Example) Next, an example of a method for producing an electrode for electrolysis according to the method of the present invention will be described. However, the example does not limit the present invention.

実施例1 チタン製の厚さ1.5mmのロール掛けしたエクスパンド
メッシュを基体とし、該基体をグリッドブラストでその
表面を粗面化した後、80℃の25%硫酸で6時間酸洗を行
った。この基体の表面に、チタン、タンタル及び白金を
それぞれ40、10及び50モル%含むTiCl4、TaCl5、H2PtCl
6及びHClから成る水溶液を塗布液として塗布し、空気を
流通させたマッフル炉中で520℃で15分間焼成を行っ
た。この操作を4回繰り返して白金に換算して0.5g/m2
−チタンの厚さのチタン−タンタル酸化物及び白金から
成る被覆を形成した。
Example 1 A rolled expanded mesh made of titanium and having a thickness of 1.5 mm was used as a substrate. The surface of the substrate was roughened by grid blasting, followed by pickling with 80% 25% sulfuric acid for 6 hours. TiCl 4 , TaCl 5 , H 2 PtCl containing 40 , 10 and 50 mol% of titanium, tantalum and platinum respectively on the surface of this substrate
An aqueous solution composed of 6 and HCl was applied as a coating solution, and baked at 520 ° C. for 15 minutes in a muffle furnace with air flow. Repeat this operation four times and convert to platinum 0.5g / m 2
Forming a coating of titanium-tantalum oxide and platinum of titanium thickness;

この基体を、酸化鉛を飽和させた25%苛性ソーダ水溶
液中40℃で電流密度1A/dm2にて1時間陽分極し、これに
より前記メッシュ状基体の前面に黒色のα型二酸化鉛の
被覆を形成した。
This substrate was anodic polarized in a 25% aqueous sodium hydroxide solution saturated with lead oxide at 40 ° C. at a current density of 1 A / dm 2 for 1 hour, whereby a black α-type lead dioxide coating was formed on the front surface of the mesh-like substrate. Formed.

更に400g/の硝酸鉛水溶液を電解液とし少量の硝酸
を添加してpH≦1とした後、該電解液を60〜70℃に保持
して電流密度4A/dm2にて2時間陽分極して電着を行っ
た。これにより金属光沢を有する黒灰色のβ型二酸化鉛
の被覆層が得られた。
Further, an aqueous solution of 400 g / lead nitrate was used as an electrolyte, a small amount of nitric acid was added to adjust the pH to ≤1, the electrolyte was maintained at 60 to 70 ° C., and anodic polarized at a current density of 4 A / dm 2 for 2 hours. Electrodeposition. As a result, a black-gray β-type lead dioxide coating layer having a metallic luster was obtained.

この基体に、市販の白金メッキ液中で電流密度2A/dm2
で3分間電着を行ったところ表面が白色になった。なお
この際の重量変化から電流効率は約30%であり、約1μ
mの白金保護層の被覆が形成されたことになる。
The substrate was charged with a current density of 2 A / dm 2 in a commercially available platinum plating solution.
When the electrodeposition was performed for 3 minutes, the surface became white. The current efficiency is about 30% from the weight change at this time, and about 1 μm.
This means that m of the platinum protective layer has been formed.

この表面に更に前述した条件でβ型二酸化鉛の被覆を
行い、更に前述と同じ条件で白金保護層を形成した。
The surface was further coated with β-type lead dioxide under the conditions described above, and a platinum protective layer was further formed under the same conditions as described above.

このようにして作製した電極をサージェント浴クロム
メッキ用陽極として供試し、30A/dm2の電流密度で30時
間連続運転を行ったところ、3価のクロムは1.7g/に
保持され、二酸化鉛被覆電極と実質的な差のないことが
判った。この電極及び二酸化鉛被覆電極を前記クロムメ
ッキ浴中に200時間電流を通じない状態で放置したとこ
ろ、二酸化鉛電極はクロム酸鉛が表面に生成して黄色く
なると共に体積が膨脹して基体からの剥離が生じたのに
対し、本実施例の電極では、剥離が殆ど見られなかっ
た。
The electrode prepared in this manner was used as an anode for chromium plating in a surge bath, and was continuously operated at a current density of 30 A / dm 2 for 30 hours. As a result, trivalent chromium was maintained at 1.7 g / and lead dioxide coating was performed. It was found that there was no substantial difference from the electrodes. When this electrode and the lead dioxide-coated electrode were left in the chromium plating bath for 200 hours without passing an electric current, the lead dioxide electrode was yellowed due to the formation of lead chromate on the surface and the volume expanded, and the lead dioxide electrode was separated from the substrate. In contrast, peeling was hardly observed in the electrode of this example.

実施例2 実施例1で作製した電極を流通空気中300℃で1時間
加熱した。この電極をサージェント浴のクロムメッキ液
に浸漬したが450時間後にも被覆層の剥離は見られなか
った。
Example 2 The electrode prepared in Example 1 was heated at 300 ° C. for 1 hour in flowing air. This electrode was immersed in a chromium plating solution in a Sargent bath, but no peeling of the coating layer was observed even after 450 hours.

実施例3 実施例1と同様にして基体を作製し、前処理を行い、
更にα型二酸化鉛、β型二酸化鉛の被覆を形成した後、
白金に換算して10g/の塩化白金酸のブタノール水溶液
を前記基体表面に塗布し空気を流通させたマッフル炉中
450℃で10分間加熱した。この塗布及び加熱操作を3回
繰り返した後に更にβ型二酸化鉛被覆を形成し、再び3
回の白金の熱分解による白金保護層の形成を行った。
Example 3 A substrate was prepared and pretreated in the same manner as in Example 1,
Furthermore, after forming a coating of α-type lead dioxide and β-type lead dioxide,
In a muffle furnace in which a 10 g / chlorobutanoic acid aqueous solution of butanol in chloroplatinic acid was applied to the surface of the substrate in terms of platinum and air was passed through.
Heated at 450 ° C. for 10 minutes. After repeating this coating and heating operation three times, a β-type lead dioxide coating was further formed, and
A platinum protective layer was formed by thermal decomposition of platinum several times.

このように作製した電極を実施例1と同様にサージェ
ント浴クロムメッキ条件で評価したところ、30時間のク
ロムメッキでは3価のクロム濃度が2.4g/であり、白
金のみの場合の8g/より遥かに低く、実用上全く問題
はなく、電流を流さずに300時間メッキ液中に浸漬して
も全く問題は生じなかった。
The electrode thus fabricated was evaluated under the conditions of chromium plating in a surge bath in the same manner as in Example 1. The concentration of trivalent chromium was 2.4 g / in chromium plating for 30 hours, far exceeding 8 g / in the case of platinum alone. There was no problem in practical use, and no problem occurred even when immersed in the plating solution for 300 hours without passing current.

実施例4 実施例3で作製した電極の表面に一部形成していいる
と思われるPbO又はPb2O3を二酸化鉛に戻すため12%の次
亜塩素酸ナトリウム液中60℃で30分間処理し水洗後、乾
燥した。この電極をサージェント浴クロムメッキ条件で
評価したところ、30時間のクロムメッキでは3価のクロ
ム濃度が1.7g/であり、二酸化鉛電極と全く変わら
ず、又300時間メッキ液中に浸漬しても全く問題は生じ
なかった。
Example 4 In order to convert PbO or Pb 2 O 3 supposed to be partially formed on the surface of the electrode prepared in Example 3 into lead dioxide, treatment was performed at 60 ° C. for 30 minutes in a 12% sodium hypochlorite solution. After washing with water, it was dried. When this electrode was evaluated under the conditions of chromium plating in a Sargent bath, the chromium concentration of trivalent was 1.7 g / in chromium plating for 30 hours, which was no different from that of a lead dioxide electrode, and was immersed in a plating solution for 300 hours. No problem arose.

(発明の効果) 本発明に係わる電解用電極は、弁金属又は弁金属合金
基体表面に、二酸化鉛被覆層を形成し、更に該二酸化鉛
被覆層上に多孔性白金保護層を被覆して成る電解用電極
であり、前記二酸化鉛被覆層と白金保護層とはそれぞれ
複数層を交互に形成してもよい。
(Effect of the Invention) The electrode for electrolysis according to the present invention is formed by forming a lead dioxide coating layer on the surface of a valve metal or valve metal alloy substrate, and further coating a porous platinum protective layer on the lead dioxide coating layer. It is an electrode for electrolysis, and the lead dioxide coating layer and the platinum protective layer may be formed by alternately forming a plurality of layers.

安定性に優れた従来の白金族金属酸化物電極は陽極酸
化を促進する触媒活性能力に欠け、一方陽極酸化を促進
できる従来の二酸化鉛電極は特に通電停止時における自
身の溶出を抑制できずオンオフを繰り返す電解やメッキ
等に使用すると寿命の大幅な短縮を回避することができ
なかった。
Conventional platinum group metal oxide electrodes with excellent stability lack catalytic activity to promote anodic oxidation, whereas conventional lead dioxide electrodes, which can promote anodic oxidation, cannot suppress their elution, especially when power is turned off, and are turned on and off. When used for electrolysis, plating, and the like in which repetition is repeated, it was not possible to avoid a drastic shortening of the life.

これに対し本発明に係わる電解用電極では、陽極酸化
を促進する二酸化鉛が非通電時に溶出するという問題点
が、該二酸化鉛被覆層上に白金保護層を被覆することに
より解決され、二酸化鉛の有する陽極酸化の促進する触
媒活性能力と白金の有する耐溶出性が相俟って、本発明
によると二酸化鉛の陽極酸化能力を保持したまま通電停
止時等における該二酸化鉛の溶出が抑制され、電極活性
及び耐食性に優れた電解用電極を提供することが可能に
なる。
On the other hand, in the electrode for electrolysis according to the present invention, the problem that lead dioxide that promotes anodic oxidation elutes when electricity is not supplied is solved by coating the lead dioxide coating layer with a platinum protective layer. According to the present invention, the catalytic activity ability of accelerating the anodic oxidation and the elution resistance of platinum are combined, and according to the present invention, the elution of the lead dioxide is suppressed when the power supply is stopped while maintaining the anodic oxidation ability of the lead dioxide. It is possible to provide an electrode for electrolysis excellent in electrode activity and corrosion resistance.

又本発明方法により前記された電解用電極も同様に電
極活性及び耐食性に優れた電極であり、クロムメッキ等
の陽極酸化反応を効果的に行うことができる。
Further, the electrode for electrolysis described above according to the method of the present invention is also an electrode having excellent electrode activity and corrosion resistance, and can effectively perform an anodic oxidation reaction such as chromium plating.

更に基体と二酸化鉛被覆層間に下地層を形成すると該
基体と被覆層間の密着性が向上して被覆層の剥離が防止
することができ、より耐食性に優れた電極を提供するこ
とができる。
Further, when an underlayer is formed between the substrate and the lead dioxide coating layer, the adhesion between the substrate and the coating layer is improved, the peeling of the coating layer can be prevented, and an electrode having more excellent corrosion resistance can be provided.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁金属又は弁金属合金基体表面に、二酸化
鉛被覆層を形成し、更に該二酸化鉛被覆層上に多孔性白
金保護層を被覆して成る電解用電極。
1. An electrode for electrolysis comprising a lead dioxide coating layer formed on the surface of a valve metal or valve metal alloy substrate, and a porous platinum protective layer coated on the lead dioxide coating layer.
【請求項2】基体と二酸化鉛被覆層間に下地層を形成し
た請求項1に記載の電解用電極。
2. The electrode according to claim 1, wherein an underlayer is formed between the substrate and the lead dioxide coating layer.
【請求項3】弁金属又は弁金属合金基体表面に、複数の
二酸化鉛被覆層及び複数の多孔性白金保護層を交互に形
成して成る電解用電極。
3. An electrode for electrolysis comprising a plurality of lead dioxide coating layers and a plurality of porous platinum protective layers alternately formed on the surface of a valve metal or valve metal alloy substrate.
【請求項4】弁金属又は弁金属合金基体表面に電着によ
り二酸化鉛被覆層を形成し、更に該被覆層表面に多孔性
白金保護層を形成することを特徴とする電解用電極の製
造方法。
4. A method for producing an electrode for electrolysis, comprising: forming a lead dioxide coating layer on the surface of a valve metal or valve metal alloy substrate by electrodeposition; and forming a porous platinum protective layer on the surface of the coating layer. .
【請求項5】二酸化鉛被覆層の表面に、電着又は無電解
メッキ法により多孔性白金保護層を形成する請求項4に
記載の方法。
5. The method according to claim 4, wherein a porous platinum protective layer is formed on the surface of the lead dioxide coating layer by electrodeposition or electroless plating.
【請求項6】二酸化鉛被覆層の表面に、白金塩含有液を
塗布し熱分解により白金保護層を形成する請求項4に記
載の方法。
6. The method according to claim 4, wherein a platinum salt-containing solution is applied to the surface of the lead dioxide coating layer, and a platinum protective layer is formed by thermal decomposition.
【請求項7】熱分解の後に、化学酸化処理を行う請求項
6に記載の方法。
7. The method according to claim 6, wherein a chemical oxidation treatment is performed after the thermal decomposition.
JP1262942A 1989-10-11 1989-10-11 Electrode for electrolysis and method for producing the same Expired - Lifetime JP2722263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262942A JP2722263B2 (en) 1989-10-11 1989-10-11 Electrode for electrolysis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262942A JP2722263B2 (en) 1989-10-11 1989-10-11 Electrode for electrolysis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03126884A JPH03126884A (en) 1991-05-30
JP2722263B2 true JP2722263B2 (en) 1998-03-04

Family

ID=17382709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262942A Expired - Lifetime JP2722263B2 (en) 1989-10-11 1989-10-11 Electrode for electrolysis and method for producing the same

Country Status (1)

Country Link
JP (1) JP2722263B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749465A (en) * 1994-02-03 1998-05-12 Kabushikigaisha Daiwa Riken Kogyo Container
JP3201316B2 (en) * 1997-10-24 2001-08-20 三菱電機株式会社 Electrolytic ozone generator and electrolytic ozone generator
JP5931184B2 (en) 2012-04-19 2016-06-08 パナソニックヘルスケアホールディングス株式会社 Sensor storage container
JP7119778B2 (en) * 2018-08-30 2022-08-17 株式会社大阪ソーダ Electrodes for electroplating

Also Published As

Publication number Publication date
JPH03126884A (en) 1991-05-30

Similar Documents

Publication Publication Date Title
US4331528A (en) Coated metal electrode with improved barrier layer
JP3810043B2 (en) Chrome plating electrode
US4941953A (en) Durable electrodes having a plated tinor tin oxide intermediate layer for electrolysis and process for producing the same
FI75872C (en) Electrode for use in an electrochemical cell and its preparation
JP7097042B2 (en) Electrode for chlorine generation
JPH04231491A (en) Electric catalyzer cathode and its manufacture
JPH0310099A (en) Insoluble electrode for electroplating and production thereof
KR910000916B1 (en) Method of electrolytic treatment of metals
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
US5665218A (en) Method of producing an oxygen generating electrode
JP2885913B2 (en) Anode for chromium plating and method for producing the same
JP2023095833A (en) Electrode for chlorine generation
JPH0257159B2 (en)
JP4115575B2 (en) Activated cathode
JPH0499294A (en) Oxygen generating anode and its production
JP3654204B2 (en) Oxygen generating anode
JP2722262B2 (en) Electrode for electrolysis and method for producing the same
JPH02179891A (en) Anode for generate oxygen and production thereof
JP4299253B2 (en) Hexavalent chromium plating method
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
SU537125A1 (en) Electrode for electrolysis of an alkali aqueous solution and method for its manufacture
JPH0559999B2 (en)
JPH10330998A (en) Electroplating method
JPS6147231B2 (en)
JPH01100291A (en) Chromium plating method