JP6222121B2 - Method for producing insoluble electrode - Google Patents

Method for producing insoluble electrode Download PDF

Info

Publication number
JP6222121B2
JP6222121B2 JP2015009277A JP2015009277A JP6222121B2 JP 6222121 B2 JP6222121 B2 JP 6222121B2 JP 2015009277 A JP2015009277 A JP 2015009277A JP 2015009277 A JP2015009277 A JP 2015009277A JP 6222121 B2 JP6222121 B2 JP 6222121B2
Authority
JP
Japan
Prior art keywords
insoluble electrode
coating layer
substrate
electrode
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015009277A
Other languages
Japanese (ja)
Other versions
JP2016132813A (en
Inventor
ジュシン トウ
ジュシン トウ
俊男 堀江
俊男 堀江
学 北原
学 北原
哲 大砂
哲 大砂
敬一郎 大石
敬一郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015009277A priority Critical patent/JP6222121B2/en
Publication of JP2016132813A publication Critical patent/JP2016132813A/en
Application granted granted Critical
Publication of JP6222121B2 publication Critical patent/JP6222121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、水等の電気分解や電気防食に用いられるアノード等となり得る不溶性電極と、その製造方法に関する。   The present invention relates to an insoluble electrode that can be used as an anode or the like used for electrolysis of water or the like and cathodic protection, and a method for producing the same.

酸素、水素または塩素等の気体、ナトリウム(Na)、アルミニウム(Al)または銅(Cu)等の金属など、多くの物質が電気分解により生産される。電気分解は、化合物に電圧を印加し、電気化学的な酸化還元反応によりその化合物を分解する方法であるが、用いる電極の種類(材質)によって、その耐久性は勿論、生成物や投入エネルギーに対する収率等も異なる。このため、電極材の選択は電気分解を行う際に重要である。   Many substances are produced by electrolysis, such as gases such as oxygen, hydrogen or chlorine, metals such as sodium (Na), aluminum (Al) or copper (Cu). Electrolysis is a method in which a voltage is applied to a compound and the compound is decomposed by an electrochemical oxidation-reduction reaction. Yields etc. are also different. For this reason, selection of an electrode material is important when performing electrolysis.

例えば、工業的に多用されている炭素(C)電極は、安価であるが、消耗し易く定期的な交換が必要となる。白金(Pt)電極や金(Au)電極は、耐久性に優れるものの、高価であり利用が限られる。そこで、それらと異なる材質からなる電極が下記の特許文献で提案されている。   For example, carbon (C) electrodes that are widely used industrially are inexpensive, but are easily consumed and require periodic replacement. Platinum (Pt) electrodes and gold (Au) electrodes are excellent in durability, but are expensive and have limited use. Therefore, an electrode made of a material different from them is proposed in the following patent document.

特開2014−80668号公報JP 2014-80668 A 特開2012−94509号公報JP 2012-94509 A

特許文献1は、Co−Ti−P(−Fe)からなる不溶性電極を提案している。特許文献2は、不溶性電極ではないが、金属空気電池の負極に用いられる複合電極材を提案している。この複合電極材は、具体的にいうと、直径:150nm、繊維長:10〜20μmの(中空)繊維状炭素の表面に、鉄錯体化合物を含む有機溶剤を用いた溶液重合方法により、D90 が50nm以下となる酸化鉄粒子(Fe微粒子)を担持させたものである。なお、金属空気電池用負極は、その複合電極材を結着材で固化したペレットを、ステンレスメッシュで挟持してなり、鉄酸化物(Fe)を負極活物質としたものである。 Patent Document 1 proposes an insoluble electrode made of Co—Ti—P (—Fe). Patent Document 2 proposes a composite electrode material that is not an insoluble electrode but is used for a negative electrode of a metal-air battery. The composite electrode material, Specifically, diameter: 150 nm, fiber length: the (hollow) surface of the fibrous carbon of 10 to 20 [mu] m, by a solution polymerization method using an organic solvent containing an iron complex compound, D 90 In which iron oxide particles (Fe 3 O 4 fine particles) having a particle size of 50 nm or less are supported. In addition, the negative electrode for metal-air batteries is obtained by sandwiching a pellet obtained by solidifying the composite electrode material with a binder, and using iron oxide (Fe 3 O 4 ) as a negative electrode active material.

特許文献2では、繊維状炭素の表面にFe微粒子を担持させるために、合成、固液分離、固相乾燥等の複雑で煩雑な工程を必要としている。また、このような製法で得られる複合電極材は、Fe微粒子が繊維状炭素の表面に点在したものに過ぎず、繊維状炭素の表面に対するFe微粒子の結着力も弱い。 In Patent Document 2, in order to support Fe 3 O 4 fine particles on the surface of fibrous carbon, complicated and complicated processes such as synthesis, solid-liquid separation, and solid-phase drying are required. Moreover, the composite electrode material obtained by such a manufacturing method is merely a thing in which Fe 3 O 4 fine particles are scattered on the surface of fibrous carbon, and the binding force of Fe 3 O 4 fine particles to the surface of fibrous carbon is also weak. .

本発明は、このような事情に鑑みて為されたものであり、従来の電極等とは異なる新たな構造を有する不溶性電極およびその製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the insoluble electrode which has a new structure different from the conventional electrode etc., and its manufacturing method.

本発明者はこの課題を解決すべく鋭意研究し試行錯誤を重ねた結果、有機酸(イオン)を含む鉄塩溶液中で電析して得られた鉄めっき膜を熱処理することにより、Feナノ粒子(さらにはFe)からなる被覆層が形成され、この被覆層が高い酸素発生活性を示すことを新たに見出した。この成果を発展させることにより、以降に述べる種々の発明を完成させるに至った。 As a result of intensive research and trial and error to solve this problem, the inventor of the present invention heat treated an iron plating film obtained by electrodeposition in an iron salt solution containing an organic acid (ion), thereby forming Fe 3 It was newly found that a coating layer composed of O 4 nanoparticles (and Fe) was formed, and this coating layer exhibited high oxygen generation activity. By developing this result, various inventions described below have been completed.

《不溶性電極》
(1)本発明の不溶性電極は、導電性を有する基材と、該基材の少なくとも一部の表面である被覆面に形成された被覆層と、からなる不溶性電極であって、前記被覆層は、Feからなる酸化鉄粒子を最表面に有し、該酸化鉄粒子は、平均粒径が300nm以下であることを特徴とする。
<Insoluble electrode>
(1) The insoluble electrode of the present invention is an insoluble electrode comprising a conductive substrate and a coating layer formed on a coating surface which is at least a part of the surface of the substrate, and the coating layer Has iron oxide particles made of Fe 3 O 4 on the outermost surface, and the iron oxide particles have an average particle size of 300 nm or less .

(2)本発明の不溶性電極は、導電性(低抵抗率)、不溶性(耐久性または耐食性)等に優れ、高い触媒機能(活性化エネルギーの低減機能)も発現し得る。また、本発明の不溶性電極は、酸化鉄および/または鉄からなるため安価であり、種々の工業製品に利用できる。例えば、本発明の不溶性電極からなるアノードを用いて、水または水溶液の電気分解を行うと、大きな酸素発生電流(密度)が得られ、酸素を低コストで高効率で生産できる。 (2) The insoluble electrode of the present invention is excellent in conductivity (low resistivity), insolubility (durability or corrosion resistance), etc., and can exhibit a high catalytic function (function of reducing activation energy). The insoluble electrode of the present invention is inexpensive because it is made of iron oxide and / or iron, and can be used for various industrial products. For example, when an anode comprising an insoluble electrode of the present invention is used to electrolyze water or an aqueous solution, a large oxygen generation current (density) can be obtained, and oxygen can be produced at low cost and high efficiency.

本発明の不溶性電極が高導電性(高活性)であると共に不溶性である理由は、必ずしも定かではないが、次のように考えられる。Feが、Fe2+とFe3+を含み、Fe2+とFe3+との間で、原子価間の電荷が移動するため、高い導電率を示す。またFe粒子は緻密で基材に密着しているため耐食性が高くなっている。 The reason why the insoluble electrode of the present invention is highly conductive (highly active) and insoluble is not necessarily clear, but is considered as follows. Fe 3 O 4 comprises a Fe 2+ and Fe 3+, between Fe 2+ and Fe 3+, the charge between valence moves, exhibit high conductivity. The Fe 3 O 4 particles corrosion is high because of the close contact with the dense substrate.

《不溶性電極の製造方法》
(1)不溶性電極の製造方法は種々考えられるが、例えば、次のような本発明の製造方法が好適である。すなわち、鉄イオンと、有機酸または有機酸イオンとを含む処理液中に導電性を有する基材を浸漬して該基材へ通電することにより該基材の少なくとも一部の表面に鉄を含む析出層を形成する電析工程と、該電析工程後の基材を250〜400℃に加熱して析出層中にFe を生成させる熱処理工程とを備え、上述した被覆層が得られることを特徴とする不溶性電極の製造方法である。
<Method for producing insoluble electrode>
(1) There are various methods for producing an insoluble electrode. For example, the following production method of the present invention is suitable. That is, a base material having conductivity is immersed in a treatment solution containing iron ions and organic acid or organic acid ions, and the base material contains iron by energizing the base material. An electrodeposition process for forming a deposited layer, and a heat treatment process for heating the substrate after the electrodeposition process to 250 to 400 ° C. to produce Fe 3 O 4 in the deposited layer are obtained. It is a manufacturing method of the insoluble electrode characterized by the above-mentioned.

(2)本発明の製造方法によれば、被覆層により基材(被覆面)のほぼ全面が被覆された不溶性電極を低コストで効率的に得ることができる。この理由は必ずしも定かではないが、電析工程の際に析出層中へ取り込まれた有機酸(イオン)が、熱処理工程で分解または放出されるときに、微細なFe粒子を生成し、本発明に係る被覆層が形成されたと考えられる。 (2) According to the production method of the present invention, an insoluble electrode in which almost the entire surface of the substrate (coated surface) is coated with the coating layer can be efficiently obtained at low cost. The reason for this is not necessarily clear, but when the organic acid (ion) taken into the deposited layer during the electrodeposition step is decomposed or released in the heat treatment step, fine Fe 3 O 4 particles are generated. It is considered that the coating layer according to the present invention was formed.

《その他》
(1)本明細書でいう「不溶性」は、電極の使用中に被覆層が実質的に溶出しないことを意味する。その程度を具体的に指標することは容易ではないが、電気分解用陽極または電気防食用陽極等に本発明の不溶性電極を用いた際に、その溶解速度が所望値以下であれば十分である。
<Others>
(1) “Insoluble” as used herein means that the coating layer does not substantially elute during use of the electrode. It is not easy to specifically indicate the degree, but when the insoluble electrode of the present invention is used for an electrolysis anode or an anticorrosion anode, it is sufficient that the dissolution rate is not more than a desired value. .

また本発明の不溶性電極の「導電性」や「酸素発生活性」等も一概に特定し難いが、例えば、照合電極(飽和塩化銀電極:SSE)に対して1.5Vを印加したときのときの酸素発生電流密度が5×10−4A/cm以上さらには1×10−3A/cm以上であると好ましい。 Also, it is difficult to specify “conductivity”, “oxygen generation activity”, etc. of the insoluble electrode of the present invention in general. For example, when 1.5 V is applied to the reference electrode (saturated silver chloride electrode: SSE) The oxygen generation current density is preferably 5 × 10 −4 A / cm 2 or more, more preferably 1 × 10 −3 A / cm 2 or more.

(2)本発明の不溶性電極(不溶性電極を含む)は、電極特性(不溶性、導電性、酸素発生活性等)をさらに改善し得る改質元素やコスト的または技術的な理由で除去困難な不可避不純物元素を含み得る。 (2) The insoluble electrodes (including insoluble electrodes) of the present invention are inevitable difficult to remove due to modifying elements that can further improve electrode characteristics (insoluble, conductive, oxygen generation activity, etc.) and cost or technical reasons. Impurity elements may be included.

(3)本発明は、被覆層が基材表面に形成された不溶性電極としてのみならず、その被覆層自体からなる不溶性電極膜または不溶性触媒としても把握できる。 (3) The present invention can be grasped not only as an insoluble electrode having a coating layer formed on the surface of a substrate, but also as an insoluble electrode film or an insoluble catalyst comprising the coating layer itself.

(4)特に断らない限り、本明細書でいう「x〜y」は、下限値xおよび上限値yを含む。さらに本明細書中に記載した数値やその「x〜y」に含まれる任意の数値を適宜組合わせて、新たな任意の数値範囲「a〜b」を構成し得る。 (4) Unless otherwise specified, “x to y” in the present specification includes the lower limit value x and the upper limit value y. Furthermore, a new arbitrary numerical range “ab” can be configured by appropriately combining numerical values described in the present specification and arbitrary numerical values included in “x to y” thereof.

試料1に係る分極曲線を示すグラフである。3 is a graph showing a polarization curve according to Sample 1. 試料2に係る分極曲線を示すグラフである。5 is a graph showing a polarization curve according to Sample 2. 試料3に係る分極曲線を示すグラフである。5 is a graph showing a polarization curve related to Sample 3. 試料4に係る分極曲線を示すグラフである。6 is a graph showing a polarization curve according to Sample 4. 試料5に係る分極曲線を示すグラフである。10 is a graph showing a polarization curve according to Sample 5. 試料6に係る分極曲線を示すグラフである。5 is a graph showing a polarization curve related to Sample 6. 試料7に係る分極曲線を示すグラフである。10 is a graph showing a polarization curve according to Sample 7. 試料C1に係る分極曲線を示すグラフである。It is a graph which shows the polarization curve concerning sample C1. 被覆処理前のTi基板表面を観察したXRDプロフィルである。It is the XRD profile which observed the Ti substrate surface before a coating process. 試料3に係る電析工程後の被覆表面を観察したXRDプロフィルである。It is the XRD profile which observed the coating surface after the electrodeposition process which concerns on the sample 3. FIG. その熱処理工程後の表面を観察したXRDプロフィルである。It is the XRD profile which observed the surface after the heat processing process. その分極試験後の表面を観察したXRDプロフィルである。It is the XRD profile which observed the surface after the polarization test. 被覆処理前のTi基板表面を観察したSEM像である。It is the SEM image which observed the Ti substrate surface before a coating process. 試料3に係る電析工程後の被覆表面を観察したSEM像である。3 is an SEM image obtained by observing a coating surface after an electrodeposition process according to Sample 3. その熱処理工程後の表面を観察したSEM像である。It is the SEM image which observed the surface after the heat treatment process. その分極試験後の表面を観察したSEM像である。It is the SEM image which observed the surface after the polarization test. 試料1に係る電析工程後と熱処理工程後の被覆表面を観察したTEM像である。2 is a TEM image obtained by observing the coating surface after an electrodeposition process and a heat treatment process according to Sample 1. FIG. 試料3に係る分極試験後の被覆層の断面を観察したTEM像である。4 is a TEM image obtained by observing a cross section of a coating layer after a polarization test according to Sample 3. FIG. その断面の一部を観察したSAEDである。It is SAED which observed a part of the cross section.

発明の実施形態を挙げて本発明をより詳しく説明する。本明細書で説明する内容は、本発明に係る不溶性電極のみならず、その製造方法等にも該当し得る。本明細書中から任意に選択した一つまたは二つ以上の構成要素を、上述した本発明の構成要素に付加することができる。プロダクトバイプロセスクレームとして理解すれば、製造方法等に関する内容は不溶性電極等に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. The contents described in this specification can be applied not only to the insoluble electrode according to the present invention but also to the manufacturing method thereof. One or two or more components arbitrarily selected from the present specification can be added to the above-described components of the present invention. If understood as a product-by-process claim, the content relating to the manufacturing method and the like can be a component relating to the insoluble electrode and the like. Which embodiment is the best depends on the target, required performance, and the like.

《基材》
不溶性電極の基材は、形状、大きさ等を問わない。その材質は、導電性を有し、不溶性電極に適したものであればよく、例えば、金属の他、炭素、セラミックス、樹脂などの非金属でもよい。もっとも、基材は、アノード酸化(陽極酸化)により、表面に酸化皮膜を形成して、一方向のみに電流(アノード電流)流し易いバルブ金属からなると好ましい。具体的にいうと、基材は、チタン、アルミニウム、亜鉛、クロム(ステンレス鋼を含む。)、ジルコニウム、ハフニウム、ニオブ、タンタル、タングステン、アンチモン、ビスマス、等の純金属または合金からなると好ましい。特に基材は、表面に安定した不動態皮膜(金属酸化物)を形成して優れた耐食性を示すチタン、アルミニウム等の純金属または合金、ステンレス鋼等であると好適である。
"Base material"
The base material of the insoluble electrode may be any shape or size. The material may be any material as long as it has conductivity and is suitable for an insoluble electrode. For example, it may be a metal, or a non-metal such as carbon, ceramics, or resin. However, the base material is preferably made of a valve metal that forms an oxide film on the surface by anodic oxidation (anodic oxidation) and allows an electric current (anode current) to flow only in one direction. Specifically, the substrate is preferably made of a pure metal or alloy such as titanium, aluminum, zinc, chromium (including stainless steel), zirconium, hafnium, niobium, tantalum, tungsten, antimony, bismuth, and the like. In particular, the base material is preferably a pure metal or alloy such as titanium or aluminum, stainless steel, or the like, which forms a stable passive film (metal oxide) on the surface and exhibits excellent corrosion resistance.

《被覆層》
(1)本発明に係る被覆層は、鉄(α−Fe)等のマトリックス中に酸化鉄粒子が分散した複合層でも、実質的に酸化鉄粒子(Fe粒子)のみからなる単層でもよい。ちなみに、被覆層が複合層であるときでも、不溶性電極の使用中にマトリックスを構成するα−Fe等が溶出して、主にFe粒子からなる骨格のみが残存した単層となり得る。被覆層が実質的にFe粒子の単層である場合、Fe粒子を骨格とする微細な空孔を有する多孔質層でもよい。なお、被覆層には、α−FeやFe 以外に、各種の元素(C、H、O、S等)を単独または化合物等として含んでもよい。それらの元素は、製造時に用いた処理液等を介して被覆層に導入され得る。特に、後述するように、有機酸を含む処理液を用いた場合、被覆層中にCが微細なFeC等として残存し得る。
<Coating layer>
(1) The coating layer according to the present invention is a single layer substantially composed of iron oxide particles (Fe 3 O 4 particles) even in a composite layer in which iron oxide particles are dispersed in a matrix such as iron (α-Fe). But you can. Incidentally, even when the coating layer is a composite layer, α-Fe or the like constituting the matrix is eluted during use of the insoluble electrode, and a single layer in which only the skeleton mainly composed of Fe 3 O 4 particles remains can be obtained. If the coating layer is a single layer of substantially Fe 3 O 4 particles, it may be a porous layer having fine pores of the Fe 3 O 4 particles and skeleton. In addition to α-Fe and Fe 3 O 4 , the coating layer may contain various elements (C, H, O, S, etc.) alone or as a compound. These elements can be introduced into the coating layer via the treatment liquid used during production. In particular, as will be described later, when a treatment liquid containing an organic acid is used, C may remain as fine Fe 3 C or the like in the coating layer.

(2)被覆層は、被覆層全体を100体積%として、酸化鉄粒子を50体積%以上、60体積%以上、70体積%以上さらには80体積%以上含むと好ましい。酸化鉄粒子の体積率が過小では、触媒活性(酸素発生活性)等が低下し得る。この点は、マトリックス中に酸化鉄粒子が分散した複合層からなるときでも、被覆層が主に酸化鉄粒子の単層からなるときでも同様である。なお、被覆層中に微細な空孔がある場合、その空孔を含めて被覆層全体の体積(嵩体積)を100体積%とする。 (2) The coating layer preferably contains 50% by volume or more, 60% by volume or more, 70% by volume or more, and further 80% by volume or more of iron oxide particles, with the entire coating layer being 100% by volume. When the volume ratio of the iron oxide particles is too small, the catalyst activity (oxygen generation activity) and the like can be reduced. This point is the same whether it is composed of a composite layer in which iron oxide particles are dispersed in a matrix or when the coating layer is mainly composed of a single layer of iron oxide particles. In addition, when there exists a fine hole in a coating layer, the volume (bulk volume) of the whole coating layer including the hole shall be 100 volume%.

ところで、被覆層中に分散等した微細な酸化鉄粒子の体積率を直接特定することは容易ではない。そこで本明細書では、次のようにして求めた酸化鉄粒子の面積率を便宜的に、被覆層中における酸化鉄粒子の体積率とする。先ず、被覆層の厚み方向の断面を、厚み方向の位置が異なる5視野で透過型電子顕微鏡(TEM)により観察する。それぞれの視野について得られたTEM像を画像処理して、各視野毎に観察領域の全面積に対するFe粒子の総面積の割合(断面面積率)を求める。そして、各視野毎に得られた断面面積率の相加平均値を算出する。こうして得られた平均断面面積率を、本明細書でいう酸化鉄粒子の体積率として代用する。 By the way, it is not easy to directly specify the volume ratio of fine iron oxide particles dispersed in the coating layer. Therefore, in this specification, the area ratio of the iron oxide particles obtained as follows is used as the volume ratio of the iron oxide particles in the coating layer for convenience. First, the cross section in the thickness direction of the coating layer is observed with a transmission electron microscope (TEM) with five visual fields having different positions in the thickness direction. The TEM image obtained for each field of view is subjected to image processing, and the ratio of the total area of Fe 3 O 4 particles to the total area of the observation region (cross-sectional area ratio) is determined for each field of view. And the arithmetic mean value of the cross-sectional area ratio obtained for every visual field is calculated. The average cross-sectional area ratio obtained in this way is used as the volume ratio of the iron oxide particles referred to in this specification.

(3)被覆層は、被覆層が形成される基材の表面(被覆面)の全面積を100%として、その70%以上、80%以上、90%以上さらには95%以上を被覆していると好ましい。酸化鉄粒子の面積率が過小では、酸化鉄粒子ひいては電極の表面積が低下し、触媒活性(酸素発生活性)等が低下し得る。この点も、被覆層が酸化鉄粒子の単層からなるときでも、マトリックス中に酸化鉄粒子が分散した複合層からなるときでも同様である。なお、本発明に係る被覆層は、酸化鉄粒子が基材表面に個別に結着して担持している状態ではなく、基材の少なくとも一部の表面を被覆する膜状(多孔質膜状を含む)となっているため、被覆率が高くなっている。 (3) The coating layer covers 70% or more, 80% or more, 90% or more, or 95% or more of the entire surface (coating surface) of the substrate on which the coating layer is formed as 100%. It is preferable. If the area ratio of the iron oxide particles is too small, the surface area of the iron oxide particles and hence the electrode may be reduced, and the catalytic activity (oxygen generation activity) and the like may be reduced. This is the same whether the coating layer is made of a single layer of iron oxide particles or a composite layer in which iron oxide particles are dispersed in a matrix. The coating layer according to the present invention is not a state in which the iron oxide particles are individually bound and supported on the surface of the base material, but a film shape (porous membrane shape) that covers at least a part of the surface of the base material. Therefore, the coverage is high.

ここでいう面積率は次のようにして特定される。先ず、被覆層の表面(電極表面)を異なる5視野で走査型電子顕微鏡(SEM)により観察する。7500倍に拡大した各視野のSEM像をそれぞれ画像処理して、各視野毎に、観察領域の全面積に対して、基材以外(酸化鉄粒子等)が占める総面積の割合(面積率)を求める。各視野毎に得られた面積率の相加平均値を算出する。こうして得られた平均面積率を、本明細書でいう被覆率とする。   The area ratio here is specified as follows. First, the surface (electrode surface) of the coating layer is observed with a scanning electron microscope (SEM) in five different fields of view. The SEM image of each field of view magnified 7500 times is image-processed, and the ratio (area ratio) of the total area occupied by other than the base material (iron oxide particles, etc.) with respect to the total area of the observation region for each field of view Ask for. The arithmetic mean value of the area ratio obtained for each visual field is calculated. The average area ratio obtained in this way is referred to as the coverage in this specification.

(4)被覆層を構成する各酸化鉄粒子は、単結晶でも多結晶でもよいが、いずれにしてもFeの結晶質からなると考えられる。そこで被覆層は、X線回折(XRD)で解析したときに、Fe を示すピークが3つ以上あると好ましい。さらに被覆層が酸化鉄粒子以外の鉄(α−Fe)等を含む場合(つまり被覆層が複合層である場合)も考慮すると、XRDのプロフィル上で、3つ以上さらには4つ以上のFe を示すピークが、α−Feを示す最強のピークよりも大きいと好ましいといえる。 (4) Each iron oxide particle constituting the coating layer may be single crystal or polycrystalline, but in any case, it is considered that it is made of Fe 3 O 4 crystalline. Therefore, the coating layer preferably has three or more peaks indicating Fe 3 O 4 when analyzed by X-ray diffraction (XRD). Furthermore, considering the case where the coating layer contains iron (α-Fe) other than iron oxide particles (that is, the coating layer is a composite layer), three or more, and even four or more Fe on the XRD profile. It can be said that the peak indicating 3 O 4 is preferably larger than the strongest peak indicating α-Fe.

(5)酸化鉄粒子は微細であるほど好ましい。例えば、酸化鉄粒子の平均粒径が300nm以下、200nm以下さらには100nm以下であると好ましい。酸化鉄粒子の面積率が過大では、酸化鉄粒子ひいては電極の表面積が低下し、触媒活性(酸素発生活性)等が低下し得る。なお、本明細書でいう酸化鉄粒子の粒径は、実質的に、その結晶粒径と同義である。 (5) The finer the iron oxide particles, the better. For example, it is preferable that the average particle diameter of the iron oxide particles is 300 nm or less, 200 nm or less, and further 100 nm or less. If the area ratio of the iron oxide particles is excessive, the surface area of the iron oxide particles and thus the electrode may decrease, and the catalytic activity (oxygen generation activity) and the like may decrease. In addition, the particle diameter of the iron oxide particle as used in this specification is substantially synonymous with the crystal particle diameter.

酸化鉄粒子の平均粒径は、切片法(切断法)により特定される。具体的には、先ず、被覆層の表面(電極表面)の異なる5視野をTEMで観察する。各視野のTEM像上に、縦方向と横方向のそれぞれについて、100nm間隔の3本の直線(全長L=1710nm)を引く。各直線を横切った粒子数(n)を求め、各直線毎の平均切片長さ(l)を求める。この平均切片長さの1視野あたりの平均値(6本の直線分の平均値)を求め、さらに、その5視野あたりの平均値を求める。こうして得られた相加平均値(5×3×2本分の直線の平均切片長さの平均値)を、本明細書でいう酸化鉄粒子の平均粒径とする。   The average particle diameter of the iron oxide particles is specified by the intercept method (cutting method). Specifically, first, five fields of view on the surface of the coating layer (electrode surface) are observed with a TEM. On the TEM image of each field of view, three straight lines (total length L = 1710 nm) with an interval of 100 nm are drawn for each of the vertical direction and the horizontal direction. The number of particles (n) crossing each straight line is obtained, and the average intercept length (l) for each straight line is obtained. An average value per one visual field (average value of six straight lines) of the average intercept length is obtained, and further, an average value per five visual fields is obtained. The arithmetic average value thus obtained (the average value of the average intercept length of 5 × 3 × 2 straight lines) is defined as the average particle diameter of the iron oxide particles referred to in this specification.

(6)被覆層は、薄くても優れた電極特性を発現し得る。その厚さは、例えば、10〜1000nmさらには50〜300nm程度で十分である。被覆層と基材表面との間に、密着性を高める下地層(または中間層)を設けてもよい。また被覆層は、深さ方向または厚さ方向に関して、組成や組織が連続的に変化した傾斜構造をしていてもよいし、不連続的に変化する多層構造をしていてもよい。 (6) Even if the coating layer is thin, it can exhibit excellent electrode characteristics. For example, a thickness of about 10 to 1000 nm or about 50 to 300 nm is sufficient. An underlayer (or intermediate layer) that improves adhesion may be provided between the coating layer and the substrate surface. Further, the coating layer may have an inclined structure in which the composition and the structure are continuously changed in the depth direction or the thickness direction, or may have a multilayer structure in which the composition is changed discontinuously.

《製造方法》
(1)電析工程
本発明に係る電析工程は、鉄イオンと有機酸または有機酸イオンとを含む処理液中で、基材の被覆面に鉄を含む析出層を形成する工程である。この析出層は、いわゆる鉄めっき層であるが、単なる純鉄(α−Fe)からなるめっき層ではなく、少なくとも有機酸または有機酸イオンを内包している。
"Production method"
(1) Electrodeposition step The electrodeposition step according to the present invention is a step of forming a deposited layer containing iron on the coated surface of the substrate in a treatment liquid containing iron ions and organic acids or organic acid ions. This deposited layer is a so-called iron plating layer, but is not a plating layer made of mere pure iron (α-Fe), and contains at least an organic acid or an organic acid ion.

電析工程中の処理液(めっき液)の温度(浴温度)は、常温でも温間でもよい。温間であると電析工程が促進されるが、処理液が高温になると有機酸の分解や揮発等を生じるため処理液の管理が難しくなる。そこで処理液の温度は、100℃以下、80℃以下、60℃以下さらには常温域(40℃以下)であると好ましい。   The temperature (bath temperature) of the treatment solution (plating solution) during the electrodeposition process may be room temperature or warm. When the temperature is warm, the electrodeposition process is promoted. However, when the temperature of the processing liquid becomes high, the organic acid is decomposed or volatilized, and thus the management of the processing liquid becomes difficult. Therefore, the temperature of the treatment liquid is preferably 100 ° C. or lower, 80 ° C. or lower, 60 ° C. or lower, and further normal temperature range (40 ° C. or lower).

処理液に含まれる有機酸、有機酸イオン(R−COO等)または有機酸塩(それらをまとめて、適宜、単に「有機酸」という。)は、析出層(鉄めっき層)中でFeの析出に寄与するものであれば、その種類を問わない。本発明に係る有機酸は、通常、1以上のカルボキシ基を有する水溶性のカルボン酸(R−COOH等)である。このような有機酸として、例えば、L−アスコルビン酸、クエン酸またはフマル酸の一種以上を用いると好ましい。 The organic acid contained in the treatment liquid, an organic acid ion (R-COO -, etc.) or an organic acid salt (. Them together, as appropriate, simply referred to as "organic acid") is, Fe in deposit (iron plating layer) Any kind can be used as long as it contributes to the precipitation of 3 O 4 . The organic acid according to the present invention is usually a water-soluble carboxylic acid having one or more carboxy groups (such as R-COOH). As such an organic acid, for example, one or more of L-ascorbic acid, citric acid, and fumaric acid are preferably used.

有機酸の濃度は、例えば、1〜100mmol/Lさらには10〜50mmol/Lであると好ましい。有機酸の濃度が過小ではFeの析出量も過少となり、有機酸の濃度が過大であると処理液のPHが低すぎてHが大量に発生して電流効率が悪くなり好ましくない。 The concentration of the organic acid is preferably 1 to 100 mmol / L, more preferably 10 to 50 mmol / L, for example. If the concentration of the organic acid is too low, the amount of Fe 3 O 4 deposited will be too low. If the concentration of the organic acid is too high, the pH of the treatment solution will be too low and a large amount of H 2 will be generated, resulting in poor current efficiency. .

処理液中の鉄イオンは、例えば、硫酸鉄、硝酸鉄等の鉄塩を供給源とすることができる。鉄イオン(特にFe2+)の濃度は、0.1〜5mol/L、0.3〜1.5mol/Lさらには0.5〜1mol/Lであると好ましい。換言すると、鉄イオンは、5〜250g/L、15〜75g/Lさらには25〜50g/Lであると好ましい。鉄イオンの濃度が過小では析出層の効率的な形成が困難になると共に、電析工程中の陰極表面に多くのHが付着して電流効率が低下する。鉄イオンの濃度が過大では不経済であり、相対的に有機酸の濃度が低下してFeの析出量も過少となり易くなる。なお、有機酸(イオン)に対する鉄イオンのモル濃度比は、5〜100さらには10〜50とするとよい。 The iron ions in the treatment liquid can be supplied from an iron salt such as iron sulfate or iron nitrate. The concentration of iron ions (particularly Fe 2+ ) is preferably 0.1 to 5 mol / L, 0.3 to 1.5 mol / L, and more preferably 0.5 to 1 mol / L. In other words, iron ions are preferably 5 to 250 g / L, 15 to 75 g / L, and more preferably 25 to 50 g / L. If the iron ion concentration is too low, it is difficult to efficiently form a deposited layer, and a large amount of H 2 adheres to the surface of the cathode during the electrodeposition process, resulting in a decrease in current efficiency. If the iron ion concentration is excessive, it is uneconomical, and the concentration of the organic acid is relatively lowered, and the amount of Fe 3 O 4 deposited tends to be excessive. The molar concentration ratio of iron ions to organic acids (ions) is preferably 5 to 100, more preferably 10 to 50.

(2)熱処理工程
熱処理工程は、その析出層を加熱して、析出層中にFeを生成させる工程である。加熱温度は、例えば、250〜500℃さらには300〜400℃であると好ましい。加熱温度が過小では微細なFeの析出が困難となり、加熱温度が過大ではFe が析出せずにそれ以外の酸化鉄(FeO、Fe)の析出等が生じるようになる。
(2) Heat treatment step The heat treatment step is a step of heating the precipitate layer to generate Fe 3 O 4 in the precipitate layer. For example, the heating temperature is preferably 250 to 500 ° C, more preferably 300 to 400 ° C. Precipitation of fine Fe 3 O 4 becomes difficult when the heating temperature is too low, and precipitation of other iron oxides (FeO, Fe 2 O 3 ) and the like occur without precipitation of Fe 3 O 4 when the heating temperature is too high. become.

加熱時間は、10秒〜10時間、10分〜3時間さらには30分〜2時間とするとよい。加熱時間が過少ではFeの析出が不十分となり、加熱時間が過多では不経済である。なお、加熱雰囲気は、不活性ガス(Arガス、Nガス等)雰囲気でもよいが、大気中でも十分である。 The heating time is preferably 10 seconds to 10 hours, 10 minutes to 3 hours, and more preferably 30 minutes to 2 hours. If the heating time is too short, the precipitation of Fe 3 O 4 becomes insufficient, and if the heating time is too long, it is uneconomical. The heating atmosphere may be an inert gas (Ar gas, N 2 gas, etc.) atmosphere, but it is sufficient in the air.

(3)電解工程
熱処理工程後の析出層は、主にα−Feからなるマトリックス中に酸化鉄粒子が分散した複合層となっている。本発明に係る被覆層は、その複合層のままでもよいが、その複合層からマトリックスを構成するα−Feを予め除去したものでもよい。複合層で被覆された基材を陽極として通電すれば、複合層からα−Feを溶出させてマトリックスを容易に消失させることができる。
(3) Electrolytic process The deposited layer after the heat treatment process is a composite layer in which iron oxide particles are dispersed in a matrix mainly composed of α-Fe. The coating layer according to the present invention may be the composite layer, or may be a layer obtained by previously removing α-Fe constituting the matrix from the composite layer. When the substrate coated with the composite layer is energized as an anode, α-Fe can be eluted from the composite layer and the matrix can be easily lost.

そこで本発明の不溶性電極の製造方法では、さらに、熱処理工程後の基材を陽極として電解液に浸漬して通電することにより、酸化鉄粒子とならなかった残留鉄を熱処理工程後の析出層から放出させる電解工程を備えると好ましい。   Therefore, in the method for producing an insoluble electrode of the present invention, the residual iron that has not become iron oxide particles is further removed from the deposited layer after the heat treatment step by immersing the base material after the heat treatment step in the electrolytic solution as an anode and energizing. It is preferable to provide an electrolysis step for discharging.

《用途》
本発明の不溶性電極は、その用途に限定はなく、水等の化合物の電気分解用電極(特にアノード電極)、スタック型電池用電極、電線や鉄道などの各種インフラの電気防食用アノード電極等、種々の利用が考えられる。例えば、本発明の不溶性電極を用いて水または水溶液の電気分解を行うと、クリーンエネルギーとして期待される水素や酸素を従来より低コストで効率良く生産できる。また本発明の不溶性電極を犠牲電極に用いると、その交換期間が著しく延び、各種インフラの管理コストが低減され得る。具体的にいうと、本発明の不溶性電極は、コンクリート中の鋼材などの電気防食用陽極、Liイオン電池の正極などに好適である。
<Application>
The insoluble electrode of the present invention is not limited in its use, such as an electrode for electrolysis of a compound such as water (particularly an anode electrode), an electrode for a stack type battery, an anode electrode for cathodic protection of various infrastructures such as electric wires and railways, etc. Various uses are possible. For example, when water or an aqueous solution is electrolyzed using the insoluble electrode of the present invention, hydrogen and oxygen expected as clean energy can be efficiently produced at a lower cost than before. In addition, when the insoluble electrode of the present invention is used as a sacrificial electrode, the replacement period is remarkably extended, and the management cost of various infrastructures can be reduced. Specifically, the insoluble electrode of the present invention is suitable for an anode for cathodic protection such as a steel material in concrete, a cathode for a Li ion battery, and the like.

基板(基材)の表面に被覆層を形成した試料(電極)を製作し、分極試験によりその特性(酸素発生活性)を明らかにした。また、その電極表面をXRD、SEMおよびTEMで観察することにより、被覆層の構造を明らかにした。これらの内容を示すことにより、本発明をより具体的に説明する。   A sample (electrode) having a coating layer formed on the surface of a substrate (base material) was manufactured, and its characteristics (oxygen generation activity) were clarified by a polarization test. Moreover, the structure of the coating layer was clarified by observing the electrode surface with XRD, SEM and TEM. The present invention will be described more specifically by showing these contents.

《試料の製造》
(1)電析工程
純チタンからなる長方形状(15mm×60mm×0.2mm)の基板(以下、「Ti基板」という。)を用意した。Ti基板の表面は、予め、アセトンで脱脂した後、HF水溶液と濃硫酸を用いて粗面化しておいた(粗面化処理工程)。
<Production of sample>
(1) Electrodeposition process A rectangular substrate (hereinafter referred to as “Ti substrate”) made of pure titanium (15 mm × 60 mm × 0.2 mm) was prepared. The surface of the Ti substrate was previously degreased with acetone and then roughened with an aqueous HF solution and concentrated sulfuric acid (roughening treatment step).

表1に示す各処理液毎に、上記のTi基板を陰極、純鉄板を犠牲陽極として浸漬し、それらの電極間で通電することによりTi基板表面に析出層を形成した。処理液の温度(浴温度)、通電量(電流密度)、通電時間(電析時間)は表1に併せて示した。なお、試料C1は、処理液中に有機酸を含まない場合である。   For each treatment solution shown in Table 1, the Ti substrate was immersed as a cathode and a pure iron plate as a sacrificial anode, and a current was passed between the electrodes to form a deposited layer on the surface of the Ti substrate. The temperature of the treatment liquid (bath temperature), energization amount (current density), and energization time (deposition time) are also shown in Table 1. Sample C1 is a case where the treatment liquid does not contain an organic acid.

(2)熱処理工程
自然乾燥した電析工程後の各Ti基板を、電気炉を用いて、大気雰囲気中で、350℃×1時間加熱した。
(2) Heat treatment step Each Ti substrate after the electrodeposition step that was naturally dried was heated in an air atmosphere at 350 ° C for 1 hour using an electric furnace.

(3)電解工程
熱処理工程後の各Ti基板を陽極、白金板(50mm×50mm)を陰極として、NaCl水溶液(濃度:3質量%)中に浸漬して、それらの電極間で通電した。この通電は、電極間の距離を7cmに保持し、電極間の電圧差を2Vとして、10分間行った。こうして被覆層がTi基板の表面に形成された各試料の電極を得た。
(3) Electrolytic process Each Ti substrate after the heat treatment process was immersed in a NaCl aqueous solution (concentration: 3 mass%) using an anode and a platinum plate (50 mm x 50 mm) as a cathode, and electricity was passed between these electrodes. This energization was carried out for 10 minutes while maintaining the distance between the electrodes at 7 cm and setting the voltage difference between the electrodes to 2V. Thus, an electrode of each sample having a coating layer formed on the surface of the Ti substrate was obtained.

《分極試験》
(1)電解工程した各試料の電極を陽極、飽和塩化銀電極を対極(陰極/SSE)としてNaCl水溶液(濃度:3質量%)中に浸漬して、分極試験を行った。この際、脱気処理は行わなかった。また、分極試験は室温で行い、電位掃引速度は20mV/minとした。こうして得られた各試料に係る(アノード)分極曲線を図1A〜図1H(これらを併せて単に「図1」という。)に示した。なお、各図中には、参考のため、前述した粗面化処理のみを行ったTi基板に係る分極曲線も併せて示した。
《Polarization test》
(1) The electrode of each sample subjected to the electrolysis process was immersed in an aqueous NaCl solution (concentration: 3 mass%) as an anode and a saturated silver chloride electrode as a counter electrode (cathode / SSE), and a polarization test was performed. At this time, no deaeration treatment was performed. The polarization test was performed at room temperature, and the potential sweep rate was 20 mV / min. The (anode) polarization curves for the samples thus obtained are shown in FIGS. 1A to 1H (these are simply referred to as “FIG. 1”). In addition, in each figure, the polarization curve concerning the Ti substrate which performed only the roughening process mentioned above is also shown for reference.

(2)図1から明らかなように、有機酸を含む処理液を用いて形成した被覆層を有する電極(試料1〜7)はいずれも、被覆層を設けなかったTi基板からなる電極(この電極を、適宜、試料C0という。)に対して、電位:1.5Vのときの電流密度が約100倍にまで向上し、非常に優れた酸素発生活性を示すことがわかった。 (2) As is apparent from FIG. 1, all of the electrodes (samples 1 to 7) having a coating layer formed using a treatment liquid containing an organic acid are electrodes made of a Ti substrate without a coating layer (this The electrode was appropriately referred to as sample C0), and the current density at a potential of 1.5 V was improved to about 100 times, and it was found that the electrode showed very excellent oxygen generation activity.

また、試料1〜7の各電極は、上記の分極試験を繰り返し行っても、毎回同様な分極曲線となり、高電位を印加したときも溶出等はせず、優れた耐食性(不溶性)を示すことも確認できた。なお、分極試験中、試料1〜7の各電極の表面からは酸素が発生していた。従って、試料1〜7のような電極は、電気分解や電気防食等に用いられる不溶性電極に適しているといえる。   Each electrode of Samples 1 to 7 has the same polarization curve every time even when the above polarization test is repeated, and does not elute even when a high potential is applied, and exhibits excellent corrosion resistance (insoluble). Was also confirmed. During the polarization test, oxygen was generated from the surface of each electrode of Samples 1-7. Therefore, it can be said that the electrodes such as Samples 1 to 7 are suitable for insoluble electrodes used for electrolysis and anticorrosion.

一方,有機酸を含まない処理液を用いて被覆層を形成した試料C1の電極は、試料C0の電極とほぼ同様な分極曲線となった。なお、試料C1の電極は、上述した電解工程で、Ti基板の表面に形成されていた被覆層(析出層)が溶出し、ほぼ完全に消失した状態となっていた。   On the other hand, the electrode of sample C1 in which the coating layer was formed using the treatment liquid not containing an organic acid had a polarization curve almost the same as the electrode of sample C0. In the electrode of the sample C1, the coating layer (deposited layer) formed on the surface of the Ti substrate was eluted in the above-described electrolysis process, and was almost completely lost.

《X線回折》
(1)試料3の電極について、処理前のTi基板の表面、電析工程後の表面、熱処理工程後の表面、分極試験後の表面をそれぞれXRDで解析した。その結果を図2A〜図2D(これらを併せて単に「図2」という。)にそれぞれ示した。
<< X-ray diffraction >>
(1) For the electrode of Sample 3, the surface of the Ti substrate before treatment, the surface after the electrodeposition step, the surface after the heat treatment step, and the surface after the polarization test were analyzed by XRD. The results are shown in FIGS. 2A to 2D (they are simply referred to as “FIG. 2”).

(2)先ず図2Bから明らかなように、電析工程によりTi基板の表面は、主にα−Feで被覆されていることがわかる。つまり、電析工程後のTi基板の表面に形成されためっき層(析出層)はα−Fe(結晶)からなることがわかる。 (2) First, as is clear from FIG. 2B, it can be seen that the surface of the Ti substrate is mainly coated with α-Fe by the electrodeposition process. That is, it can be seen that the plating layer (deposition layer) formed on the surface of the Ti substrate after the electrodeposition step is made of α-Fe (crystal).

次に図2Cから明らかなように、α−Feからなるめっき層は、熱処理工程後に、α−Fe(残留鉄)とFe からなる第一被覆層となることもわかった。さらに図2Dから明らかなように、その第一被覆層は、分極試験後(電解工程後でも同様)に、α−Feが消失したFe からなる第二被覆層となることもわかった。 Next, as apparent from FIG. 2C, it was also found that the plating layer made of α-Fe becomes the first coating layer made of α-Fe (residual iron) and Fe 3 O 4 after the heat treatment step. Further, as is clear from FIG. 2D, it was also found that the first coating layer became a second coating layer composed of Fe 3 O 4 from which α-Fe had disappeared after the polarization test (same after the electrolysis step). .

《SEM》
(1)試料3の電極について、処理前のTi基板の表面、電析工程後の表面、熱処理工程後の表面、分極試験後の表面をそれぞれSEMで観察した。その様子を図3A〜図3D(これらを併せて単に「図3」という。)にそれぞれ示した。なお、各図の下方のSEM像は、上方のSEM像の一部を拡大したものである。
<< SEM >>
(1) About the electrode of the sample 3, the surface of the Ti substrate before a process, the surface after an electrodeposition process, the surface after a heat treatment process, and the surface after a polarization test were each observed by SEM. The states are shown in FIGS. 3A to 3D (these are simply referred to as “FIG. 3”). In addition, the lower SEM image of each figure expands a part of upper SEM image.

(2)先ず、図3Aから明らかなように、処理前のTi基板の表面は、上述した粗面化処理により微細で複雑な凹凸形状となっており、表面積の増加と投錨効果により、析出層の密着性を向上させ得ることがわかる。 (2) First, as is clear from FIG. 3A, the surface of the Ti substrate before the treatment is formed into a fine and complicated uneven shape by the above-described roughening treatment, and due to the increase in the surface area and the anchoring effect, the precipitation layer It can be seen that the adhesion can be improved.

次に図3Bから明らかなように、電析工程後の表面は、Ti基板の全表面がα−Fe(図2B参照)のめっき層で均一的に被覆された状態となっていることがわかる。さらに図3Cから明らかなように、電解工程後の表面は平滑的であったが、熱処理工程後の表面は、Ti基板のほぼ全表面がFe (図2C参照)粒により被覆された状態となっていることがわかった。 Next, as apparent from FIG. 3B, the surface after the electrodeposition process is found to be in a state where the entire surface of the Ti substrate is uniformly coated with a plating layer of α-Fe (see FIG. 2B). . Further, as apparent from FIG. 3C, the surface after the electrolysis process was smooth, but almost the entire surface of the Ti substrate was covered with Fe 3 O 4 (see FIG. 2C) grains after the heat treatment process. I found out that it was in a state.

そして図3Dから明らかなように、分極試験後の表面は、Fe (図2D参照)粒が何層にも重なるように深くまで存在して、それらのFe 粒によってTi基板の全表面が被覆された状態となっていることが、熱処理工程後の表面よりも一層明確にわかる。これは、熱処理工程後の表面に残留していた鉄(マトリックス)が分極試験で除去されたためと考えられる。 As apparent from FIG. 3D, the surface after the polarization test exists deeply so that Fe 3 O 4 (see FIG. 2D) grains overlap with each other, and the Ti substrate is formed by these Fe 3 O 4 grains. It can be seen more clearly than the surface after the heat treatment step that the entire surface is covered. This is probably because iron (matrix) remaining on the surface after the heat treatment step was removed by the polarization test.

なお、試料3に係る被覆率は、図3Dに示したSEM像から既述した方法により算出した。その結果を他の試料の被覆率と共に、表1に併せて示した。   Note that the coverage of the sample 3 was calculated by the method described above from the SEM image shown in FIG. 3D. The results are shown in Table 1 together with the coverage of other samples.

《TEM(表面)》
試料1の電極について、電析工程後の表面と熱処理工程後の表面をそれぞれTEMで観察した。その様子を図4に示した。図4から明らかなように、電析工程後の表面は、全表面がα−Fe(図2B参照)からなるほぼ均一的な状態となっていたが、熱処理工程後の表面は、数nm程度の粒状をしたα−Fe中に、数〜数十nm程度のFe 粒子が多数分散した状態となっていることがわかった。図4に示したTEM像から、既述した方法により試料1に係るFe の平均粒径を算出した。その結果を他の試料の被覆率と共に、表1に併せて示した。
<< TEM (surface) >>
About the electrode of the sample 1, the surface after an electrodeposition process and the surface after a heat treatment process were observed by TEM, respectively. This is shown in FIG. As is clear from FIG. 4, the surface after the electrodeposition process was in a substantially uniform state where the entire surface was made of α-Fe (see FIG. 2B), but the surface after the heat treatment process was about several nm. It was found that a large number of Fe 3 O 4 particles of about several to several tens of nanometers were dispersed in the granular α-Fe. From the TEM image shown in FIG. 4, the average particle diameter of Fe 3 O 4 according to Sample 1 was calculated by the method described above. The results are shown in Table 1 together with the coverage of other samples.

《TEM(断面)》
試料3の電極について、分極試験後の被覆層の断面をTEMで観察した。その様子を図5に示した。図5の下方のTEM像は上方のTEM像の一部を拡大したものである。図5から明らかなように、被覆層は、実質的に多孔質なFe 層から形成されており、Feが残留していなかった。このことは図6に示すように、図5の下方に示したTEM像中の領域を観察した制限視野電子回折図形(SAED)を解析した結果からも確認されている。つまり、SAEDの主要な回折スポットは、Fe (格子定数a=0.84nmの立方晶構造)を示すものであった。なお、図5に示したTEM像から、既述した方法により試料3に係るFe の体積率を算出した。その結果を他の試料の体積率と共に、表1に併せて示した。
<< TEM (cross section) >>
Regarding the electrode of Sample 3, the cross section of the coating layer after the polarization test was observed with TEM. This is shown in FIG. The lower TEM image in FIG. 5 is an enlarged part of the upper TEM image. As is apparent from FIG. 5, the coating layer was formed of a substantially porous Fe 3 O 4 layer, and no Fe remained. As shown in FIG. 6, this is also confirmed from the result of analyzing a limited field electron diffraction pattern (SAED) obtained by observing the region in the TEM image shown in the lower part of FIG. That is, the main diffraction spot of SAED was Fe 3 O 4 (cubic structure with lattice constant a = 0.84 nm). From the TEM image shown in FIG. 5, the volume ratio of Fe 3 O 4 according to the sample 3 was calculated by the method described above. The results are shown in Table 1 together with the volume ratio of other samples.

Claims (8)

鉄イオンと、有機酸または有機酸イオンとを含む処理液中に導電性を有する基材を浸漬して該基材へ通電することにより該基材の少なくとも一部の表面に鉄を含む析出層を形成する電析工程と、
該電析工程後の基材を250〜400℃に加熱して析出層中にFeを生成させる熱処理工程とを備え、
前記基材と該基材の少なくとも一部の表面である被覆面に形成された被覆層とからなり、該被覆層はFe からなる酸化鉄粒子を最表面に有すると共に該酸化鉄粒子は平均粒径が300nm以下である不溶性電極の製造方法。
A deposited layer containing iron on at least a part of the surface of the substrate by immersing a conductive substrate in a treatment solution containing iron ions and organic acid or organic acid ions and energizing the substrate. An electrodeposition process to form
A heat treatment step of heating the substrate after the electrodeposition step to 250 to 400 ° C. to generate Fe 3 O 4 in the deposited layer,
The base material and a coating layer formed on a coating surface which is at least a part of the surface of the base material, the coating layer having iron oxide particles made of Fe 3 O 4 on the outermost surface and the iron oxide particles Is a method for producing an insoluble electrode having an average particle size of 300 nm or less .
前記被覆層は、前記被覆面の全面積の70%以上を被覆している請求項1に記載の不溶性電極の製造方法The method for producing an insoluble electrode according to claim 1, wherein the coating layer covers 70% or more of the entire area of the coated surface. 前記被覆層は、該被覆層全体を100体積%として前記酸化鉄粒子を50体積%以上含む請求項1または2に記載の不溶性電極の製造方法3. The method for producing an insoluble electrode according to claim 1, wherein the coating layer comprises 100% by volume of the entire coating layer and contains 50% by volume or more of the iron oxide particles. 前記基材は、バルブ金属からなる請求項1〜3のいずれかに記載の不溶性電極の製造方法The method for producing an insoluble electrode according to claim 1, wherein the substrate is made of a valve metal. 前記バルブ金属は、チタンまたはチタン合金である請求項4に記載の不溶性電極の製造方法The method for producing an insoluble electrode according to claim 4, wherein the valve metal is titanium or a titanium alloy. 前記不溶性電極は、水または水溶液の電気分解に用いられるアノードである請求項1〜5のいずれかに記載の不溶性電極の製造方法 The method for producing an insoluble electrode according to claim 1 , wherein the insoluble electrode is an anode used for electrolysis of water or an aqueous solution. 前記不溶性電極は、電気防食用アノードである請求項1〜5のいずれかに記載の不溶性電極の製造方法 The method for producing an insoluble electrode according to claim 1 , wherein the insoluble electrode is an anode for cathodic protection. さらに、前記熱処理工程後の基材を電解液に浸漬して該基材を陽極として通電することにより、前記析出層から残留する鉄を放出させる電解工程を備える請求項1〜7のいずれかに記載の不溶性電極の製造方法。 Furthermore, the electrolysis process which discharge | releases the iron which remains from the said precipitation layer by immersing the base material after the said heat processing process in electrolyte solution and supplying with electricity as this base material is given in any one of Claims 1-7. The manufacturing method of the insoluble electrode of description.
JP2015009277A 2015-01-21 2015-01-21 Method for producing insoluble electrode Expired - Fee Related JP6222121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015009277A JP6222121B2 (en) 2015-01-21 2015-01-21 Method for producing insoluble electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015009277A JP6222121B2 (en) 2015-01-21 2015-01-21 Method for producing insoluble electrode

Publications (2)

Publication Number Publication Date
JP2016132813A JP2016132813A (en) 2016-07-25
JP6222121B2 true JP6222121B2 (en) 2017-11-01

Family

ID=56425974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009277A Expired - Fee Related JP6222121B2 (en) 2015-01-21 2015-01-21 Method for producing insoluble electrode

Country Status (1)

Country Link
JP (1) JP6222121B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145915A1 (en) * 2016-02-25 2017-08-31 株式会社豊田中央研究所 Metal oxide film and method for producing same
JP6724715B2 (en) * 2016-10-20 2020-07-15 株式会社豊田中央研究所 Water repellent material manufacturing method
EP4269663A1 (en) 2020-12-28 2023-11-01 Dipsol Chemicals Co., Ltd. Method and system for electroplating article with metal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339029B2 (en) * 1973-04-06 1978-10-19
JPH0681182A (en) * 1992-08-28 1994-03-22 Asahi Glass Co Ltd Production of alkali hydroxide
JP3431715B2 (en) * 1995-02-15 2003-07-28 トーカロ株式会社 Manufacturing method of spray-coated electrode with excellent durability

Also Published As

Publication number Publication date
JP2016132813A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
TWI284684B (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
EP2757179B1 (en) Chlorine-generating positive electrode
Huang et al. Electrochemical behavior of IrO2-Ta2O5/Ti anodes prepared with different surface pretreatments of Ti substrate
JP5604017B2 (en) Electrochemical electrode and method for producing the same
CA2755820C (en) Anode for use in zinc and cobalt electrowinning and electrowinning method
RU2568546C2 (en) Anode for electroextraction and method of electroextraction with its use
EP2518185B1 (en) Cathode, electrolytic cell for electrolysis of alkali metal chloride, and method for producing the cathode
CN104011264B (en) Oxygen generation anode and manufacture method thereof
JP4516618B2 (en) Anode for electrolytic collection of cobalt and electrolytic collection method
JP2010507017A (en) Anode for electrolysis
JP6222121B2 (en) Method for producing insoluble electrode
Wang et al. Electrochemical properties of Pb-0.6 wt% Ag powder-pressed alloy in sulfuric acid electrolyte containing Cl−/Mn2+ ions
CN1938453B (en) Electrode for generating hydrogen, manufacturing method therefor and electrolysis method using it
Kim et al. Fabrication of Ti/Ir-Ru electrode by spin coating method for electrochemical removal of copper
JP4638672B2 (en) Anode for generating oxygen and support therefor
WO2013005252A1 (en) Electrode for electrolysis, method for producing same, and electrolysis apparatus
JP2005539135A5 (en)
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance
JP3654204B2 (en) Oxygen generating anode
RU2150533C1 (en) Process of formation of volumetric-porous layer of metal with open porosity on current-conducting backing
Chen et al. Fabrication of nanoporous IrO2/Ir films for bioelectrode and neural prosthesis applications
Rezaei et al. A new Co-doped PbO2 anode for copper electrowinning: Electrochemical and morphological characterization
JP3661924B2 (en) Oxygen generating anode
JP3723898B2 (en) Low hydrogen overvoltage cathode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6222121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees