JP2009068059A - Electrode for electrolysis - Google Patents

Electrode for electrolysis Download PDF

Info

Publication number
JP2009068059A
JP2009068059A JP2007236328A JP2007236328A JP2009068059A JP 2009068059 A JP2009068059 A JP 2009068059A JP 2007236328 A JP2007236328 A JP 2007236328A JP 2007236328 A JP2007236328 A JP 2007236328A JP 2009068059 A JP2009068059 A JP 2009068059A
Authority
JP
Japan
Prior art keywords
electrode
intermediate layer
electrolysis
niobium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007236328A
Other languages
Japanese (ja)
Inventor
Akihide Kitahata
顕英 北畠
Soichi Ogawa
倉一 小川
Kenji Date
剣治 伊達
Kyoko Okubo
京子 大久保
Tasuku Arimoto
佐 有本
Minoru Ogiso
稔 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Sanyo Shinku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Sanyo Shinku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Sanyo Shinku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2007236328A priority Critical patent/JP2009068059A/en
Publication of JP2009068059A publication Critical patent/JP2009068059A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insoluble electrode provided with an intermediate layer, wherein durability is excellent even in the case that production cost is reduced. <P>SOLUTION: An electrode for electrolysis comprises an electrode base material comprising a conductive metal, the intermediate layer formed on the electrode base material, and a catalytic layer formed on the intermediate layer and comprising an electrode catalytic active material, wherein the whole of or a part of the intermediate layer comprises nitrided niobium. The electrode for electrolysis suppresses passivation of the electrode base material and secures the durability of the electrode, and is manufactured at a low cost. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電解用の電極に関する。詳しくは、電気めっきや金属箔製造等の電解工程において陽極として使用される電極に関する。   The present invention relates to an electrode for electrolysis. In detail, it is related with the electrode used as an anode in electrolysis processes, such as electroplating and metal foil manufacture.

各種の電解工程で使用される電極として、チタン、タンタル等のバルブ金属からなる電極基材を、白金、ルテニウム、イリジウム、ロジウム等の貴金属又はこれら貴金属の酸化物を含む電極触媒活性物質からなる触媒層で被覆した電極が知られている。このような電解用電極は、不溶性電極とも称されており、電解液の汚染等の問題に対して、古くから使用されてきた鉛電極より優れており、近年多用されるようになっている。   As an electrode used in various electrolysis processes, an electrode base material made of a valve metal such as titanium or tantalum, a catalyst made of an electrocatalytic active material containing a noble metal such as platinum, ruthenium, iridium or rhodium or an oxide of these noble metals Electrodes coated with layers are known. Such an electrode for electrolysis is also referred to as an insoluble electrode, and is superior to a lead electrode that has been used for a long time with respect to problems such as contamination of an electrolytic solution, and has recently been frequently used.

かかる不溶性電極において、求められる性能として、電極活性の維持、寿命の増大がある。不溶性電極の劣化の機構としては、使用過程における酸素発生及び触媒層の消耗に伴い、電極基材表面に絶縁性の酸化物が成長する不働態化現象によるものと考えられており、これにより電極としての機能が消失する。   In such insoluble electrodes, the required performance includes maintenance of electrode activity and increase in life. The mechanism of deterioration of the insoluble electrode is considered to be due to a passivation phenomenon in which an insulating oxide grows on the surface of the electrode base material with the generation of oxygen and the consumption of the catalyst layer in the process of use. The function as is lost.

不溶解性電極の耐久性向上の手段としては、上記のような劣化機構を考慮したものとして、電極基材と触媒層との間に、電極基材の不働態化を抑制するための中間層を形成するものが提案されている。例えば、特許文献1では、電極基材上に中間層としてタンタル皮膜を形成し、その後触媒層を形成した電極が開示されている。
特開平2−282491号公報
As a means for improving the durability of the insoluble electrode, the intermediate layer for suppressing the passivation of the electrode base material between the electrode base material and the catalyst layer is considered in consideration of the deterioration mechanism as described above. Has been proposed. For example, Patent Document 1 discloses an electrode in which a tantalum film is formed as an intermediate layer on an electrode substrate, and then a catalyst layer is formed.
JP-A-2-282491

上記従来技術において、電極基材の不働態化抑制のために中間層を形成する手法は極めて有用である。しかしながら、タンタルは、携帯電話等への急激な需要拡大に伴い、供給難や価格上昇等の問題等を有している。タンタルの使用量を削減すべく、タンタル皮膜の厚さを減少させることも検討されるが、この場合、中間層本来の機能を発揮することができない。このため、タンタルに代わる中間層の構成材料について、開発が期待されている。   In the above prior art, a method of forming an intermediate layer is extremely useful for suppressing passivation of the electrode substrate. However, tantalum has problems such as supply difficulties and price increases due to a rapid increase in demand for mobile phones and the like. In order to reduce the amount of tantalum used, it is considered to reduce the thickness of the tantalum film, but in this case, the original function of the intermediate layer cannot be exhibited. For this reason, development of the constituent material of the intermediate layer replacing tantalum is expected.

そこで、本発明は、中間層を有する不溶性電極において、製造コストを低減しつつも、耐久性に優れるものを提供することを目的とする。   Therefore, an object of the present invention is to provide an insoluble electrode having an intermediate layer, which has excellent durability while reducing manufacturing cost.

上記課題を解決する本発明は、導電性金属よりなる電極基材と、該電極基材上に形成される中間層と、該中間層上に形成され電極触媒活性物質よりなる触媒層と、からなる電解用電極において、前記中間層は、全部又は一部が窒化されたニオブからなることを特徴とする電解用電極である。   The present invention for solving the above problems comprises an electrode base material made of a conductive metal, an intermediate layer formed on the electrode base material, and a catalyst layer formed on the intermediate layer and made of an electrocatalytic active material. In the electrode for electrolysis, the intermediate layer is made of niobium that is entirely or partially nitrided.

本発明は、中間層として、タンタルと同様のバルブ金属として知られるニオブを採用し、基材の不働態化を抑制した電解用電極とするものである。しかし、単に金属ニオブを中間層として用いた場合、電極製造における触媒層形成の際、焼成によって電極に欠陥が生じる場合があり、実用的な電解用電極とすることが困難であった。この原因は、焼成によって中間層を構成する金属ニオブが酸化し、ニオブ酸化物が生成するためと考えられる。よって、本発明は、焼成しても酸化物が生じにくい、一部又は全部が窒化されたニオブを中間層として採用するものである。   The present invention employs niobium, which is known as a valve metal similar to tantalum, as an intermediate layer to provide an electrode for electrolysis that suppresses passivation of the substrate. However, when simply using niobium metal as the intermediate layer, defects may occur in the electrode due to firing during the formation of the catalyst layer in electrode production, making it difficult to obtain a practical electrode for electrolysis. This is considered to be because the niobium metal composing the intermediate layer is oxidized by firing to produce a niobium oxide. Therefore, the present invention employs, as an intermediate layer, niobium that is partly or wholly nitrided and hardly generates oxides even when fired.

上記した中間層を備える本発明の電極は、タンタルを用いた特許文献1記載の電極と比較しても、遜色のない耐久性を有するものとなる。また、ニオブを構成材とするため、従来よりも製造コストも低減できる。   The electrode of the present invention having the above-described intermediate layer has durability comparable to that of the electrode described in Patent Document 1 using tantalum. In addition, since niobium is used as the constituent material, the manufacturing cost can be reduced as compared with the prior art.

中間層を構成するニオブは、全体が均一に窒化され、層中に含まれる窒化ニオブの組成がほぼ均一である場合の他、一部のニオブのみが窒化され、異なる組成の窒化ニオブが複数含まれている場合であってもよい。   The niobium constituting the intermediate layer is uniformly nitrided as a whole and the composition of niobium nitride contained in the layer is almost uniform, or only part of the niobium is nitrided and contains multiple niobium nitrides with different compositions It may be the case.

また、中間層は、金属ニオブと、次式で示される窒化ニオブのうち1種以上からなることが好ましい。例えば、数1で示される窒化ニオブとして、NbN0.75、NbN、NbN1.3、NbN3等を含む中間層とすることができる。
The intermediate layer is preferably made of at least one of niobium metal and niobium nitride represented by the following formula. For example, the niobium nitride expressed by Equation 1 can be an intermediate layer including NbN 0.75 , NbN, NbN 1.3 , NbN 3, and the like.

中間層は、1〜50重量%の窒素を含むニオブからなることが好ましい。1重量%未満であると、焼成時に酸化物の発生を抑制する効果が得られにくく、50重量%を超えると、基板と密着性が低くなる傾向となる。また、好ましくは、5〜30重量%の窒素を含むニオブからなることがより好ましい。より耐久性の高い電極となるためである。   The intermediate layer is preferably made of niobium containing 1 to 50% by weight of nitrogen. If it is less than 1% by weight, it is difficult to obtain the effect of suppressing the generation of oxides during firing, and if it exceeds 50% by weight, adhesion to the substrate tends to be lowered. Moreover, it is more preferable that it is made of niobium containing 5 to 30% by weight of nitrogen. This is because the electrode becomes more durable.

また、中間層の比抵抗値が、48〜160μΩ・cmであることが好ましい。このように膜の電気抵抗値により窒化の程度を規定するのは、部分的な窒化によって、ニオブの電気的特性が変化し抵抗値が上昇することによる。比抵抗値は、48μΩ・cm未満であると、焼成時に酸化物の発生を抑制する効果が得られにくく、160μΩ・cmを超えると、基板との密着性が低くなる傾向となる。   Moreover, it is preferable that the specific resistance value of an intermediate | middle layer is 48-160 microhm * cm. The reason why the degree of nitridation is defined by the electrical resistance value of the film is that the electrical characteristics of niobium change and the resistance value increases due to partial nitridation. When the specific resistance value is less than 48 μΩ · cm, it is difficult to obtain the effect of suppressing the generation of oxide during firing, and when it exceeds 160 μΩ · cm, the adhesion to the substrate tends to be low.

また、中間層の厚さは、0.5μm〜3μmであることが好ましい。電極基材の不働態化抑制の効果を充分に確保しつつ、製造コストの増加を抑制するためである。0.5μm未満では、中間層としての効果が得られにくく、3μmを超える厚さとしても不働態化抑制の効果に大きな差はないが、コスト高となり好ましくないからである。   Moreover, it is preferable that the thickness of an intermediate | middle layer is 0.5 micrometer-3 micrometers. This is to suppress an increase in manufacturing cost while sufficiently ensuring the effect of suppressing the passivation of the electrode substrate. If the thickness is less than 0.5 μm, the effect as the intermediate layer is difficult to obtain, and even if the thickness exceeds 3 μm, there is no significant difference in the effect of suppressing passivation, but the cost increases, which is not preferable.

上記した中間層を形成するための電極基材は、従来の不溶性電極で使用されているものが適用でき、チタニウム、ニオブ、タンタル等のバルブ金属からなるものが使用できる。   As the electrode base material for forming the above-mentioned intermediate layer, those used in conventional insoluble electrodes can be applied, and those made of valve metals such as titanium, niobium, and tantalum can be used.

また、中間層の上に形成される触媒層についても、従来の不溶性電極の触媒層を適用でき、例えば、酸化イリジウム又は酸化ルテニウム等の白金族金属の酸化物、及び、これらの混合物、更にこれらにチタン、タンタル等のバルブ金属(酸化物)を含むものが使用できる。この触媒層の膜厚は、0.1μm〜20μmであることが望ましい。0.1μm未満では、電気分解効率が良好なものとなりにくい傾向があり、20μmを超えても電気分解効率に問題はないが、高コストになってしまう傾向がある。   In addition, the catalyst layer of the conventional insoluble electrode can be applied to the catalyst layer formed on the intermediate layer, for example, an oxide of a platinum group metal such as iridium oxide or ruthenium oxide, and a mixture thereof, and further these In addition, those containing valve metals (oxides) such as titanium and tantalum can be used. The thickness of the catalyst layer is preferably 0.1 μm to 20 μm. If the thickness is less than 0.1 μm, the electrolysis efficiency tends to be difficult, and if it exceeds 20 μm, there is no problem in the electrolysis efficiency, but the cost tends to increase.

本発明に係る電解用電極の製造方法は、電極基材に中間層、触媒層を順次形成するものであるが、中間層の形成方法としては、例えば、めっき等の製膜プロセスによりニオブ層を形成し、これを窒化処理する方法をとっても良い。但し、ニオブ層の窒化処理には高温加熱を要することがあり基材への影響が懸念され、また、十分に窒化を行えないことがある。   In the method for producing an electrode for electrolysis according to the present invention, an intermediate layer and a catalyst layer are sequentially formed on an electrode substrate. For example, a niobium layer is formed by a film forming process such as plating. A method of forming and nitriding this may be adopted. However, the nitriding treatment of the niobium layer may require high-temperature heating, and there is a concern about the influence on the base material, and nitriding may not be performed sufficiently.

そこで、中間層の形成方法には、反応性スパッタリングを適用するのが好ましい。反応性スパッタリングは、金属ターゲットを用いて、反応性雰囲気下でスパッタリング処理を行うものであるが、雰囲気を調整して、製造される薄膜の組成を調整することができ、また、基材への影響も少なくすることができる。本発明に係る電極の中間層を製造する場合、ニオブターゲットを用いて、窒素ガス含有雰囲気下でスパッタリングすることにより、一部又は部分窒化されたニオブ層を形成できる。   Therefore, it is preferable to apply reactive sputtering to the method for forming the intermediate layer. In reactive sputtering, sputtering is performed in a reactive atmosphere using a metal target, but the atmosphere can be adjusted to adjust the composition of the thin film to be produced. The impact can be reduced. When the intermediate layer of the electrode according to the present invention is manufactured, a partially or partially nitrided niobium layer can be formed by sputtering in a nitrogen gas-containing atmosphere using a niobium target.

反応性スパッタリングによる中間層の形成においては、スパッタリングガスの全圧に対する窒素ガス分圧の割合を0.1〜70%の間で変化させることで中間層の組成を調整することができ、窒素ガス分圧を高くすることにより中間層中の窒素含有量を高めることができる。   In the formation of the intermediate layer by reactive sputtering, the composition of the intermediate layer can be adjusted by changing the ratio of the nitrogen gas partial pressure to the total pressure of the sputtering gas between 0.1 and 70%. The nitrogen content in the intermediate layer can be increased by increasing the partial pressure.

中間層形成後の触媒層の形成方法については、一般に知られており、工業的規模での電極作成にも好適である焼成法が好ましい。焼成法は、触媒層を構成する貴金属の塩、及び、タンタル塩、チタン塩をアルコール等の溶媒に溶解させた溶液を塗布し、これを400〜500℃で20分間〜1時間焼成し、この塗布及び焼成を繰返すものである。繰返しの回数は、目的とする触媒層の厚さに対応するものである。   The method for forming the catalyst layer after the formation of the intermediate layer is generally known, and a firing method suitable for electrode production on an industrial scale is preferred. In the firing method, a solution in which a salt of a precious metal constituting the catalyst layer, a tantalum salt, and a titanium salt is dissolved in a solvent such as alcohol is applied, and this is fired at 400 to 500 ° C. for 20 minutes to 1 hour. Application and baking are repeated. The number of repetitions corresponds to the thickness of the target catalyst layer.

以上説明したように、本発明に係る電解用電極は、電極基材の不働態化を抑制し、電極の耐久性を確保する。本発明に係る電極は、低コストで製造可能である。   As described above, the electrode for electrolysis according to the present invention suppresses passivation of the electrode base material and ensures the durability of the electrode. The electrode according to the present invention can be manufactured at low cost.

以下、本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

<第1実施形態>
実施例1:電極基材であるチタン基板上に、反応性スパッタリングにより一部窒化されたニオブからなる中間層を形成した後、焼成法により触媒層を形成した。
<First Embodiment>
Example 1 : An intermediate layer made of niobium partially nitrided by reactive sputtering was formed on a titanium substrate as an electrode base material, and then a catalyst layer was formed by a firing method.

100mm×100mm×0.5mmのチタン板を基材として、酸性、アルカリ性脱脂液に浸漬して脱脂後、酸洗して酸化皮膜を除去した後、純度99.9%のニオブターゲットを用いて、スパッタリング装置によって反応性スパッタリングを行った。チャンバ内は1×10−4Paに成るまで排気し、ガス圧1.5×10−1Paと成るようにアルゴンガス及び窒素ガスを含むスパッタリングガスを導入した。このときの窒素ガス分圧は1.5×10−2Pa(スパッタリングガス中では10%)となるよう調整した。基板温度200℃、直流電力2kWで、約3時間のスパッタリングを行い、約2μmの中間層を形成した。 Using a titanium plate of 100 mm × 100 mm × 0.5 mm as a base material, after degreasing by dipping in an acidic or alkaline degreasing solution, pickling and removing the oxide film, using a niobium target having a purity of 99.9%, Reactive sputtering was performed using a sputtering apparatus. The chamber was evacuated to 1 × 10 −4 Pa, and a sputtering gas containing argon gas and nitrogen gas was introduced so that the gas pressure was 1.5 × 10 −1 Pa. The nitrogen gas partial pressure at this time was adjusted to 1.5 × 10 −2 Pa (10% in the sputtering gas). Sputtering was performed at a substrate temperature of 200 ° C. and a DC power of 2 kW for about 3 hours to form an intermediate layer of about 2 μm.

中間層を形成した後、焼成法により酸化イリジウム−酸化タンタルからなる触媒層を形成した。濃度10%の塩化イリジウム酸と有機タンタル化合物をブタノールに溶解して中間層上に塗布し、室温で10分間乾燥させた後、450℃、30分間焼成した。この塗布、焼成作業を10回繰り返して電解用電極を得た。このときの触媒層の膜厚は、約5μmであった。実施例1については、X線回折による分析のため、焼成温度を400℃、500℃とした電極も製造した。   After forming the intermediate layer, a catalyst layer made of iridium oxide-tantalum oxide was formed by a firing method. 10% concentration of iridium chloride and an organic tantalum compound were dissolved in butanol, applied on the intermediate layer, dried at room temperature for 10 minutes, and then baked at 450 ° C. for 30 minutes. This application and firing operation was repeated 10 times to obtain an electrode for electrolysis. At this time, the thickness of the catalyst layer was about 5 μm. About Example 1, the electrode which made baking temperature 400 degreeC and 500 degreeC was also manufactured for the analysis by X-ray diffraction.

比較例1:中間層の形成において、アルゴンガスのみを用いてスパッタリングを行い、金属ニオブからなる中間層を形成した。その他の条件は、実施例1と同様とした。X線回折による分析のため、焼成温度を400℃、500℃とした電極も製造した。 Comparative Example 1 : In forming the intermediate layer, sputtering was performed using only argon gas to form an intermediate layer made of metallic niobium. Other conditions were the same as in Example 1. For analysis by X-ray diffraction, an electrode with a firing temperature of 400 ° C. and 500 ° C. was also produced.

[中間層のX線回折]
上記により得られた電極に関し、触媒層を塗布後焼成する前の電極、及び400℃、450℃、500℃の各温度で焼成した電極について、X線回折による分析を行った。分析は、X線回折装置(理学電機社製)を用いて、CuKα線により、管電圧40V、管電流40A、回折角2θを20〜100°、サンプリング間隔0.2°、スキャン速度4°/分として行った。
[X-ray diffraction of intermediate layer]
With respect to the electrode obtained as described above, analysis by X-ray diffraction was performed on the electrode before firing after coating the catalyst layer and the electrode fired at each temperature of 400 ° C., 450 ° C., and 500 ° C. The analysis was performed using an X-ray diffractometer (manufactured by Rigaku Corporation) with CuKα rays, tube voltage 40V, tube current 40A, diffraction angle 2θ of 20 to 100 °, sampling interval 0.2 °, scan speed 4 ° / Went as a minute.

図1より、成膜後の実施例1の中間層には、NbN、Nb43、Nbが含まれていることが分かった。また、450℃における焼成後の回折ピークを観察すると、一部が窒化されたニオブからなる中間層を備えた実施例1では、酸化ニオブに由来する回折ピークは確認されなかったのに対し、中間層を金属ニオブとした比較例1では、酸化ニオブNb25に由来する半値幅2θ=23°、29°において、回折ピークが確認された。よって、中間層のニオブを一部窒化したものとすれば、焼成による酸化ニオブの発生を抑制できることが分かった。 From FIG. 1, it was found that the intermediate layer of Example 1 after film formation contained NbN, Nb 4 N 3 , and Nb. Further, when observing the diffraction peak after firing at 450 ° C., in Example 1 including the intermediate layer made of niobium partially nitrided, the diffraction peak derived from niobium oxide was not confirmed. In Comparative Example 1 in which the layer was metallic niobium, diffraction peaks were confirmed at the half-value width 2θ = 23 ° and 29 ° derived from niobium oxide Nb 2 O 5 . Therefore, it was found that if niobium in the intermediate layer was partially nitrided, generation of niobium oxide due to firing could be suppressed.

[電極表面形態の観察]
実施例1、比較例1について、触媒層塗布後、450℃において焼成した電極の表面形態を観察した(図2)。図3は、実施例1が500倍のSEM観察写真、比較例1がデジタル顕微鏡により10倍した観察写真である。
[Observation of electrode surface morphology]
For Example 1 and Comparative Example 1, the surface morphology of the electrodes fired at 450 ° C. after application of the catalyst layer was observed (FIG. 2). FIG. 3 is a 500 × magnification SEM observation photograph of Example 1, and a 10 × magnification observation photograph of Comparative Example 1 using a digital microscope.

図より、実施例1の電極は、加熱後も良好な表面形態であり、SEMによる拡大写真によっても触媒層の脱落等は観察されなかった。一方、比較例1では、目視レベルの拡大図によっても触媒層の脱落が観察され、金属ニオブが露出した部分が確認された。以上より、比較例1では、金属ニオブが酸化され、酸化ニオブが生じたことにより、触媒層の脱落が生じたものと考えられる。一方、実施例1では、酸化ニオブの発生が抑制されて、触媒層の脱落も防ぐことができたものと考えられる。   From the figure, the electrode of Example 1 has a good surface form even after heating, and no dropout of the catalyst layer or the like was observed by an enlarged photograph by SEM. On the other hand, in Comparative Example 1, dropping of the catalyst layer was observed even by a visual level enlarged view, and a portion where the metal niobium was exposed was confirmed. From the above, in Comparative Example 1, it is considered that the catalyst layer was dropped due to the oxidation of metallic niobium and the generation of niobium oxide. On the other hand, in Example 1, generation | occurrence | production of niobium oxide was suppressed and it is thought that the fall-off | omission of the catalyst layer was also able to be prevented.

実施例2:反応性スパッタリングにおける窒素ガス分圧を1.0×10−1Pa(スパッタリングガス中では66%)となるよう調整して中間層を形成した。その他の製造条件は、実施例1と同様とした。形成された膜厚はともに2μmであった。 Example 2 An intermediate layer was formed by adjusting the nitrogen gas partial pressure in reactive sputtering to 1.0 × 10 −1 Pa (66% in sputtering gas). Other manufacturing conditions were the same as in Example 1. Both formed film thicknesses were 2 μm.

比較例2:中間層としてタンタル層を形成した電極とした。実施例1において、チタン基材の前処理後、スパッタリング装置に導入し、純度99.9%のタンタルターゲットを用いて、アルゴンガスのみを用いて、スパッタ時間を調整してタンタル層を2μm形成した。実施例1と同様の条件で触媒層を形成し、電極とした。 Comparative Example 2 : An electrode in which a tantalum layer was formed as an intermediate layer was used. In Example 1, after the pretreatment of the titanium base material, it was introduced into a sputtering apparatus, and a tantalum layer having a thickness of 2 μm was formed by adjusting the sputtering time using only a tantalum target having a purity of 99.9% and using only argon gas. . A catalyst layer was formed under the same conditions as in Example 1 to obtain an electrode.

[窒素含有量及び比抵抗値の測定]
上記により得られた実施例及び比較例の電極について、中間層中の窒素含有量をEPMAにより測定した。比抵抗値は、四探針により測定した。一般的に、窒素濃度が多くなると、比抵抗値が大きくなることが知られている。
[Measurement of nitrogen content and resistivity]
About the electrode of the Example obtained by the above and a comparative example, nitrogen content in an intermediate | middle layer was measured by EPMA. The specific resistance value was measured with a four-point probe. In general, it is known that the specific resistance value increases as the nitrogen concentration increases.

[電解試験]
実施例及び比較例の電極について、電解試験を行い寿命時間を測定した。電解試験は、各実施例、比較例に係る電極を陽極とし、陰極としてZr金属を用い、両電極をメタンスルホン酸(MSA)浴の錫めっき液に浸漬して、電流密度200A/dm2、液温40℃として電解を行い耐久時間を測定した。耐久時間(陽極の寿命)の評価は、初期のセル電圧から5V上昇した時点を終点とし、終点までの時間を寿命と判断した。また、フェノールスルホン酸(PSA)浴(電流密度200A/dm2)、アルカリシアン浴(電流密度50A/dm2)を用いた場合の耐久時間についても同様に測定を行った。
[Electrolysis test]
About the electrode of an Example and a comparative example, the electrolysis test was done and the lifetime was measured. In the electrolysis test, the electrode according to each example and comparative example was used as an anode, Zr metal was used as a cathode, both electrodes were immersed in a tin plating solution of a methanesulfonic acid (MSA) bath, and the current density was 200 A / dm 2 . Electrolysis was performed at a liquid temperature of 40 ° C., and the durability time was measured. The endurance time (anode life) was evaluated by determining the end point as the end point of 5 V from the initial cell voltage and determining the end time as the end point. Further, the durability time in the case of using a phenol sulfonic acid (PSA) bath (current density 200 A / dm 2 ) and an alkali cyan bath (current density 50 A / dm 2 ) was measured in the same manner.

表より、反応性スパッタリング時の窒素ガス分圧を調整することにより、窒素含有量の異なる中間層を形成することが可能であることが分かった。また、電気抵抗値(比抵抗)は、窒素含有量が多いほど高い値を示す傾向があった。   From the table, it was found that intermediate layers having different nitrogen contents can be formed by adjusting the nitrogen gas partial pressure during reactive sputtering. Moreover, the electrical resistance value (specific resistance) tended to show a higher value as the nitrogen content increased.

一部窒化されたニオブからなる中間層を備える実施例1及び実施例2の電極は、タンタルからなる中間層を備える比較例2の電極と比較しても、耐久時間の長い電極であった。また、実施例1と実施例2とを比較すると、窒素含有量の多い実施例2の方が、耐久時間が長くなる傾向となった。一方、金属ニオブを中間層とした比較例1の電極では、めっき開始後、すぐにセル電圧が上昇してしまった。   The electrodes of Example 1 and Example 2 provided with an intermediate layer made of partially nitrided niobium were electrodes having a long durability time as compared with the electrode of Comparative Example 2 provided with an intermediate layer made of tantalum. Further, when Example 1 and Example 2 were compared, Example 2 with a higher nitrogen content tended to have a longer durability time. On the other hand, in the electrode of Comparative Example 1 using metallic niobium as the intermediate layer, the cell voltage increased immediately after the start of plating.

<第2実施形態>
次に、中間層の膜厚を変化させて形成した電極について、上記と同様の耐久試験を行った。
Second Embodiment
Next, an endurance test similar to the above was performed on the electrode formed by changing the thickness of the intermediate layer.

実施例3、4:スパッタリング時間を調整して中間層の厚さを0.5μm、3μmとして電極を作成した。その他の条件は実施例1と同様とした。 Examples 3 and 4 : Electrodes were prepared by adjusting the sputtering time so that the thickness of the intermediate layer was 0.5 μm and 3 μm. Other conditions were the same as in Example 1.

比較例3:スパッタリング時間を調整し、厚さ0.5μmとなるようタンタル層を形成した電極とした。その他の条件は比較例2と同様とした。 Comparative Example 3 : An electrode having a tantalum layer formed so as to have a thickness of 0.5 μm was prepared by adjusting the sputtering time. Other conditions were the same as in Comparative Example 2.

比較例4:中間層を形成せず、電極基材上に直接触媒層を形成して電極を製造した。実施例1において、チタン基材の前処理を行った後、触媒層を形成して電極とした。 Comparative Example 4 An electrode was produced by forming a catalyst layer directly on an electrode substrate without forming an intermediate layer. In Example 1, after pretreatment of the titanium substrate, a catalyst layer was formed to form an electrode.

中間層の膜厚が異なる実施例1、3、4を比較すると、膜厚が厚いほど、耐久性が良好となる傾向があった。膜厚が共に0.5μmである実施例3と比較例3とを比較すると、窒化ニオブからなる中間層を備える実施例3の電極の方が、タンタルからなる比較例3の電極よりも耐久時間の長い電極であることが分かった。中間層を有しない比較例4の電極は、各実施例ほどの耐久性を有しなかった。   When Examples 1, 3, and 4 in which the thickness of the intermediate layer is different were compared, the thicker the thickness, the better the durability. Comparing Example 3 and Comparative Example 3 each having a thickness of 0.5 μm, the electrode of Example 3 having an intermediate layer made of niobium nitride is more durable than the electrode of Comparative Example 3 made of tantalum. It was found to be a long electrode. The electrode of Comparative Example 4 having no intermediate layer did not have the same durability as each Example.

比較例1(左)、実施例1(右)のX線回折スペクトルX-ray diffraction spectra of Comparative Example 1 (left) and Example 1 (right) 焼成後の実施例1(左)、比較例1(右)の電解用電極表面の観察写真。Observation photograph of electrode surface for electrolysis of Example 1 (left) and Comparative Example 1 (right) after firing. 焼成後の実施例1(左)、比較例1(右)の電解用電極表面の観察写真の拡大図。The enlarged view of the observation photograph of the electrode surface for electrolysis of Example 1 (left) and Comparative Example 1 (right) after baking.

Claims (7)

導電性金属よりなる電極基材と、該電極基材上に形成される中間層と、該中間層上に形成され電極触媒活性物質よりなる触媒層と、からなる電解用電極において、
前記中間層は、全部又は一部が窒化されたニオブからなることを特徴とする電解用電極。
In an electrode for electrolysis comprising an electrode substrate made of a conductive metal, an intermediate layer formed on the electrode substrate, and a catalyst layer formed on the intermediate layer and made of an electrocatalytic active material,
The electrode for electrolysis, wherein the intermediate layer is made of niobium that is entirely or partially nitrided.
中間層は、金属ニオブと、次式で示される窒化ニオブのうち1種以上と、からなる請求項1に記載の電解用電極。
The electrode for electrolysis according to claim 1, wherein the intermediate layer is composed of metallic niobium and at least one of niobium nitrides represented by the following formula.
中間層は、1〜50重量%の窒素を含むニオブからなる請求項1又は請求項2に記載の電解用電極。   The electrode for electrolysis according to claim 1 or 2, wherein the intermediate layer is made of niobium containing 1 to 50% by weight of nitrogen. 中間層の比抵抗値が、48〜160μΩ・cmである請求項1〜請求項3のいずれかに記載の電解用電極。   The electrode for electrolysis according to any one of claims 1 to 3, wherein a specific resistance value of the intermediate layer is 48 to 160 µΩ · cm. 中間層の膜厚は、0.5〜3μmである請求項1〜請求項4のいずれかに記載の電解用電極。   The electrode for electrolysis according to any one of claims 1 to 4, wherein the thickness of the intermediate layer is 0.5 to 3 µm. 請求項1〜請求項5のいずれかに記載の電解用電極の製造方法において、
電極基材上に、窒素ガス含有雰囲気下で、ニオブをターゲットとする反応性スパッタリングを行って中間層を形成した後、触媒層を形成する電解用電極の製造方法。
In the manufacturing method of the electrode for electrolysis in any one of Claims 1-5,
A method for producing an electrode for electrolysis, in which an intermediate layer is formed by performing reactive sputtering using niobium as a target on an electrode substrate in an atmosphere containing nitrogen gas, and then forming a catalyst layer.
反応性スパッタリングは、スパッタリングガスの全圧に対する窒素ガス分圧の割合を0.1〜70%として行う請求項6に記載の電解用電極の製造方法。 Reactive sputtering is a manufacturing method of the electrode for electrolysis of Claim 6 which performs the ratio of nitrogen gas partial pressure with respect to the total pressure of sputtering gas as 0.1 to 70%.
JP2007236328A 2007-09-12 2007-09-12 Electrode for electrolysis Ceased JP2009068059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236328A JP2009068059A (en) 2007-09-12 2007-09-12 Electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236328A JP2009068059A (en) 2007-09-12 2007-09-12 Electrode for electrolysis

Publications (1)

Publication Number Publication Date
JP2009068059A true JP2009068059A (en) 2009-04-02

Family

ID=40604632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236328A Ceased JP2009068059A (en) 2007-09-12 2007-09-12 Electrode for electrolysis

Country Status (1)

Country Link
JP (1) JP2009068059A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499294A (en) * 1990-08-09 1992-03-31 Daiso Co Ltd Oxygen generating anode and its production
JPH06248485A (en) * 1992-12-28 1994-09-06 Furukawa Electric Co Ltd:The Electrode for generating oxygen and its production
JPH06293998A (en) * 1993-04-08 1994-10-21 Nippon Steel Corp Insoluble iridium oxide coated electrode and its production
JPH07229000A (en) * 1993-12-24 1995-08-29 Daiso Co Ltd Oxygen generating anode
JPH10265999A (en) * 1997-03-25 1998-10-06 Tanaka Kikinzoku Kogyo Kk Fluorine-containing solution electrolyzing electrode
JPH1161496A (en) * 1997-08-25 1999-03-05 Nippon Steel Corp Insoluble electrode and its production
JP2004152990A (en) * 2002-10-30 2004-05-27 Communication Research Laboratory Superconductive multilayer structure and its manufacturing method and equipment therefor
JP2004307969A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Insoluble electrode, and its production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499294A (en) * 1990-08-09 1992-03-31 Daiso Co Ltd Oxygen generating anode and its production
JPH06248485A (en) * 1992-12-28 1994-09-06 Furukawa Electric Co Ltd:The Electrode for generating oxygen and its production
JPH06293998A (en) * 1993-04-08 1994-10-21 Nippon Steel Corp Insoluble iridium oxide coated electrode and its production
JPH07229000A (en) * 1993-12-24 1995-08-29 Daiso Co Ltd Oxygen generating anode
JPH10265999A (en) * 1997-03-25 1998-10-06 Tanaka Kikinzoku Kogyo Kk Fluorine-containing solution electrolyzing electrode
JPH1161496A (en) * 1997-08-25 1999-03-05 Nippon Steel Corp Insoluble electrode and its production
JP2004152990A (en) * 2002-10-30 2004-05-27 Communication Research Laboratory Superconductive multilayer structure and its manufacturing method and equipment therefor
JP2004307969A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Insoluble electrode, and its production method

Similar Documents

Publication Publication Date Title
JP6152139B2 (en) Electrodes for electrolysis applications
JP4884333B2 (en) Electrode for electrolysis
US8142898B2 (en) Smooth surface morphology chlorate anode coating
TW200427871A (en) Electrocatalytic coating with lower platinum group metals and electrode made therefrom
JP4554542B2 (en) Electrode for electrolysis
JP2008528804A (en) Anode coating for highly efficient hypochlorite production
JP2007146215A (en) Electrode for oxygen generation
CN102762776B (en) Activated cathode for hydrogen evolution
JP4734664B1 (en) Electrode for electrolysis, anode for electrolysis of ozone, anode for electrolysis of persulfate, and anode for chromium electrooxidation
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
JP2004238697A (en) Electrode for oxygen generation
JP2008050675A (en) Electrode for electrolysis
US5665218A (en) Method of producing an oxygen generating electrode
JPH08199384A (en) Electrolyzing electrode and its production
JP2009068059A (en) Electrode for electrolysis
JPH0499294A (en) Oxygen generating anode and its production
JP3621148B2 (en) Electrode for electrolysis and method for producing the same
JPS5822551B2 (en) Improved electrode manufacturing method
JP2008156684A (en) Anode electrode for hydrochloric acid electrolysis
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
JP2004360067A (en) Electrode for electrolysis, and its production method
JP4942551B2 (en) Electrode for electrolysis
EP4372126A1 (en) Electrode for industrial electrolytic process
JP2011149044A (en) Electrode for electrolytic oxidation reaction and method for producing the same
JPH06306669A (en) High durable electrode for electrolysis and production thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100318

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

A977 Report on retrieval

Effective date: 20111226

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120525