JP2004360067A - Electrode for electrolysis, and its production method - Google Patents

Electrode for electrolysis, and its production method Download PDF

Info

Publication number
JP2004360067A
JP2004360067A JP2004105964A JP2004105964A JP2004360067A JP 2004360067 A JP2004360067 A JP 2004360067A JP 2004105964 A JP2004105964 A JP 2004105964A JP 2004105964 A JP2004105964 A JP 2004105964A JP 2004360067 A JP2004360067 A JP 2004360067A
Authority
JP
Japan
Prior art keywords
electrode
oxide film
substrate
temperature
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004105964A
Other languages
Japanese (ja)
Other versions
JP4209801B2 (en
Inventor
Masashi Hosonuma
正志 細沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2004105964A priority Critical patent/JP4209801B2/en
Publication of JP2004360067A publication Critical patent/JP2004360067A/en
Application granted granted Critical
Publication of JP4209801B2 publication Critical patent/JP4209801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for electrolysis which contains an intermediate layer more excellent in peeling resistance and corrosion resistance than the conventional electrode for electrolysis, has an electrolysis life longer than that of the same and causes a large electric current at an industrial level to flow, and to provide its production method. <P>SOLUTION: The electrode for electrolysis is obtained by coating the surface of a high temperature oxide film for a valve metal or valve metal alloy electrode substrate 1 whose surface is oxidized to form the high temperature oxide film 2, with an electrode catalyst 3. The high temperature oxide film is integrated with the electrode substrate to improve its peeling resistance. Further, by the heating of the high temperature oxide film together with the electrode catalyst, the non-electronic conductivity of the intermediate layer is reformed into electronic conductivity, so that the large electric current can be caused to flow. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、各種工業電解に使用される電解用電極及びその製造方法に関し、より詳細には電解銅箔製造、アルミニウム液中給電、連続電気亜鉛メッキ鋼板製造等の工業電解で使用される酸素発生用陽極及びその製造方法に関する。   The present invention relates to an electrode for electrolysis used for various industrial electrolysis and a method for producing the same, and more particularly, to oxygen generation used in industrial electrolysis such as production of electrolytic copper foil, power supply in aluminum liquid, production of continuous electrogalvanized steel sheet, and the like. The present invention relates to an anode for use and a method for producing the same.

近年、電解銅箔、アルミニウム液中給電、連続電気亜鉛めっき鋼板等の工業電解では金属チタン基体に主として酸化イリジウムを電極触媒としてコーティングした陽極が多く用いられるようになった。しかし食塩電解で用いられる、主として酸化ルテニウムを電極触媒とする塩素発生用陽極は塩素及び苛性ソーダの製品の純度に直結するため電解浴管理が徹底しており、電極触媒の消耗を早める不純物が電解浴に混入することは希であるのに対して、主として陰極において付加価値のある製品を生み出す前記の工業電解では、製品の安定化のために有機物や不純物元素が添加される。このため無隔膜状態で酸素発生が行なわれている陽極近傍においては、種々の電気化学反応や化学反応が起こり、酸素発生反応に伴う水素イオン濃度の高まり(pHが低下)による電極触媒の消耗をさらに早めることになる。   In recent years, in industrial electrolysis such as electrolytic copper foil, power supply in an aluminum solution, and continuous electrogalvanized steel sheet, an anode obtained by coating a metal titanium substrate mainly with iridium oxide as an electrode catalyst has come into wide use. However, the anode for chlorine generation, which is mainly used in salt electrolysis and mainly uses ruthenium oxide as an electrode catalyst, is closely related to the purity of chlorine and caustic soda products. However, in the above-mentioned industrial electrolysis, which produces a value-added product mainly at the cathode, organic substances and impurity elements are added for the purpose of stabilizing the product. For this reason, various electrochemical reactions and chemical reactions occur near the anode where oxygen is generated without a diaphragm, and the consumption of the electrode catalyst due to an increase in the hydrogen ion concentration (pH decrease) accompanying the oxygen generation reaction is reduced. It will be even faster.

また、塩素発生用に通常用いられている酸化ルテニウム電極触媒が触媒担持量の約90%まで使用できるのに対し、酸素発生用に多く用いられる酸化イリジウム電極触媒は50%程度までしか使用できないまま電極電位が上昇して電解不能になる場合が多い。
酸素発生用電極の電位上昇は、上述の電極触媒の消耗と、それと共通する原因による電極基体の腐食から開始される。さらに、電極触媒の部分的な内部消耗と剥離によって、残った電極触媒への電流集中が加わり、連鎖的かつ加速度的に進行するものと考えられる。
Also, while ruthenium oxide electrocatalysts commonly used for chlorine generation can use up to about 90% of the supported catalyst amount, iridium oxide electrocatalysts often used for oxygen generation can only use up to about 50%. In many cases, the electrode potential rises and electrolysis becomes impossible.
The increase in the potential of the oxygen generating electrode is started by the above-described consumption of the electrode catalyst and the corrosion of the electrode substrate due to a common cause. Further, it is considered that current concentration on the remaining electrode catalyst is added due to partial internal consumption and peeling of the electrode catalyst, and the current proceeds in a chained and accelerated manner.

電極基体の腐食溶解やそれに伴う有効な電極触媒の電極基体からの剥離を抑制するために、チタン基体と電極触媒層の間に中間層を設けることを中心に多くの方法が採られている。
通常、中間層の電極活性は電極触媒層より低いものが選択され、いずれのタイプも電子伝導性を持ち、腐食性の電解液及びpHの低下をもたらす酸素発生部位から電極基体を遠ざけることによって、基体のダメージを緩和するという役割を担っている。
In order to suppress the corrosion and dissolution of the electrode substrate and the accompanying peeling of the effective electrode catalyst from the electrode substrate, many methods have been adopted mainly for providing an intermediate layer between the titanium substrate and the electrode catalyst layer.
Usually, the electrode activity of the intermediate layer is selected to be lower than that of the electrode catalyst layer.Either type has electron conductivity, and by keeping the electrode substrate away from the corrosive electrolytic solution and the oxygen generation site that causes a decrease in pH, It plays a role in mitigating damage to the substrate.

このような条件を満たす中間層として、特公昭60-21232号公報においては、タンタル及び/又はニオブの酸化物を金属換算で0.001〜1g/m2の薄さで設け、基体表面に生成するチタン酸化皮膜に導電性を付与した中間層が提案された。さらに、特公昭60-22074号公報においては、チタン及び/又はスズの酸化物に、タンタル及び/又はニオブの酸化物を添加した原子価制御半導体が提案され、いずれも工業的に広く用いられている。しかし、近年経済的効率を重視する流れから、運転条件が益々過酷となり、より高い耐久性を持った電極が求められている。
簡単で実用的な手段として、電極触媒の塗布量を多くして対応する場合があるが、塗布量と電極寿命は必ずしも正比例するわけではない。前述のように熾烈な環境下では電極基体と電極触媒の界面近傍でも劣化が進行するから、増量した電極触媒すべてが有効に利用されるとは限らず、その結果貴重な電極触媒を浪費することになる。
特開平7−90665号公報(請求項4、[0025]〜[0037])
As an intermediate layer satisfying such conditions, Japanese Patent Publication No. Sho 60-21232 discloses that an oxide of tantalum and / or niobium is provided in a thickness of 0.001 to 1 g / m 2 in terms of metal, and titanium formed on the surface of the substrate. An intermediate layer having an oxide film provided with conductivity has been proposed. Furthermore, Japanese Patent Publication No. 60-22074 proposes a valence control semiconductor in which a tantalum and / or niobium oxide is added to a titanium and / or tin oxide, all of which are widely used industrially. I have. However, in recent years, with the trend of placing importance on economic efficiency, operating conditions have become increasingly severe, and there has been a demand for electrodes having higher durability.
As a simple and practical means, there is a case where the application amount of the electrode catalyst is increased to cope with the problem, but the application amount and the electrode life are not always directly proportional. As described above, in a severe environment, deterioration proceeds near the interface between the electrode substrate and the electrode catalyst, so that not all of the increased amount of the electrode catalyst is necessarily used effectively. As a result, valuable electrode catalyst is wasted. become.
JP-A-7-90665 (Claim 4, [0025] to [0037])

このような中間層形成の問題点を解消するために、チタン製電極基体自体を電解酸化して該電極基体表面のチタンを酸化チタンに変換して中間層(チタン酸化物単独層)を形成する方法が特許文献1に記載されている。しかしながら特許文献1記載の電極では、電解酸化で形成可能な中間層が極めて薄いため十分な耐食性が得られず([0034])、そのため前記第1のチタン酸化物単独層の表面に熱分解法で厚い第2のチタン酸化物単独層を形成し、その上に電極触媒層を形成している。なお第1のチタン酸化物単独層を含酸素雰囲気中で加熱して形成することも開示されているが、この場合にも第2のチタン酸化物単独層が形成される。
特許文献1に記載の方法では、中間層形成に2工程、特に電解と熱分解といった全く異なった設備を要する工程を要するため、作業性が劣り経済的にも負担が大きく、十分な実用性を有し得なかった。
In order to solve such a problem of the formation of the intermediate layer, the titanium electrode base itself is electrolytically oxidized to convert titanium on the surface of the electrode base into titanium oxide to form an intermediate layer (a titanium oxide single layer). The method is described in Patent Document 1. However, in the electrode described in Patent Document 1, sufficient corrosion resistance cannot be obtained because the intermediate layer that can be formed by electrolytic oxidation is extremely thin ([0034]). Therefore, the surface of the first titanium oxide single layer is thermally decomposed. To form a thick second titanium oxide single layer, and an electrode catalyst layer thereon. Although it is also disclosed that the first titanium oxide single layer is formed by heating in an oxygen-containing atmosphere, the second titanium oxide single layer is also formed in this case.
The method described in Patent Literature 1 requires two steps for forming the intermediate layer, in particular, a step requiring completely different facilities such as electrolysis and thermal decomposition. Therefore, the workability is poor and the burden is large economically, and sufficient practicality is required. Could not have.

本発明はこのような従来技術の欠点に鑑み、電極基体と電極触媒の中間に、耐食性に富み、緻密で電極基体と強固に接合でき更に単一工程で作製できる中間層(高温酸化皮膜)を形成した電解用電極及びその製造方法を提供することを目的とする。   In view of the drawbacks of the prior art, the present invention provides an intermediate layer (high-temperature oxide film) that is rich in corrosion resistance, dense, can be firmly bonded to the electrode substrate, and can be manufactured in a single process, between the electrode substrate and the electrode catalyst. An object of the present invention is to provide a formed electrode for electrolysis and a method for manufacturing the same.

本発明は、第1にバルブメタル又はバルブメタル合金電極基体、該バルブメタル又はバルブメタル合金電極基体の高温酸化処理により該表面に重量増加量が0.5g/m2以上となるように形成された高温酸化皮膜、及び該高温酸化皮膜表面に形成された電極触媒層を含んで成ることを特徴とする電解用電極であり、第2にバルブメタル又はバルブメタル合金電極基体の高温酸化処理により、該電極基体表面に高温酸化皮膜をその重量増加量が0.5g/m2以上(TiO2換算で1.25g/m2以上)となるように形成し、次いで該高温酸化皮膜上に電極触媒層を形成することを特徴とする電解用電極の製造方法であり、第3にバルブメタル又はバルブメタル合金基体の高温酸化処理により、該基体表面に高温酸化皮膜を形成し、次いで該高温酸化皮膜上に電極触媒層を形成する電解用電極の製造方法において、前記電極基体と電極触媒の界面に、電極基体の高温酸化皮膜を形成する際に、その高温酸化皮膜の重量増加量を、空気中における加熱温度600℃、保持時間1時間で生成するバルブメタル又はバルブメタル合金電極基体の高温酸化皮膜の重量増加量以上とすることを特徴とする電解用電極の製造方法である。 According to the present invention, first, a valve metal or a valve metal alloy electrode substrate, and a valve metal or a valve metal alloy electrode substrate formed on the surface by a high-temperature oxidation treatment so that the weight increase is 0.5 g / m 2 or more. A high-temperature oxide film, and an electrode for electrolysis characterized by comprising an electrode catalyst layer formed on the surface of the high-temperature oxide film. A high-temperature oxide film is formed on the surface of the electrode substrate so that the weight increase is 0.5 g / m 2 or more (1.25 g / m 2 or more in terms of TiO 2 ), and then an electrode catalyst layer is formed on the high-temperature oxide film Thirdly, a high-temperature oxidation treatment of a valve metal or valve metal alloy substrate to form a high-temperature oxide film on the surface of the substrate, and then forming an electrode on the high-temperature oxide film Form catalyst layer In the method for producing an electrode for electrolysis, when a high-temperature oxide film of the electrode substrate is formed on the interface between the electrode substrate and the electrode catalyst, the weight increase of the high-temperature oxide film is maintained at a heating temperature of 600 ° C. in air. A method for producing an electrode for electrolysis, characterized in that the amount of weight increase of a high-temperature oxide film of a valve metal or a valve metal alloy electrode substrate generated in one hour is not less than one hour.

以下本発明を詳細に説明する。
本発明では、従来技術と異なり、実質的に酸化性雰囲気中における高温酸化のみの単一工程で、バルブメタル又はバルブメタル合金電極基体(以下「バルブメタル基体」又は「電極基体」あるいは単に「基体」という)の表面に、バルブメタル又はバルブメタル合金の酸化物から成り前記バルブメタル基体と後述する電極触媒層間の中間層として機能する高温酸化皮膜を形成する。
Hereinafter, the present invention will be described in detail.
In the present invention, unlike the prior art, a valve metal or a valve metal alloy electrode substrate (hereinafter referred to as a “valve metal substrate” or “electrode substrate” or simply “substrate”) is formed in a single step of substantially only high-temperature oxidation in an oxidizing atmosphere. ), A high-temperature oxide film formed of an oxide of a valve metal or a valve metal alloy and functioning as an intermediate layer between the valve metal substrate and an electrode catalyst layer described later is formed.

電極基体の高温酸化で得られる高温酸化皮膜は耐食性に富み、緻密で電極基体と強固に接合しているため、電極基体を保護し、さらに主として酸化物から成る電極触媒を酸化物-酸化物結合により確実に担持することができるはずであるが、実際には前記高温酸化皮膜は電子伝導性に劣るという欠点があった。そしてその厚みを増大させるとこの欠点がより顕著になっていた。
本発明者は、塗布熱分解法によって電極触媒層をこの高温酸化皮膜上に焼き付けることによって、電極基体を保護する効果が大きいものの電子伝導性が劣る領域にある高温酸化皮膜(重量増加量が0.5g/m2以上、TiO2換算では1.25g/m2以上)においても電子伝導性が結果的に増大し、工業電解レベルの大電流を流すことができるようになることを見出し、前記課題を解決したものである。この重量増加量は0.67g/m2以上(TiO2換算では1.68g/m2以上)で特に効果が顕著であり、上限は17g/m2(TiO2換算では42g/m2程度)である。この上限値以上では膜厚は10μm以上となり、酸化皮膜はグレーから白色化して、酸化皮膜と電極基材の密着性は劣化する。
The high-temperature oxide film obtained by high-temperature oxidation of the electrode substrate is rich in corrosion resistance, dense and firmly bonded to the electrode substrate, protecting the electrode substrate and further bonding the electrode catalyst mainly composed of oxide to oxide-oxide bonding. Should be able to be supported more reliably, but in practice, the high-temperature oxide film had a drawback that it had poor electron conductivity. When the thickness was increased, this defect became more prominent.
By baking the electrode catalyst layer on this high-temperature oxide film by a coating pyrolysis method, the present inventors have found that a high-temperature oxide film (with a weight increase of 0.5%) in a region where the effect of protecting the electrode substrate is large but the electron conductivity is poor is obtained. g / m 2 or more, 1.25 g / m 2 or more in terms of TiO 2 ), resulting in an increase in electron conductivity as a result, allowing the flow of a large current at the industrial electrolysis level. It is a solution. The increase in weight is remarkable particularly effective at 0.67 g / m 2 or more (1.68 g / m 2 or more in terms of TiO 2), the upper limit is 17 g / m 2 (about 42 g / m 2 in terms of TiO 2) . Above this upper limit, the film thickness becomes 10 μm or more, the oxide film turns from gray to white, and the adhesion between the oxide film and the electrode substrate deteriorates.

つまりこのようにして形成される高温酸化皮膜は酸化物であり通常電子伝導性に劣るが、該高温酸化皮膜形成後に300℃以上の高温で熱処理することにより、電子伝導性を改質でき、これにより工業電解レベルの大電流を流すことが可能になる。この熱処理は高温酸化皮膜形成時の熱処理とは別個に行い、電極触媒層形成と同時、又は形成前後に行うことができる。電極触媒層形成と同時の改質とは、塗布熱分解法等のような加熱を伴う電極触媒層形成では、電極触媒層形成と同時に前記加熱により高温酸化皮膜の改質が生じることを意味する。
このように形成された高温酸化皮膜(中間層)は電極基体と一体化されているため電極基体から剥離することがなく、更にこの高温酸化皮膜は緻密で耐食性に富むため電極基体を十分に保護し、かつ酸化皮膜として形成されるため、主として酸化物で構成される電極触媒を酸化物−酸化物結合により確実に電極基体上に担持することを可能にしている。
In other words, the high-temperature oxide film thus formed is an oxide and usually has poor electron conductivity. However, by performing a heat treatment at a high temperature of 300 ° C. or more after the formation of the high-temperature oxide film, the electron conductivity can be modified. This allows a large current at the level of industrial electrolysis to flow. This heat treatment is performed separately from the heat treatment at the time of forming the high-temperature oxide film, and can be performed simultaneously with the formation of the electrode catalyst layer, or before and after the formation. The reforming at the same time as the formation of the electrode catalyst layer means that, in the formation of the electrode catalyst layer involving heating such as a coating pyrolysis method, the reforming of the high-temperature oxide film is caused by the heating at the same time as the formation of the electrode catalyst layer. .
The high-temperature oxide film (intermediate layer) thus formed is integrated with the electrode substrate and does not peel off from the electrode substrate. Further, the high-temperature oxide film is dense and rich in corrosion resistance, and thus sufficiently protects the electrode substrate. In addition, since the electrode catalyst is formed as an oxide film, the electrode catalyst mainly composed of an oxide can be reliably supported on the electrode substrate by an oxide-oxide bond.

本発明における基体材料として、チタン及びチタン合金を好ましく用いることができるが、いわゆるバルブメタルといわれるタンタル、ニオブ、ジルコニウム及びそれらの合金もバルブたる酸化皮膜の改質の可能性から、使用可能である。チタン及びチタン合金が好ましいのは、その耐食性と経済性のほか、強度/比重つまり比強度が大きくかつ圧延等の加工が比較的容易で、切削等の加工技術も近年非常に向上しているからである。その形状は棒状、板状の単純なものでも、機械加工により複雑な形状を持つものでもよく、表面は平滑なものでも多孔質なものでも対応が可能である。ここで表面とは電解液に浸漬したとき液に触れることが可能な部分のことをいう。   As the base material in the present invention, titanium and a titanium alloy can be preferably used, but tantalum, niobium, zirconium and their alloys, which are so-called valve metals, can also be used because of the possibility of modifying the oxide film as a valve. . Titanium and titanium alloys are preferred because, besides their corrosion resistance and economy, their strength / specific gravity, that is, their specific strengths, are large and their processing such as rolling is relatively easy, and their processing techniques such as cutting have been greatly improved in recent years. It is. The shape may be a simple one in the shape of a bar or a plate, or one having a complicated shape by machining, and the surface may be smooth or porous. Here, the surface refers to a portion that can be in contact with the solution when immersed in the electrolyte.

基体表面の油脂、切削屑、塩類等の汚れは高温酸化皮膜の性状に悪影響を及ぼすため、あらかじめ洗浄してでき得る限り取り除いておくことが望ましい。洗浄は水洗、アルカリ洗浄、超音波洗浄、蒸気洗浄、スクラブ洗浄等を用いることができる。
その表面をブラスチングやエッチングにより粗面化し、表面積を拡大することによって、接合強度を高め、電解電流密度を実質的に下げることもできる。エッチングすると単に表面洗浄するより表面の清浄度は上がる。ブラスチングを行った場合には表面に刺さったブラスト粒子を除去するために、エッチングを行うことが非常に好ましい。エッチングは塩酸、硫酸、蓚酸等の非酸化性酸又はこれらの混合酸を用いて沸点かそれに近い温度で行うか、硝弗酸を用いて室温付近で行う。
仕上げとして、純水でリンスした後十分乾燥させておく。純水を使う前に大量の水道水でリンスしておくことも可能である。
Contaminants such as oils, cuttings, and salts on the surface of the substrate adversely affect the properties of the high-temperature oxide film, and thus it is desirable to remove as much as possible by washing in advance. For washing, water washing, alkali washing, ultrasonic washing, steam washing, scrub washing and the like can be used.
By roughening the surface by blasting or etching to increase the surface area, the bonding strength can be increased and the electrolytic current density can be substantially reduced. Etching increases the cleanliness of the surface rather than simply cleaning the surface. When blasting is performed, it is very preferable to perform etching in order to remove blast particles stuck on the surface. Etching is performed at a temperature near or at the boiling point using a non-oxidizing acid such as hydrochloric acid, sulfuric acid, oxalic acid, or a mixed acid thereof, or at about room temperature using nitric hydrofluoric acid.
As a finish, rinse with pure water and dry thoroughly. It is also possible to rinse with a large amount of tap water before using pure water.

次いでこのような電極基体に高温酸化処理を行って電極基体表面に高温酸化皮膜を形成する。
本発明で行う高温酸化皮膜の形成方法は、基本的には空気中で行う焼鈍と大きく異なるところはない。
熱処理炉の加熱方式は、雰囲気(対流)加熱、ニクロムやカンタル線、近赤外線ランプ、遠赤外線パネル、ラジエントチューブ等の直接加熱、ホットプレート等の伝導加熱、あるいは電磁誘導加熱のいずれの方式も可能であるが、例えば600℃における純チタンの熱伝導率は純鉄の約半分と小さく、できるだけ均一な温度分布を得るためには対流加熱の要素を多く持った加熱方式が好ましい。雰囲気は酸化性であればよく、空気、酸素、水蒸気、二酸化炭素、都市ガス燃焼ガスのほか、安価なキャリアーガスにオゾンガスを混合させたガスのいずれのガスも用いることができる。水素ガスやこれを含むアンモニア分解ガスが混入すると、チタンやチタン合金は水素化され、最深部まで脆化するので避けることが望ましい。言うまでもなくアルゴンなどの不活性ガスや真空は効果がなく不適である。
Next, a high-temperature oxidation treatment is performed on such an electrode substrate to form a high-temperature oxide film on the surface of the electrode substrate.
The method for forming a high-temperature oxide film according to the present invention is basically not significantly different from annealing performed in air.
The heating method of the heat treatment furnace can be any of atmosphere (convection) heating, direct heating of nichrome or Kanthal wire, near-infrared lamp, far-infrared panel, radiant tube, etc., conduction heating of hot plate, etc., or electromagnetic induction heating. However, for example, the thermal conductivity of pure titanium at 600 ° C. is as small as about half that of pure iron, and in order to obtain a temperature distribution as uniform as possible, a heating method having many convection heating elements is preferable. The atmosphere may be oxidizing, and any of air, oxygen, water vapor, carbon dioxide, city gas combustion gas, and gas obtained by mixing ozone gas with an inexpensive carrier gas can be used. If hydrogen gas or an ammonia decomposition gas containing the same is mixed, titanium and titanium alloys are hydrogenated and become brittle to the deepest part. Needless to say, an inert gas such as argon or a vacuum is ineffective and unsuitable.

次に所定の形状に成形加工され、洗浄等の前処理が終わった基体は、ハンガーに吊るす又は架台に載せるなどして炉内に挿入する。いずれの場合でも複数の基体は密着させずに、基体と接触する気体の更新が滞りなく行われるように注意しなければならない。酸化性の気体の供給が律速となると、重ね合わされた基体表面の中央付近の酸化皮膜の成長が遅れるので好ましくない。
基体の炉内への挿入は炉内を所定の温度に昇温させてから行ってもよいが、均一な温度分布を得るためにはできるだけ低い温度で挿入してから昇温させるのが望ましい。
所定の温度に到達後、一定の厚みの高温酸化皮膜を得るために、所定の時間内温度を保持してから降温させる。
Next, the substrate formed into a predetermined shape and subjected to pretreatment such as cleaning is inserted into a furnace by hanging it on a hanger or placing it on a gantry. In any case, care must be taken so that the plurality of substrates are not brought into close contact with each other and the gas in contact with the substrates is renewed without interruption. If the supply of the oxidizing gas is rate-determining, the growth of the oxide film near the center of the superposed substrate surface is delayed, which is not preferable.
The substrate may be inserted into the furnace after the inside of the furnace has been heated to a predetermined temperature. However, in order to obtain a uniform temperature distribution, it is desirable to insert the base at a temperature as low as possible before raising the temperature.
After reaching a predetermined temperature, in order to obtain a high-temperature oxide film having a constant thickness, the temperature is maintained for a predetermined time and then lowered.

本発明において観察されるチタンの高温酸化皮膜の厚みは通常0.1μm以上であり、このレベルの厚みを評価する方法としては重量増加量の測定、SEMによる断面観察、SIMS、GDS、X線回折、電子線回折、エリプソメータ等があり、それぞれ長短があるが、重量増加量の測定が簡便で好適である。
ここで高温酸化皮膜中間層の形態に関して、指標となるべき重量増加量を中心にして述べる。
本発明において、mm2、cm2、m2等の単位で表記した表面積の値とは、例えば3辺の長さがa、b、cの直方体の場合、(a×b+b×c+c×a)×2であることを意味する。いわば基体の形状に対応した表面積であり、メッシュやパンチメタルにおいては、多角体や円柱等に分割された三次元形状モデルで近似される。又これは単分子層ガス吸着量から算出されるBET法による比表面積とは区別される。
The thickness of the high-temperature oxide film of titanium observed in the present invention is usually 0.1 μm or more, and methods of evaluating this level of thickness include measurement of weight gain, cross-sectional observation by SEM, SIMS, GDS, X-ray diffraction, There are electron beam diffraction, ellipsometer, etc., each of which has a length and a shortness, but the measurement of the weight gain is simple and suitable.
Here, the form of the intermediate layer of the high-temperature oxide film will be described focusing on the weight increase which should be an index.
In the present invention, the value of the surface area expressed in units of mm 2 , cm 2 , m 2 and the like means, for example, in the case of a rectangular parallelepiped having three sides a, b and c, (a × b + b × c + c × a) × 2. In other words, the surface area corresponds to the shape of the base, and in the case of a mesh or punch metal, it is approximated by a three-dimensional shape model divided into polygons and cylinders. Further, this is distinguished from the specific surface area by the BET method calculated from the adsorption amount of the monolayer gas.

高温酸化による重量増加量をΔW g/m2、O= 16.00、Ti= 47.88とするとチタンの高温酸化皮膜の重量WTiO2 g/m2は、次のように換算される。
WTiO2= ΔW/(16.00×2)×(47.88+16.00×2)
また、チタンの高温酸化皮膜のX線回折による結晶相の同定からはルチル相のTiO2のみ検出されるので、ルチル相のTiO2の密度を4.27 g/mlとすると、厚みt(μm)は、次のように換算される。
t= w/(16.00×2)×(47.88+16.00×2)/1002/4.27×10000
Assuming that the weight increase due to high-temperature oxidation is ΔW g / m 2 , O = 16.00, and Ti = 47.88, the weight W TiO2 g / m 2 of the high-temperature oxide film of titanium is converted as follows.
W TiO2 = ΔW / (16.00 × 2) × (47.88 + 16.00 × 2)
Further, since only the TiO 2 in the rutile phase is detected from the identification of the crystal phase of the high-temperature oxide film of titanium by X-ray diffraction, if the density of the TiO 2 in the rutile phase is 4.27 g / ml, the thickness t (μm) becomes Is converted as follows.
t = w / (16.00 × 2) × (47.88 + 16.00 × 2) / 100 2 /4.27×10000

基体の表面粗さが大きければ実表面積は大きくなり、従って重量増加量も大きくなるから、厚みへの換算値はより厚く計算され、酸化皮膜がTiO2の定比組成より酸素欠損になっていればより薄く、基体の金属チタン中に酸素が固溶すればより薄く計算される。実際には基体の表面粗さの影響が最も大きく、断面観察による実測値としての厚みより厚く計算される傾向がある。
またチタン合金はおおむね純チタンより高温酸化皮膜の成長は抑制される。
The larger the surface roughness of the substrate actual surface area is increased, thus because the greater increase in weight, the corresponding value of the thickness is thicker calculated, the oxide film is sufficient that oxygen deficiency than the stoichiometric composition of TiO 2 It is calculated to be thinner if oxygen is dissolved in the base metal titanium. Actually, the influence of the surface roughness of the substrate is the largest, and the thickness tends to be calculated to be larger than the thickness as an actually measured value by cross-sectional observation.
In addition, the growth of a high-temperature oxide film is generally suppressed in a titanium alloy as compared with pure titanium.

断面観察による実際の表面粗さの凸部は熱放射を受けたり気体と接する面積が大きいために酸化皮膜が厚く成長するのに対し、凹部は逆に熱放射を受けたり気体と接する面積が小さいために酸化皮膜は薄い。平滑で粗さのない鏡面のチタン基体を実際の工業電解用基体として用いることはなく、このように高温酸化皮膜の厚みは表面の凹凸やその形状によって大きく変化するので、厚みをもって高温酸化皮膜の量的評価方法として規定するのは適切ではない。
例えば、表面粗さRa= 12.5μmのチタン基体を用いて、空気中において加熱温度600℃、保持時間1時間で高温酸化皮膜を生成させたときの断面SEM写真からの実測値では、凸部の厚い部分の厚みはおおむね0.5〜0.7μmに達したが、凹部のもっとも薄い部分の厚みは約0.1μmに過ぎなかった。なお、この時の重量増加量の実測値は0.67g/m2(0.067mg/cm2)で、上記計算式によるTiO2換算の重量増加量は1.67g/m2、ルチル型TiO2厚み換算値は0.39μmであった。
The projections of the actual surface roughness by cross-section observation have a large area that receives heat radiation or gas, so the oxide film grows thickly, whereas the concave parts have a small area that receives heat radiation or gas. Therefore, the oxide film is thin. A smooth, non-roughened mirror-finished titanium substrate is not used as an actual substrate for industrial electrolysis, and the thickness of the high-temperature oxide film varies greatly depending on the surface irregularities and its shape. It is not appropriate to define it as a quantitative evaluation method.
For example, using a titanium substrate having a surface roughness Ra of 12.5 μm, a heating temperature of 600 ° C. in air, and a measured value from a cross-sectional SEM photograph when a high-temperature oxide film was formed with a holding time of 1 hour, the projections of The thickness of the thick part generally reached 0.5 to 0.7 μm, but the thickness of the thinnest part of the recess was only about 0.1 μm. The actual weight increase at this time was 0.67 g / m 2 (0.067 mg / cm 2 ), the TiO 2 equivalent weight increase by the above formula was 1.67 g / m 2 , and the rutile TiO 2 thickness equivalent The value was 0.39 μm.

純チタンの空気中における高温酸化皮膜の重量増加量についてはいくつかの文献が知られている。その中の一文献においては、600℃の空気中における純チタンの高温酸化の速度定数Kp= 33.46×10-4(40時間以下)から、600℃1時間の高温酸化皮膜の重量増加量は、0.058mg/cm2と計算される(A.M.Chaze and C.Coddet, Oxidation of Metals, Vol.27, Nos.1/2, 1-20 (1987).)。
前述の空気中における加熱温度600℃、保持時間1時間で生成するチタン基体の高温酸化皮膜の重量増加量0.67g/m2(0.067mg/cm2)は、この文献値よりやや大きいが、これは表面が平滑ではなく、工業電解に供するための基体に近い表面粗さの基体を用いたためである。よって、本発明において本質的に有効な高温酸化皮膜中間層の重量増加量は、0.50g/m2(0.050mg/cm2)以上とした。このときのTiO2重量換算値は1.25g/m2、ルチル型TiO2厚み換算値は0.29μmである。前記重量増加量の下限値は実際の重量増加量である0.67g/m2としても良い。
Several documents are known about the weight increase of the high-temperature oxide film of pure titanium in air. In one of the documents, from the rate constant of high temperature oxidation of pure titanium in air at 600 ° C. Kp = 33.46 × 10 −4 (40 hours or less), the weight increase of the high temperature oxide film at 600 ° C. for 1 hour is: It is calculated to be 0.058 mg / cm 2 (AMChaze and C. Coddet, Oxidation of Metals, Vol. 27, Nos. 1/2, 1-20 (1987).).
The increase in the weight of the high-temperature oxide film on the titanium substrate formed at a heating temperature of 600 ° C in air and a holding time of 1 hour in the above-mentioned 0.67 g / m 2 (0.067 mg / cm 2 ) is slightly larger than this literature value. The reason is that a substrate having a surface roughness that is not smooth and has a surface roughness close to that of a substrate to be used for industrial electrolysis is used. Therefore, the weight increase of the high-temperature oxide film intermediate layer essentially effective in the present invention is set to 0.50 g / m 2 (0.050 mg / cm 2 ) or more. At this time, the TiO 2 weight conversion value is 1.25 g / m 2 , and the rutile TiO 2 thickness conversion value is 0.29 μm. The lower limit of the weight increase may be an actual weight increase of 0.67 g / m 2 .

次に、続けてこのように形成した高温酸化皮膜上に、白金族金属又は白金族金属酸化物等を主触媒とする電極触媒層を設ける。各種電解に対応して、白金、ルテニウム酸化物、イリジウム酸化物、ロジウム酸化物、パラジウム酸化物等から適宜、単独で又は組合わせて選択するが、基体との密着性や電解耐久性を高めるために、チタン酸化物、タンタル酸化物、スズ酸化物等を混合させておくことが望ましい。
この電極触媒層の被覆方法としては、塗布熱分解法、ゾルゲル法、ペースト法、電気泳動法、CVD法、PVD法等を用いることが出来るが、特に特公昭48−3954号及び特公昭46−21888号に詳細に記載されているような塗布熱分解法が好適である。
Next, an electrode catalyst layer having a platinum-group metal or a platinum-group metal oxide as a main catalyst is provided on the high-temperature oxide film thus formed. Corresponding to various electrolysis, platinum, ruthenium oxide, iridium oxide, rhodium oxide, palladium oxide, etc., as appropriate, selected alone or in combination, in order to enhance the adhesion to the substrate and the electrolytic durability It is desirable to mix titanium oxide, tantalum oxide, tin oxide, and the like.
As a coating method of the electrode catalyst layer, a coating pyrolysis method, a sol-gel method, a paste method, an electrophoresis method, a CVD method, a PVD method, and the like can be used. In particular, JP-B-48-3954 and JP-B-46- The coating pyrolysis method as described in detail in 21888 is preferred.

本発明の電解用電極の電極触媒層の形成と同時又はその前後に熱処理を行うと、なぜこのような電子伝導性に劣る高温酸化皮膜の電子伝導性が増大するようになるのかは理論的に明らかでないが、二三の妥当な仮定を設定すれば、次のように推論することが出来る。
一般に、隣接する二相が平衡状態にあるとき、各々の成分の化学ポテンシャルはどちらの相内でも同一になるという原則が知られている。つまり酸素を含有する二つの隣接相が界面のところで平衡になっていれば、酸素の化学ポテンシャルは二相界面で連続になっているはずである。二相全体の平衡を達成するには酸素の長い距離の拡散が必要であるが、界面での局部平衡を達するにはほんの数オングストローム程度の拡散が起こればよいとされる(以上はPaul G. Shewmon : 固体内の拡散、笛木和雄 北澤宏一共訳(コロナ社、1976)p148)。
When heat treatment is performed at the same time as or before and after the formation of the electrode catalyst layer of the electrode for electrolysis of the present invention, it is theoretically possible that the electron conductivity of such a high-temperature oxide film having poor electron conductivity increases. It is not clear, but with a few reasonable assumptions, we can infer the following:
Generally, it is known that when two adjacent phases are in equilibrium, the chemical potential of each component is the same in either phase. That is, if two adjacent phases containing oxygen are in equilibrium at the interface, the chemical potential of oxygen should be continuous at the two-phase interface. Long-range diffusion of oxygen is necessary to achieve equilibrium of the entire two phases, but diffusion of only a few angstroms is required to reach local equilibrium at the interface (Paul G Shewmon: Diffusion in solids, translated by Kazuo Fueki and Koichi Kitazawa (Corona Publishing Co., 1976) p148).

チタン及びチタン合金の高温酸化皮膜の深さ方向の酸素濃度プロファイルは、酸素が基体表面から基体内部へ拡散するというメカニズムから当然最表面層が最も高く、電子伝導性に乏しい高温酸化皮膜の最表面層では定比組成のTiO2に近くなっていると考えられる。
また、電極触媒層、例えば酸素発生用として最も多く用いられているイリジウム酸化物(ルチル型IrO2)についてみると、X線回折パターンにおいては低角側に比べて高角側のピークがブロードになっていることから、明らかな格子歪みが観察される。この歪みは定比組成のIrO2ではなく、酸素欠損のあるIrO2-xが生じているためと考えられる。
よって、電極触媒層の加熱処理中に、高温酸化皮膜表面の酸素が電極触媒層に拡散する形で、酸素の化学ポテンシャルが高温酸化皮膜と電極触媒層の二相界面で平衡に近づいたものと推測される。金属白金もその最表面層は白金酸化物となっているから、他の白金族金属酸化物と同様に考えてよい。
The oxygen concentration profile in the depth direction of the high-temperature oxide film of titanium and titanium alloy has the highest surface layer due to the mechanism of diffusion of oxygen from the substrate surface to the inside of the substrate, and the outermost surface of the high-temperature oxide film with poor electron conductivity. It is considered that the layer is close to stoichiometric TiO 2 .
As for the electrode catalyst layer, for example, iridium oxide (rutile IrO 2 ) which is most frequently used for oxygen generation, in the X-ray diffraction pattern, the peak on the high angle side is broader than on the low angle side. , A clear lattice distortion is observed. This distortion is considered to be caused by IrO 2-x having oxygen deficiency instead of IrO 2 having a stoichiometric composition.
Therefore, during the heat treatment of the electrode catalyst layer, oxygen on the surface of the high-temperature oxide film diffuses into the electrode catalyst layer, and the chemical potential of oxygen approaches equilibrium at the two-phase interface between the high-temperature oxide film and the electrode catalyst layer. Guessed. Since the outermost surface layer of platinum metal is also a platinum oxide, it may be considered in the same manner as other platinum group metal oxides.

本発明の高温酸化皮膜は、バルブメタル基体表面に緻密性と密着性を併せ持つ一方で、電子伝導性に劣る高温酸化皮膜を基体それ自体から生成させるものであり、従来中間層として用いられてきた特公昭60-21232号公報または特公昭60-22074号公報に示されるようなタンタル、ニオブ等の酸化物やこれらとチタン、スズ等の酸化物との混合酸化物を、高温酸化皮膜の形成前後に表面に設けても差し支えない。その他従来提案された導電性の中間層も、本発明による高温酸化皮膜と組合わせて用いることが可能である。   The high-temperature oxide film of the present invention has both denseness and adhesiveness on the surface of the valve metal substrate, while generating a high-temperature oxide film having poor electron conductivity from the substrate itself, and has conventionally been used as an intermediate layer. An oxide such as tantalum or niobium as shown in JP-B-60-21232 or JP-B-60-22074 or a mixed oxide of these with an oxide such as titanium or tin before and after forming a high-temperature oxide film May be provided on the surface. Other conventionally proposed conductive intermediate layers can also be used in combination with the high-temperature oxide film according to the present invention.

高温酸化皮膜の形成は、後述の実施例1や比較例2に示すように、白金族電極触媒層を形成する前の工程においてのみ有効であるが、これらの低触媒活性の高温酸化皮膜以外の中間層の形成はその限りではない。実施例2および実施例3に示すように、高温酸化皮膜を設けるのと同時に、あるいは前工程・後工程で設けても有効である。
また、本発明による電解用電極は、電解中に熾烈な条件にさらされる酸素発生用電極を主要な用途としたが、副反応としての酸素発生反応の割合が大きい次亜塩素酸水用や極性が反転するアルカリアルカリオン水/酸性水用に代表される希薄塩水電解用電極はもちろん、電解条件によっては電極基体が腐食するタイプの塩素発生用電極にも有効に使用することができる。
The formation of the high-temperature oxide film is effective only in the step before forming the platinum group electrode catalyst layer, as shown in Example 1 and Comparative Example 2 described below. The formation of the intermediate layer is not limited thereto. As shown in Embodiments 2 and 3, it is effective to provide the high-temperature oxide film simultaneously with the provision of the high-temperature oxide film or in the pre-process and post-process.
The electrode for electrolysis according to the present invention is mainly used for an electrode for oxygen generation exposed to severe conditions during electrolysis. Can be effectively used not only for a dilute salt water electrolysis electrode typified by alkali-alkali-on water / acidic water but also for a chlorine generation electrode in which the electrode substrate corrodes depending on the electrolysis conditions.

本発明は、バルブメタル又はバルブメタル合金電極基体、該バルブメタル又はバルブメタル合金電極基体の高温酸化処理により該バルブメタル又はバルブメタル合金電極基体表面に重量増加量が0.5g/m2以上、好ましくは0.67g/m2以上となるように形成される高温酸化皮膜、及び該高温酸化皮膜表面に形成した電極触媒層を含んで成ることを特徴とする電解用電極、及びその製造方法である。 The present invention provides a valve metal or a valve metal alloy electrode substrate, a weight increase of 0.5 g / m 2 or more on the surface of the valve metal or the valve metal alloy electrode substrate by a high-temperature oxidation treatment of the valve metal or the valve metal alloy electrode substrate, preferably. Is an electrode for electrolysis characterized by comprising a high-temperature oxide film formed to be 0.67 g / m 2 or more, an electrode catalyst layer formed on the surface of the high-temperature oxide film, and a method for producing the same.

バルブメタル又はバルブメタル合金電極基体を酸化性雰囲気で熱処理を行い、重量増加量では0.5g/m2以上、TiO2換算では1.25g/m2以上の電子伝導性に劣る高温酸化皮膜を形成させて高温酸化皮膜とし、さらにその上に塗布熱分解法を用いて電極触媒層を焼き付けることによって、結果的に高温酸化皮膜の電子導電性を増大させ、工業電解レベルの大電流を流すことができる電解用電極が得られる。
この高温酸化皮膜は耐食性に富み、緻密で電極基体と強固に接合することによって、腐食性の電解液や電解反応から電極基体を保護し、さらに酸化物-酸化物接合によって電極触媒を確実に担持出来ることから、触媒層内部の電極触媒を有効に活用することが出来る。
Heat treatment of the valve metal or valve metal alloy electrode substrate in an oxidizing atmosphere to form a high-temperature oxide film with poor electron conductivity of 0.5 g / m 2 or more in weight gain and 1.25 g / m 2 or more in TiO 2 conversion. By baking the electrode catalyst layer using a coating pyrolysis method as a high-temperature oxide film, the electronic conductivity of the high-temperature oxide film is increased, and a large current of the industrial electrolytic level can be passed. An electrode for electrolysis is obtained.
This high-temperature oxide film is rich in corrosion resistance, is dense and firmly bonded to the electrode substrate, protects the electrode substrate from corrosive electrolytes and electrolytic reactions, and securely carries the electrode catalyst by oxide-oxide bonding As a result, the electrode catalyst in the catalyst layer can be effectively used.

図1は、本発明に係る電解用電極の一例を示す概念図である。
チタン等のバルブメタル又はその合金から成り表面の粗面化が行われた電極基体1は、高温熱処理によりその表面が酸化されて対応するバルブメタル酸化物の酸化皮膜から成る高温酸化皮膜2が形成される。この高温酸化皮膜2は電極基体1と一体化しているため、電極基体1から剥離することがなく、耐食性にも富むため、電極基体を確実に保護する。
FIG. 1 is a conceptual diagram showing an example of the electrode for electrolysis according to the present invention.
The electrode substrate 1 made of a valve metal such as titanium or an alloy thereof and having a roughened surface has its surface oxidized by high-temperature heat treatment to form a high-temperature oxide film 2 made of a corresponding oxide film of a valve metal oxide. Is done. Since the high-temperature oxide film 2 is integrated with the electrode substrate 1, it does not peel off from the electrode substrate 1 and has high corrosion resistance, so that the electrode substrate is reliably protected.

次いでこの高温酸化皮膜2表面にイリジウムやチタン等の金属や金属酸化物を触媒として含む電極触媒層3が被覆形成される。電極触媒層の形成を加熱条件で行うか、あるいは電極触媒層3形成後に得られる電極全体を加熱すると、高温酸化皮膜2と電極触媒層3の界面での改質により、本来非電子伝導性である高温酸化皮膜2に電子伝導性が付与されて工業電解レベルの大電流を流すことが可能になる。
高温酸化皮膜2は、主として酸化物である電極触媒層3との間に、酸化物−酸化物結合を形成して確実に電極触媒層を担持する。
又電極触媒層中にバルブメタルが含まれていると、高温酸化皮膜中のバルブメタルと電極触媒層中のバルブメタル間に更に強固な結合が生じて耐久性が十分に向上する。
Next, an electrode catalyst layer 3 containing a metal such as iridium or titanium or a metal oxide as a catalyst is formed on the surface of the high-temperature oxide film 2. When the formation of the electrode catalyst layer is performed under heating conditions, or when the entire electrode obtained after the formation of the electrode catalyst layer 3 is heated, reforming at the interface between the high-temperature oxide film 2 and the electrode catalyst layer 3 results in a non-electronically conductive material. Electronic conductivity is imparted to a certain high-temperature oxide film 2 so that a large current at the level of industrial electrolysis can be passed.
The high-temperature oxide film 2 forms an oxide-oxide bond with the electrode catalyst layer 3, which is mainly an oxide, and reliably carries the electrode catalyst layer.
Further, when the valve metal is contained in the electrode catalyst layer, a stronger bond is generated between the valve metal in the high-temperature oxide film and the valve metal in the electrode catalyst layer, and the durability is sufficiently improved.

次に本発明の参考例として、実際に金属チタンの高温酸化皮膜の接触抵抗値を測定した例を記載する。   Next, as a reference example of the present invention, an example in which the contact resistance value of a high-temperature oxide film of metallic titanium was actually measured will be described.

[参考例]
強い接触による酸化皮膜の磨耗・剥落や部分的な接触による誤差が生じるのを避けるため、接点材料として水銀を使用した。
まず、内径20mmφ深さ20mmのニッケル製の円筒容器中に水銀を流し込んだ。次に、直径3mmφ長さ100mmの金属チタン棒に所定の温度と時間で高温酸化処理を施し、一端を研削し高温酸化皮膜を剥離して通電を可能にしておいた。チタン棒を半固定し、高温酸化皮膜が残存した一端を水銀との接触面積が約100mm2(1cm2)となるように約9.9mmの長さだけ水銀中に浸漬した。チタン棒側をプラス、ニッケル容器側をマイナスとして所定の電流値を流し、チタン棒とニッケル容器間の電圧を測定し、抵抗値に換算した。この結果を表1(高温酸化皮膜の接触抵抗の実測値)に示した。
表中のΩcm2という単位は、酸化膜に垂直方向に電流を流したときの単位面積cm2に対応した抵抗値Ωを表している。これらは四探針法等いわゆる表面上に探針を乗せて酸化皮膜の断面水平方向の抵抗を測定した値とは異なる。
[Reference example]
Mercury was used as a contact material in order to avoid abrasion and peeling of the oxide film due to strong contact and errors due to partial contact.
First, mercury was poured into a nickel cylindrical container having an inner diameter of 20 mm and a depth of 20 mm. Next, a metal titanium rod having a diameter of 3 mm and a length of 100 mm was subjected to a high-temperature oxidation treatment at a predetermined temperature and for a predetermined time, and one end was ground to peel off the high-temperature oxide film so that electricity could be supplied. A titanium rod was semi-fixed, and one end where the high-temperature oxide film remained was immersed in mercury by a length of about 9.9 mm so that the contact area with mercury was about 100 mm 2 (1 cm 2 ). A predetermined current value was applied while the titanium rod side was positive and the nickel container side was negative, and the voltage between the titanium rod and the nickel container was measured and converted to a resistance value. The results are shown in Table 1 (actually measured contact resistance of high-temperature oxide film).
The unit of Ωcm 2 in the table represents a resistance value Ω corresponding to a unit area cm 2 when a current is passed in a direction perpendicular to the oxide film. These values are different from the values obtained by placing a probe on a surface, such as a four-probe method, and measuring the resistance in the horizontal direction of the cross section of the oxide film.

Figure 2004360067
Figure 2004360067

表1中の皮膜抵抗の平均値0.070、0.298、0.599、0.682、2.327、15.126Ωcm2の酸化皮膜層に本実施例のような3A/cm2の電流を流せば本来それぞれ0.2、0.9、1.8、2.0、7.0、45.4Vの電圧の上昇を生じるはずであるが、実際に熱分解法による電極触媒層の形成を行った後に電解に供せば、いずれの電極のセル電圧も4.5V前後を示し、平準化され差は見られなくなった。 Originally When a current is supplied to the 3A / cm 2 as in this embodiment in Table 1 in the oxide film layer with an average value 0.070,0.298,0.599,0.682,2.327,15.126Omucm 2 of the film resistor, respectively 0.2,0.9,1.8, Although voltage rises of 2.0, 7.0, and 45.4V should occur, when the electrode catalyst layer is actually formed by pyrolysis and then subjected to electrolysis, the cell voltage of any electrode shows around 4.5V. , Leveled and the difference disappeared.

次に本発明に係る電解用電極及びその製造に関する実施例及び比較例を記載するが、これらは本発明を限定するものではない。   Next, Examples and Comparative Examples relating to the electrode for electrolysis according to the present invention and the production thereof will be described, but these do not limit the present invention.

[実施例1]
計15枚の厚さ3mmの一般工業用チタン板のそれぞれの表面を#20のアルミナ粒子でブラスチングして粗面化した後、沸騰した20%塩酸に浸漬して表面洗浄を行い、計15枚の電極基体とした。この基体を、空気中で室温から約5℃/分の速度で昇温させ、それぞれの到達温度で所定の保持時間(表2参照)で熱処理を行ってから炉冷して、チタン基体の高温酸化皮膜を得た。表2に各基体の高温酸化皮膜の重量増加量(g/m2とそれをmg/cm2へ換算した値)に示した(実施例1−1〜1−15)。
次に、これら高温酸化皮膜が形成されたそれぞれのチタン基体上に70g/lのイリジウムを含む塩化イリジウムと30g/lのタンタルを含む塩化タンタルの10%塩酸混合溶液を塗布し、乾燥後、500℃に保持したマッフル炉中で10分間焼成し、この操作を12回繰り返して約12g/m2のイリジウムを含む、イリジウム酸化物とタンタル酸化物の混合酸化物を電極触媒とする電極を作製した。
[Example 1]
The surface of each of a total of 15 3 mm-thick titanium plates for general industrial use was roughened by blasting with # 20 alumina particles, and then immersed in boiling 20% hydrochloric acid to perform surface cleaning, and a total of 15 sheets were obtained. Electrode substrate. The substrate is heated in air at a rate of about 5 ° C./minute from a room temperature, heat-treated at a predetermined holding time (see Table 2) at each of the reached temperatures, and then cooled in a furnace to obtain a high temperature of the titanium substrate. An oxide film was obtained. Table 2 shows the weight increase (g / m 2 and the value converted to mg / cm 2 ) of the high-temperature oxide film of each substrate (Examples 1-1 to 1-15).
Next, a 10% hydrochloric acid mixed solution of iridium chloride containing 70 g / l of iridium and tantalum chloride containing 30 g / l of tantalum was applied to each of the titanium substrates on which these high-temperature oxide films were formed. This was fired for 10 minutes in a muffle furnace maintained at ℃, and this operation was repeated 12 times to produce an electrode containing a mixed oxide of iridium oxide and tantalum oxide containing about 12 g / m 2 of iridium as an electrode catalyst. .

それぞれの電極を、60℃、150g/lの硫酸水溶液中で、白金板を陰極として、3A/cm2の電流密度で電解寿命試験を行った。セル電圧が1Vアップした時点を電極の寿命と判定した。
これらの電極は、それぞれ安定した電解を維持し、酸素発生を主反応とする工業電解槽において十分な性能を発揮するのに対応した電解試験寿命である、1300時間以上の使用が可能であることを確認した。
表2に各電極の高温酸化皮膜の形成条件と電解寿命試験の結果を示した。
更に高温酸化皮膜重量増加量と電解試験寿命の関係(実施例1−1〜1−15の一部)を図2に示した。なお図2には単に高温酸化重量増加量が異なるだけの比較例1−1及び1−2の結果も含めた。
Each electrode was subjected to an electrolytic life test in a 150 g / l sulfuric acid aqueous solution at 60 ° C. with a platinum plate as a cathode at a current density of 3 A / cm 2 . The point at which the cell voltage increased by 1 V was determined as the life of the electrode.
Each of these electrodes can maintain a stable electrolysis and have an electrolysis test life of 1300 hours or more, which is sufficient to exhibit sufficient performance in industrial electrolyzers whose main reaction is oxygen generation. It was confirmed.
Table 2 shows the conditions for forming the high-temperature oxide film on each electrode and the results of the electrolytic life test.
FIG. 2 shows the relationship between the increase in the weight of the high-temperature oxide film and the life of the electrolytic test (part of Examples 1-1 to 1-15). Note that FIG. 2 also includes the results of Comparative Examples 1-1 and 1-2 in which the amount of increase in the weight of the high-temperature oxidation is merely different.

Figure 2004360067
Figure 2004360067

電解寿命は酸化重量増加量で1.5〜3.5g/m2の特異的な領域に存在する数点(図2中で白丸で示した)を除けば、重量増加量と対数関係を持ちながら増加した。特異的な領域は表面酸化皮膜がピンクからグレーへと色調が変化する領域と合致し、3.5g/m2以上に重量が増加してもグレーの色調は変わらないことから、表面酸化皮膜の光半導体的な特性が大きく変化する遷移領域の特殊な現象と考えられるが、理論的なことは不明である。重量増加量0.5g/m2以上の高温酸化皮膜を持つ電極は、それ以下の重量増加量の高温酸化皮膜中間層を持つ電極より長い寿命を示した。
なお、実施例1−7の電極試料の約5000倍の断面SEM写真を図3に示した。
The electrolysis life increased while having a logarithmic relationship with the weight increase, except for a few points (shown by white circles in FIG. 2) present in a specific region of 1.5 to 3.5 g / m 2 in terms of oxidized weight gain. . Specific region is consistent with the gray surface oxide film from the pink and area color changes, since the weight 3.5 g / m 2 or more does not change gray tones be increased, the surface oxide film light It is considered to be a special phenomenon in the transition region where the semiconductor characteristics change greatly, but its theoretical nature is unknown. Electrodes with a high-temperature oxide film with a weight increase of 0.5 g / m 2 or more exhibited longer life than electrodes with a high-temperature oxide film intermediate layer with a weight increase of less than 0.5 g / m 2 .
FIG. 3 shows a SEM photograph of a cross section of the electrode sample of Example 1-7 at a magnification of about 5,000.

[比較例1]
到達温度および保持時間をそれぞれ500℃1時間(比較例1−1)、500℃3時間(比較例1−2)とした熱処理を行ってから炉冷して、チタン基体の高温酸化皮膜を得たこと以外は実施例1と同様に試料を作製し、電解寿命試験を行った。重量増加量は比較例1−1では0.18g/m2、比較例1−2では0.30g/m2であった。
これらの電極は、406時間(比較例1−1)、814時間(比較例1−2)と短時間で急速にセル電圧が上昇した。これらの結果を表2に示した。
[Comparative Example 1]
Heat treatment was performed at an ultimate temperature and a holding time of 500 ° C. for 1 hour (Comparative Example 1-1) and 500 ° C. for 3 hours (Comparative Example 1-2), respectively, followed by furnace cooling to obtain a high-temperature oxide film on a titanium substrate. Except for this, a sample was prepared in the same manner as in Example 1, and an electrolytic life test was performed. Increase in weight Comparative Example 1-1 In 0.18 g / m 2, was 0.30 g / m 2 in Comparative Example 1-2.
In these electrodes, the cell voltage rapidly increased in a short time of 406 hours (Comparative Example 1-1) and 814 hours (Comparative Example 1-2). Table 2 shows the results.

[比較例2]
チタン及びチタン合金基体上に塗布熱分解法により電極触媒層を設けるに際し、高温酸化は基体の前処理として行われる時に限って有効であるが、高温で電極を加熱処理するタイミングはそれ以外にも電極触媒層を形成している最中、電極触媒層を形成した後が考えられる。本比較例では、これらの有効性の比較を行うことによって高温酸化工程の役割を検証した。
[Comparative Example 2]
When providing an electrode catalyst layer by a coating pyrolysis method on a titanium or titanium alloy substrate, high-temperature oxidation is effective only when it is performed as a pretreatment of the substrate. During formation of the electrode catalyst layer, it is conceivable that the electrode catalyst layer is formed. In this comparative example, the role of the high-temperature oxidation step was verified by comparing these efficiencies.

実施例1と同様に粗面化及び洗浄して得た電極基体上に、高温酸化皮膜を形成させずに、直接70g/lのイリジウムを含む塩化イリジウムと30g/lのタンタルを含む塩化タンタルの10%塩酸混合溶液を塗布し、乾燥後、500℃(比較例2−1)、550℃(比較例2−2)、600℃(比較例2−3)、650℃(比較例2−4)に保持したマッフル炉中でそれぞれ10分間焼成し、この操作を12回繰り返して約12g/m2のイリジウムを含む、イリジウム酸化物とタンタル酸化物の混合酸化物を電極触媒とする電極を作製した。
更にこれらのうち500℃で焼成した電極試料から1試料を取り出し、チタン基体の高温酸化皮膜を得る手順と同様にして、室温から約5℃/分の速度で昇温させ、到達温度および保持時間を650℃3時間(比較例2−5)とした熱処理を行ってから炉冷した。なおこの電極触媒層を形成した後の加熱処理を以後ポストベークと呼ぶ。
The iridium chloride containing 70 g / l of iridium and the tantalum chloride containing 30 g / l of tantalum were directly formed on the electrode substrate obtained by roughening and washing in the same manner as in Example 1 without forming a high-temperature oxide film. A 10% hydrochloric acid mixed solution is applied, and after drying, 500 ° C. (Comparative Example 2-1), 550 ° C. (Comparative Example 2-2), 600 ° C. (Comparative Example 2-3), 650 ° C. (Comparative Example 2-4) B) for 10 minutes each in a muffle furnace, and repeat this operation 12 times to produce an electrode containing a mixed oxide of iridium oxide and tantalum oxide containing about 12 g / m 2 of iridium as an electrode catalyst. did.
In addition, one of the electrode samples fired at 500 ° C. was taken out, and the temperature was raised from room temperature at a rate of about 5 ° C./min. Was heat-treated at 650 ° C. for 3 hours (Comparative Example 2-5), and then cooled in a furnace. The heat treatment after forming the electrode catalyst layer is hereinafter referred to as post bake.

これらの電極を、60℃、150g/lの硫酸水溶液中で、白金板を陰極として、3A/cm2の電流密度で電解寿命試験を行った。セル電圧が1Vアップした時点を電極の寿命と判定した。
いずれの電極も、329時間(比較例2−1)、281時間(比較例2−2)、197時間(比較例2−3)、161時間(比較例2−4)、77時間(比較例2−5)ときわめて短時間で急速にセル電圧が上昇した。
These electrodes were subjected to an electrolytic life test at a current density of 3 A / cm 2 in a 150 g / l sulfuric acid aqueous solution at 60 ° C. using a platinum plate as a cathode. The point at which the cell voltage increased by 1 V was determined as the life of the electrode.
All electrodes were 329 hours (Comparative Example 2-1), 281 hours (Comparative Example 2-2), 197 hours (Comparative Example 2-3), 161 hours (Comparative Example 2-4), and 77 hours (Comparative Example). 2-5), the cell voltage rapidly increased in a very short time.

実施例1に比較して、電極の寿命が著しく劣ったことに関して、複合した二つの原因が考えられた。
電解試験前の電極のX線回折による解析からは、550℃以上で焼成して触媒層を形成させると、陽極触媒として耐性のあるIrO2以外にやや耐性が劣る金属Irが副生していたことが分かった。これにより電極触媒層がより早く消耗したことになる。
さらに電解前の電極の断面のEPMA分析からは、いずれの電極についても電極触媒層と接する金属チタン基体側の界面に、同一の温度で加熱したとして比較すれば、通常の高温酸化皮膜よりはるかに厚い異常な高温酸化物層が生じていたことが分かった。電解を行うと、この異常な高温酸化物層は、実施例1でチタン基体に形成させた高温酸化皮膜に比較して著しい脆化または腐食が見られ、特に600℃以下の場合には溶出さえ見られた。実施例1でチタン基体に形成させた高温酸化皮膜には、電極触媒を通常の焼成温度で焼成する際には、この異常な高温酸化物層の生成を抑制する作用もあったと考えられる。
Two combined causes were considered for the remarkably inferior life of the electrode compared to Example 1.
According to the analysis by X-ray diffraction of the electrode before the electrolysis test, when the catalyst layer was formed by baking at 550 ° C. or more, metal Ir having a slightly lower resistance was produced as a by-product in addition to IrO 2 having resistance as an anode catalyst. I found out. This means that the electrode catalyst layer has been consumed more quickly.
Furthermore, from the EPMA analysis of the cross section of the electrode before electrolysis, it was found that, for all electrodes, the interface at the side of the metal titanium substrate in contact with the electrode catalyst layer was much higher than the normal high-temperature oxide film when compared at the same temperature. It was found that a thick abnormal high-temperature oxide layer had formed. When the electrolysis is performed, this abnormal high-temperature oxide layer is significantly embrittled or corroded as compared with the high-temperature oxide film formed on the titanium substrate in Example 1, and even when the temperature is lower than 600 ° C., it is even dissolved. Was seen. It is considered that the high-temperature oxide film formed on the titanium substrate in Example 1 also had an effect of suppressing the formation of the abnormal high-temperature oxide layer when the electrode catalyst was fired at a normal firing temperature.

[実施例2]
計8枚の厚さ3mmの一般工業用チタン板のそれぞれの表面を#20のアルミナ粒子でブラスチングして粗面化した後、沸騰した20%塩酸に浸漬して表面洗浄を行い、電極基体とした(実施例2−1〜2−8)。
まず、基体の高温酸化皮膜を形成する前に、実施例2−1〜2−6の6枚の電極基体に対し、特公昭60-21232号公報の実施例1に記載された高温酸化皮膜形成のための塗布液として、10g/lのタンタルを含む塩化タンタルTaCl5の10%塩酸溶液を1回塗布し、乾燥後、さらにこの基体を、空気中で室温から約5℃/分の速度で昇温させ、各基体に対し、表3に示す所定の熱処理を行ってから炉冷して、チタン基体上に高温酸化皮膜を得た。
この高温酸化皮膜のX線回折による解析からは、基材の金属チタンの他には、その酸化物として不可避的に生成されるTiO2(ルチル型)、塗布層から生成されるTa2O5及び高温酸化皮膜と基体の界面に存在すると思われるTi3Oの回折ピークが検出された。
[Example 2]
The surface of each of a total of eight 3 mm-thick titanium plates for general industrial use was roughened by blasting with # 20 alumina particles, and then immersed in boiling 20% hydrochloric acid to perform surface cleaning, and the electrode substrate and (Examples 2-1 to 2-8).
First, before forming the high-temperature oxide film on the substrate, the formation of the high-temperature oxide film described in Example 1 of JP-B-60-21232 was applied to the six electrode substrates of Examples 2-1 to 2-6. A 10% hydrochloric acid solution of tantalum chloride TaCl 5 containing 10 g / l of tantalum is applied once as a coating solution for drying, and after drying, the substrate is further dried in air at a rate of about 5 ° C./minute from room temperature. The temperature was raised, each substrate was subjected to a predetermined heat treatment shown in Table 3, and then cooled in a furnace to obtain a high-temperature oxide film on a titanium substrate.
X-ray diffraction analysis of this high-temperature oxide film shows that, in addition to the titanium metal substrate, TiO 2 (rutile type) inevitably generated as its oxide and Ta 2 O 5 generated from the coating layer And a diffraction peak of Ti 3 O, which is considered to be present at the interface between the high-temperature oxide film and the substrate, was detected.

別に、基体の高温酸化皮膜を形成する前に、実施例2−7及び2−8の2枚の電極基体に対し、高温酸化皮膜形成のための塗布液として、10g/lのモリブデンを含む塩化モリブデンMoCl5の10%塩酸溶液を1回塗布し、さらにこの基体を、空気中で室温から約5℃/分の速度で昇温させ、到達温度650℃、保持時間45分、3時間で熱処理を行ってから炉冷して、チタン基体上に高温酸化皮膜を得た。
この高温酸化皮膜のX線回折による解析からは、基体の金属チタンの他には、その酸化物として不可避的に生成されるTiO2(ルチル型)及び高温酸化皮膜と基体の界面に存在すると思われるTi3Oの回折ピークが検出された。しかしモリブデン酸化物は同定されなかった。酸化モリブデンMoO3の融点は795℃であり、650℃では蒸気圧が高く焼成途中で蒸発したものと思われる。なお、後述の比較例3−2で行った500℃の焼成においては明瞭な酸化モリブデンMoO3の回折ピークが見られた。
Separately, before forming a high-temperature oxide film on the substrate, the two electrode substrates of Examples 2-7 and 2-8 were coated with 10 g / l molybdenum chloride as a coating solution for forming a high-temperature oxide film. A 10% hydrochloric acid solution of molybdenum MoCl 5 is applied once, and the substrate is heated in air at a rate of about 5 ° C./min from room temperature. And then cooled in a furnace to obtain a high-temperature oxide film on the titanium substrate.
X-ray diffraction analysis of this high-temperature oxide film suggests that in addition to the titanium metal of the substrate, TiO 2 (rutile type) inevitably generated as its oxide and the interface between the high-temperature oxide film and the substrate The diffraction peak of Ti 3 O was detected. However, no molybdenum oxide was identified. The melting point of molybdenum oxide MoO 3 is 795 ° C., and at 650 ° C., the vapor pressure is high and it is considered that the molybdenum oxide evaporates during firing. In the firing at 500 ° C. performed in Comparative Example 3-2 described later, a clear diffraction peak of molybdenum oxide MoO 3 was observed.

次に、これら高温酸化皮膜が形成されたチタン基体上に70g/lのイリジウムを含む塩化イリジウムと30g/lのタンタルを含む塩化タンタルの10%塩酸混合溶液を塗布し、乾燥後、500℃に保持したマッフル炉中で10分間焼成し、この操作を12回繰り返して約12g/m2のイリジウムを含む、イリジウム酸化物とタンタル酸化物の混合酸化物を電極触媒とする計8枚の電極を作製した。
これらの各電極を、60℃、150g/lの硫酸水溶液中で、白金板を陰極として、3A/cm2の電流密度で電解寿命試験を行った。セル電圧が1Vアップした時点を電極の寿命と判定した。各電極の寿命は表3に示す通りであった。
これらの電極は、それぞれ安定した電解を維持し、酸素発生を主反応とする工業電解槽において十分な性能を発揮するのに対応した電解試験寿命である、1300時間以上の使用が可能であることを確認した。
Next, a 10% hydrochloric acid mixed solution of iridium chloride containing 70 g / l iridium and tantalum chloride containing 30 g / l tantalum was applied onto the titanium substrate on which the high-temperature oxide film was formed, dried, and then heated to 500 ° C. Firing in a held muffle furnace for 10 minutes, this operation was repeated 12 times, and a total of eight electrodes containing about 12 g / m 2 of iridium and a mixed oxide of iridium oxide and tantalum oxide as an electrode catalyst were used. Produced.
Each of these electrodes was subjected to an electrolytic life test at a current density of 3 A / cm 2 in a 150 g / l sulfuric acid aqueous solution at 60 ° C. using a platinum plate as a cathode. The point at which the cell voltage increased by 1 V was determined as the life of the electrode. The life of each electrode was as shown in Table 3.
Each of these electrodes can maintain a stable electrolysis and have an electrolysis test life of 1300 hours or more, which is sufficient to exhibit sufficient performance in industrial electrolyzers whose main reaction is oxygen generation. It was confirmed.

[実施例及び比較例の考察]
塩化タンタル塗布後、高温酸化を行った実施例2−1〜2−6については、単に高温酸化を行った高温酸化皮膜より電解寿命が延長された傾向が見られる。高温酸化皮膜に酸化タンタルの耐食性が加えられた、すなわち相加・相乗効果が見られた例である。
一方、塩化モリブデンを塗布後、高温酸化を行った実施例2−7及び2−8についても十分な電解寿命を得たが、塩化モリブデンを塗布したことによる相加・相乗効果は見られなかった。しかし負の効果も見られなかった。
これらの条件および電解結果を表3に示した。
[Consideration of Examples and Comparative Examples]
In Examples 2-1 to 2-6 in which high-temperature oxidation was performed after the application of tantalum chloride, there was a tendency that the electrolytic life was longer than that in the high-temperature oxide film simply subjected to high-temperature oxidation. This is an example in which the corrosion resistance of tantalum oxide is added to the high-temperature oxide film, that is, an additive / synergistic effect is observed.
On the other hand, Examples 2-7 and 2-8 in which high-temperature oxidation was performed after application of molybdenum chloride also obtained a sufficient electrolytic life, but did not show any additive / synergistic effects due to application of molybdenum chloride. . However, no negative effects were observed.
Table 3 shows these conditions and electrolysis results.

Figure 2004360067
Figure 2004360067

得られたタンタル酸化物の正味の重量は0.05g/m2前後であるが、塩化タンタル塗布後の高温酸化後の重量増加量は、単純なチタン基体の高温酸化皮膜の重量増加量より逆に少なくなった。タンタル酸化物によってチタン基体の酸化が抑制されたと推測される。モリブデン酸化物については650℃以上の高温酸化中に蒸発するが、残存している間に同様の作用があったものと考えられる。 The net weight of the resulting tantalum oxide is 0.05 g / m 2 before and after, but increase in weight after the high-temperature oxidation after tantalum chloride coating, conversely from the increase in weight of the high-temperature oxidation film of the simple titanium substrate It has run out. It is assumed that the oxidation of the titanium substrate was suppressed by the tantalum oxide. Molybdenum oxide evaporates during high-temperature oxidation at 650 ° C. or higher, but it is considered that the same action was performed while remaining.

[比較例3]
塗布液を塗布し、乾燥後、到達温度および保持時間を500℃10分間とした熱処理を行ってから炉冷して、チタン基体上に高温酸化皮膜を得たこと以外は実施例2と同様に試料を作製し、電解寿命試験を行った。比較例3−1では塩化タンタル塗布後、加熱酸化を行い、比較例3−2では塩化モリブデン塗布後に加熱酸化を行った。比較例3−1のチタン基体の重量増加は0.07g/m2であり、比較例3−2のチタン基体の重量増加は0.08g/m2であった。
これらの電極は、短時間で急速にセル電圧が上昇した。
これらの条件および電解結果を表3に示した。
[Comparative Example 3]
After applying the coating solution and drying, heat treatment was performed with the ultimate temperature and holding time at 500 ° C. for 10 minutes, followed by furnace cooling to obtain a high-temperature oxide film on the titanium substrate in the same manner as in Example 2. Samples were prepared and subjected to an electrolytic life test. In Comparative Example 3-1, thermal oxidation was performed after applying tantalum chloride, and in Comparative Example 3-2, thermal oxidation was performed after applying molybdenum chloride. The weight increase of the titanium substrate of Comparative Example 3-1 was 0.07 g / m 2 , and the weight increase of the titanium substrate of Comparative Example 3-2 was 0.08 g / m 2 .
In these electrodes, the cell voltage rose rapidly in a short time.
Table 3 shows these conditions and electrolysis results.

[実施例3]
計3枚の厚さ3mmの一般工業用チタン板のそれぞれの表面を#20のアルミナ粒子でブラスチングして粗面化した後、沸騰した20%塩酸に浸漬して表面洗浄を行い、計3枚の電極基体とした。
これらの基体のうちの1枚に、注入エネルギー45keV、注入量1×1016ions/cm2でTaイオン注入を行い(実施例3−1)、他の1枚に、注入エネルギー45keV、注入量1×1017 ions/cm2でTaイオン注入を行った(実施例3−2)。更に他の基体に、注入エネルギー45keV、注入量1×1017 ions/cm2でTaイオン注入をまず行い、続いて注入エネルギー50keV、注入量5×1016 ions/cm2でNiイオン注入を行いTaとNiの複合イオン注入とした(実施例3−3)。
[Example 3]
The surface of each of the three general industrial titanium plates having a thickness of 3 mm was roughened by blasting with # 20 alumina particles, and then immersed in boiling 20% hydrochloric acid to perform surface cleaning, and the total of three plates were washed. Electrode substrate.
One of these substrates was subjected to Ta ion implantation at an implantation energy of 45 keV and an implantation amount of 1 × 10 16 ions / cm 2 (Example 3-1), and the other substrate was implanted at an implantation energy of 45 keV and an implantation amount of 45 keV. Ta ions were implanted at 1 × 10 17 ions / cm 2 (Example 3-2). Further, another substrate is first subjected to Ta ion implantation at an implantation energy of 45 keV and an implantation amount of 1 × 10 17 ions / cm 2 , followed by Ni ion implantation at an implantation energy of 50 keV and an implantation amount of 5 × 10 16 ions / cm 2. A composite ion implantation of Ta and Ni was performed (Example 3-3).

これらの試料を透過電子顕微鏡により結晶構造解析を行った。Taイオン注入基体は、金属チタンのα相の回折リングとβ相安定化元素であるTaイオンの注入によるβ相の回折リングがそれぞれ見られた。一方、TaとNiの複合イオン注入基体では、金属チタンのα相とβ相に加えて金属間化合物Ti2Niの回折リングが認められたが、金属ニッケルやNi3Ta等のNi-Ta金属間化合物までは見られなかった。これらの基体の表面層はそれぞれTi-Ta合金、Ti-Ta-Ni合金からなっているとみなすことが出来る。 These samples were subjected to crystal structure analysis using a transmission electron microscope. In the Ta ion-implanted substrate, a diffraction ring of the α-phase of metallic titanium and a diffraction ring of the β-phase due to the implantation of Ta ion as a β-phase stabilizing element were observed. On the other hand, in the composite ion-implanted substrate of Ta and Ni, diffraction rings of the intermetallic compound Ti 2 Ni were observed in addition to the α and β phases of titanium metal, but Ni-Ta metal such as nickel metal and Ni 3 Ta was observed. No intermediate compounds were found. The surface layers of these substrates can be considered to be composed of a Ti-Ta alloy and a Ti-Ta-Ni alloy, respectively.

さらにこれらの3枚の基体を、それぞれ空気中で室温から約5℃/分の速度で昇温させ、到達温度650℃、保持時間3時間の熱処理を行ってから炉冷して、チタン基体の高温酸化皮膜を得た。チタン基体の重量増加量は、それぞれ2.79g/m2(実施例3−1)、2.36g/m2(実施例3−2)及び2.34g/m2(実施例3−3)であった。
これらの試料のX線回折による解析を行った。Taイオン注入基体からは、基材の金属チタン、その酸化物として不可避的に生成されるTiO2(ルチル型)、Ta2O5及び高温酸化皮膜と基体の界面に存在すると思われるTi3Oの回折ピークが検出された。一方、TaとNiの複合イオン注入基体では、これらの回折ピークに加えて、NiTiO3の微小なピークが観察された。
Further, each of these three substrates was heated at a rate of about 5 ° C./min from room temperature in air, and heat-treated at an ultimate temperature of 650 ° C. for a holding time of 3 hours, and then cooled in a furnace to obtain a titanium substrate. A high temperature oxide film was obtained. Increase in weight of the titanium substrate, respectively 2.79 g / m 2 (Example 3-1) was 2.36 g / m 2 (Example 3-2) and 2.34 g / m 2 (Example 3-3) .
These samples were analyzed by X-ray diffraction. From the Ta ion-implanted substrate, the metallic titanium of the substrate, TiO 2 (rutile type) inevitably generated as an oxide thereof, Ta 2 O 5, and Ti 3 O which seems to exist at the interface between the high-temperature oxide film and the substrate Was detected. On the other hand, in the composite ion-implanted substrate of Ta and Ni, a fine peak of NiTiO 3 was observed in addition to these diffraction peaks.

次に、これら高温酸化皮膜が形成されたチタン基体上に70g/lのイリジウムを含む塩化イリジウムと30g/lのタンタルを含む塩化タンタルの10%塩酸混合溶液を塗布し、乾燥後、500℃に保持したマッフル炉中で10分間焼成し、この操作を12回繰り返して約12g/m2のイリジウムを含む、イリジウム酸化物とタンタル酸化物の混合酸化物を電極触媒とする電極を作製した。
これらの電極を、60℃、150g/lの硫酸水溶液中で、白金板を陰極として、3A/cm2の電流密度で電解寿命試験を行った。セル電圧が1Vアップした時点を電極の寿命と判定した。
Next, a 10% hydrochloric acid mixed solution of iridium chloride containing 70 g / l iridium and tantalum chloride containing 30 g / l tantalum was applied onto the titanium substrate on which the high-temperature oxide film was formed, dried, and then heated to 500 ° C. This was fired for 10 minutes in a held muffle furnace, and this operation was repeated 12 times to produce an electrode containing about 12 g / m 2 of iridium and a mixed oxide of iridium oxide and tantalum oxide as an electrode catalyst.
These electrodes were subjected to an electrolytic life test at a current density of 3 A / cm 2 in a 150 g / l sulfuric acid aqueous solution at 60 ° C. using a platinum plate as a cathode. The point at which the cell voltage increased by 1 V was determined as the life of the electrode.

これらの電極は、それぞれ安定した電解を維持し、酸素発生を主反応とする工業電解槽において十分な性能を発揮するのに対応した電解試験寿命である、1300時間以上の使用が可能であることを確認した。
表面近傍をイオン注入で合金化した金属チタン基体に対して、後処理として高温酸化処理を施すと、注入元素の種類と量で電解寿命に対して種々の影響を及ぼした。
例えば、Taイオン注入の場合、量が少ないと実施例3−1および比較例4−1に示したように、高温酸化処理は非常に大きな効果を発揮するが、実施例3−2および比較例4−2に示したように量が多く元々高温酸化を施さなくとも十分な電解寿命が得られるときには、その効果は限定的であるかまたは相加的であった。
一方、TaとNiの複合イオン注入の場合、陽極での電解耐性の劣るTi2Niが初めから存在し、これが高温酸化によってやはり耐食性の劣るNiTiO3となるものの、高温酸化処理によって大きな寿命の延びにつながった。これは微粒子状で存在するNiTiO3が高温酸化皮膜に包含され、孤立化して悪影響が抑制されたことによると思われる。高温酸化皮膜の効果の一つである。
これらの条件および電解結果を表4に示した。
Each of these electrodes can maintain a stable electrolysis and have an electrolysis test life of 1300 hours or more, which is sufficient to exhibit sufficient performance in industrial electrolyzers whose main reaction is oxygen generation. It was confirmed.
When a high-temperature oxidation treatment was performed as a post-treatment on a metal titanium substrate alloyed near the surface by ion implantation, the type and amount of implanted elements had various effects on the electrolytic life.
For example, in the case of Ta ion implantation, as shown in Example 3-1 and Comparative Example 4-1 when the amount is small, the high-temperature oxidation treatment exerts a very large effect, but in Example 3-2 and Comparative Example As shown in 4-2, when the amount was large and sufficient electrolytic life could be obtained without originally performing high temperature oxidation, the effect was limited or additive.
On the other hand, in the case of composite ion implantation of Ta and Ni, Ti 2 Ni, which has poor electrolytic resistance at the anode, is present from the beginning, and this also becomes NiTiO 3 , which also has poor corrosion resistance due to high-temperature oxidation. Led to This is presumably because NiTiO 3 present in the form of fine particles was included in the high-temperature oxide film and was isolated to suppress the adverse effect. This is one of the effects of the high-temperature oxide film.
Table 4 shows these conditions and electrolysis results.

Figure 2004360067
Figure 2004360067

[比較例4]
実施例3−1から3−3のそれぞれのイオン注入後の基体に、後処理としての高温酸化を行わず、そのまま電極触媒コーティングを施したこと以外は実施例3−1から3−3と同様に試料を作製し、電解寿命試験を行った(順に比較例4−1、4−2及び4−3)。
これらの電極は、比較例4−2を除いては短時間で急速にセル電圧が上昇した。
これらの条件および電解結果を表4に示した。
[Comparative Example 4]
Same as Examples 3-1 to 3-3 except that the substrate after ion implantation of each of Examples 3-1 to 3-3 was not subjected to high-temperature oxidation as a post-treatment, and was directly coated with an electrode catalyst. Was prepared and subjected to an electrolytic life test (comparative examples 4-1, 4-2, and 4-3 in this order).
The cell voltage of these electrodes rapidly increased in a short time except for Comparative Example 4-2.
Table 4 shows these conditions and electrolysis results.

本発明に係る電解用電極の一例を示す概念図。The conceptual diagram which shows an example of the electrode for electrolysis which concerns on this invention. 実施例及び比較例で得られた高温酸化皮膜重量増加量と電解試験寿命の関係を示すグラフ。4 is a graph showing the relationship between the amount of increase in the weight of the high-temperature oxide film obtained in Examples and Comparative Examples and the life of the electrolytic test. 実施例1−7の電極試料の約5000倍の断面SEM写真。14 is a SEM photograph of a cross section of the electrode sample of Example 1-7 at a magnification of about 5,000.

符号の説明Explanation of reference numerals

1 電極基体
2 中間層
3 電極触媒層
1 electrode substrate 2 intermediate layer 3 electrode catalyst layer

Claims (5)

バルブメタル又はバルブメタル合金電極基体、該バルブメタル又はバルブメタル合金電極基体の高温酸化処理により該表面に重量増加量が0.5g/m2以上となるように形成された高温酸化皮膜、及び該高温酸化皮膜表面に形成された電極触媒層を含んで成ることを特徴とする電解用電極。 A valve metal or a valve metal alloy electrode base, a high temperature oxide film formed on the surface by a high temperature oxidation treatment of the valve metal or the valve metal alloy electrode base so that the weight increase becomes 0.5 g / m 2 or more; and An electrode for electrolysis comprising an electrode catalyst layer formed on a surface of an oxide film. 重量増加量が0.67g/m2以上である請求項1記載の電解用電極。 2. The electrode for electrolysis according to claim 1, wherein the weight increase is 0.67 g / m 2 or more. バルブメタル又はバルブメタル合金電極基体の高温酸化処理により、該電極基体表面に高温酸化皮膜をその重量増加量が0.5g/m2以上となるように形成し、次いで該高温酸化皮膜上に電極触媒層を形成することを特徴とする電解用電極の製造方法。 By subjecting the valve metal or valve metal alloy electrode substrate to high-temperature oxidation treatment, a high-temperature oxide film is formed on the surface of the electrode substrate so that the weight increase is 0.5 g / m 2 or more, and then an electrode catalyst is formed on the high-temperature oxide film. A method for producing an electrode for electrolysis, comprising forming a layer. バルブメタル又はバルブメタル合金基体の高温酸化処理により、該基体表面に高温酸化皮膜を形成し、次いで該高温酸化皮膜上に電極触媒層を形成する電解用電極の製造方法において、前記高温酸化皮膜を形成する際に、その高温酸化皮膜の重量増加量を、空気中における加熱温度600℃、保持時間1時間で生成するバルブメタル又はバルブメタル合金電極基体の高温酸化皮膜の重量増加量以上とすることを特徴とする電解用電極の製造方法。   A method for producing an electrode for electrolysis in which a high-temperature oxidation treatment of a valve metal or a valve metal alloy substrate is performed to form a high-temperature oxide film on the surface of the substrate, and then an electrode catalyst layer is formed on the high-temperature oxide film. When forming, the weight increase of the high-temperature oxide film should be equal to or greater than the weight increase of the high-temperature oxide film of the valve metal or valve metal alloy electrode substrate generated at a heating temperature of 600 ° C in air and a holding time of 1 hour. A method for producing an electrode for electrolysis characterized by the following. 高温酸化皮膜上に電極触媒層を設ける際に、塗布熱分解法によって前記電極触媒層の形成を行うようにした請求項3又は4に記載の電解用電極の製造方法。   The method for producing an electrode for electrolysis according to claim 3 or 4, wherein when the electrode catalyst layer is provided on the high-temperature oxide film, the electrode catalyst layer is formed by a coating pyrolysis method.
JP2004105964A 2003-05-15 2004-03-31 Electrode for electrolysis and method for producing the same Expired - Lifetime JP4209801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105964A JP4209801B2 (en) 2003-05-15 2004-03-31 Electrode for electrolysis and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003136832 2003-05-15
JP2004105964A JP4209801B2 (en) 2003-05-15 2004-03-31 Electrode for electrolysis and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004360067A true JP2004360067A (en) 2004-12-24
JP4209801B2 JP4209801B2 (en) 2009-01-14

Family

ID=34067249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105964A Expired - Lifetime JP4209801B2 (en) 2003-05-15 2004-03-31 Electrode for electrolysis and method for producing the same

Country Status (1)

Country Link
JP (1) JP4209801B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239040A (en) * 2006-03-09 2007-09-20 Ishifuku Metal Ind Co Ltd Electrode for electrolysis
EP2107136A2 (en) 2008-03-31 2009-10-07 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
EP2107137A1 (en) 2008-03-31 2009-10-07 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
JP2013500396A (en) * 2009-07-28 2013-01-07 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrodes for electrolysis applications
KR20170086104A (en) * 2014-11-24 2017-07-25 인두스트리에 데 노라 에스.피.에이. Anode for electrolytic evolution of chlorine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492777B1 (en) * 2018-10-16 2023-01-26 주식회사 엘지화학 Electrode for electrolysis and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239040A (en) * 2006-03-09 2007-09-20 Ishifuku Metal Ind Co Ltd Electrode for electrolysis
JP4554542B2 (en) * 2006-03-09 2010-09-29 石福金属興業株式会社 Electrode for electrolysis
EP2107136A2 (en) 2008-03-31 2009-10-07 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
EP2107137A1 (en) 2008-03-31 2009-10-07 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
US7842353B2 (en) 2008-03-31 2010-11-30 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
US8337958B2 (en) 2008-03-31 2012-12-25 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
JP2013500396A (en) * 2009-07-28 2013-01-07 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrodes for electrolysis applications
JP2015206125A (en) * 2009-07-28 2015-11-19 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrode for electrolytic application
KR20170086104A (en) * 2014-11-24 2017-07-25 인두스트리에 데 노라 에스.피.에이. Anode for electrolytic evolution of chlorine
KR102461420B1 (en) 2014-11-24 2022-11-02 인두스트리에 데 노라 에스.피.에이. Anode for electrolytic evolution of chlorine

Also Published As

Publication number Publication date
JP4209801B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4394159B2 (en) Method for producing electrode for electrolysis
KR100790767B1 (en) Electrolytic electrode and process of producing the same
JP4884333B2 (en) Electrode for electrolysis
JP2007154237A (en) Electrolytic electrode, and its production method
JP5686456B2 (en) Method for producing oxygen generating anode
JP4986267B2 (en) Electrode manufacturing method
JP5686455B2 (en) Method for producing anode for oxygen generation for high load resistance
CA3168177A1 (en) Electrode having polarity capable of being reversed and use thereof
JP4335302B1 (en) Method for producing electrode for electrolysis
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
JP5686457B2 (en) Method for producing oxygen generating anode
JP2596807B2 (en) Anode for oxygen generation and its production method
JP6404226B2 (en) Electrode for oxygen generation in industrial electrochemical processes, method for producing the electrode, and method for cathodic electrodeposition of metal from aqueous solution using the electrode
JP4209801B2 (en) Electrode for electrolysis and method for producing the same
JPH02282491A (en) Oxygen generating anode and production thereof
GB2204325A (en) A method of electrolytically treating metals and an electrode for use in the method
US5665218A (en) Method of producing an oxygen generating electrode
JPH0762585A (en) Electrolytic electrode substrate and its production
JPH0499294A (en) Oxygen generating anode and its production
TW202225486A (en) Electrolyser for electrochlorination processes and a self-cleaning electrochlorination system
JPH02179891A (en) Anode for generate oxygen and production thereof
JP2008156684A (en) Anode electrode for hydrochloric acid electrolysis
JPS58136790A (en) Insoluble anode
KR100992268B1 (en) Manufacturing process of electrodes for electrolysis
JP4942551B2 (en) Electrode for electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Ref document number: 4209801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250