JP2007146215A - Electrode for oxygen generation - Google Patents

Electrode for oxygen generation Download PDF

Info

Publication number
JP2007146215A
JP2007146215A JP2005341182A JP2005341182A JP2007146215A JP 2007146215 A JP2007146215 A JP 2007146215A JP 2005341182 A JP2005341182 A JP 2005341182A JP 2005341182 A JP2005341182 A JP 2005341182A JP 2007146215 A JP2007146215 A JP 2007146215A
Authority
JP
Japan
Prior art keywords
iridium oxide
electrode
catalyst layer
intermediate layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005341182A
Other languages
Japanese (ja)
Other versions
JP4771130B2 (en
Inventor
Ryuichi Otogawa
隆一 音川
Kenji Kawaguchi
健次 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2005341182A priority Critical patent/JP4771130B2/en
Publication of JP2007146215A publication Critical patent/JP2007146215A/en
Application granted granted Critical
Publication of JP4771130B2 publication Critical patent/JP4771130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst coated type electrode for oxygen generation, wherein the deposition of lead dioxide on an anode when being used as an insoluble anode in the production of copper foil is suppressed to prevent the peeling of a catalytic layer, to improve the durability and to reduce the production cost. <P>SOLUTION: The catalytic layer 2 containing properly mixed amorphous iridium oxide or an oxide except the iridium oxide in addition is formed on the surface of an electroconductive substrate 1 comprising a valve metal such as titanium through an intermediate layer 3 comprising a mixture obtained by properly mixing crystalline iridium oxide or an oxide except the iridium oxide in addition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解法により金属イオンを金属に還元してめっき製品又は金属箔等を製造する際に陽極として使用される酸素発生用電極に関し、特に銅イオンを電解還元して電気めっき製品又は銅箔を製造するのに好適な酸素発生用電極に関する。   The present invention relates to an electrode for oxygen generation used as an anode in producing a plated product or a metal foil by reducing metal ions to metal by an electrolytic method, and in particular, electroplated product or copper by electrolytic reduction of copper ions. The present invention relates to an oxygen generating electrode suitable for manufacturing a foil.

金属箔を製造する方法としては一般に圧延法と電解法が使用されている。金属箔のなかでもプリント配線基板に使用される銅箔については、極めて純度が高い銅が要求されることから電解法が使用されている。これは、電解法では圧延法に比べて原料純度の影響が少ないとされているからである。   As a method for producing a metal foil, a rolling method and an electrolytic method are generally used. Among metal foils, electrolytic methods are used for copper foils used for printed wiring boards because copper with extremely high purity is required. This is because the electrolytic method is less affected by the raw material purity than the rolling method.

電解法による銅箔の製造では、ローラー状の陰極とその外周側に配置された陽極とを用い、銅イオンを含む電解浴中で通電を行うことにより、陰極上に銅を薄く析出させる。そして、陰極上に析出した銅をその陰極表面から連続的にはぎ取ることで、銅箔が製造される。この際、電解浴には一般に銅イオンを含む硫酸酸性の水溶液が用いられる。この硫酸銅浴中には不純物として鉛イオンが含まれている。これは、硫酸銅浴の原料となる銅、特にスクラップ銅中の鉛が硫酸銅浴に混入することが主因である。   In the production of a copper foil by the electrolytic method, a roller-like cathode and an anode disposed on the outer periphery thereof are used to conduct a current in an electrolytic bath containing copper ions, thereby depositing copper thinly on the cathode. And copper foil is manufactured by peeling off the copper deposited on the cathode from the cathode surface continuously. In this case, a sulfuric acid aqueous solution containing copper ions is generally used for the electrolytic bath. This copper sulfate bath contains lead ions as impurities. The main reason for this is that copper as a raw material of the copper sulfate bath, particularly lead in scrap copper, is mixed into the copper sulfate bath.

一方、陽極に関しては、一般的には鉛合金電極が良く知られているが、鉛合金電極の場合は鉛合金が電解浴中に溶解する問題があり、この観点から、電解銅箔の製造では鉛イオンの溶解が生じない、いわゆる不溶性電極が専ら使用されている。そして電解銅箔の製造では、バルブ金属基体の表面に白金族金属又はその酸化物などの電極活性物質を被覆した触媒被覆型の不溶性電極が多用されている。ちなみに、バルブ金属は具体的にはチタン、タンタル、ジルコニウム、ニオブなどの耐食性に優れた金属である。   On the other hand, as for the anode, lead alloy electrodes are generally well known. However, in the case of lead alloy electrodes, there is a problem that the lead alloy dissolves in the electrolytic bath. So-called insoluble electrodes that do not cause lead ion dissolution are exclusively used. In the manufacture of electrolytic copper foil, a catalyst-coated insoluble electrode in which the surface of a valve metal substrate is coated with an electrode active material such as a platinum group metal or its oxide is frequently used. Incidentally, the valve metal is specifically a metal having excellent corrosion resistance, such as titanium, tantalum, zirconium and niobium.

このような触媒被覆型の不溶性陽極を電解銅箔の製造に使用すると、電解浴である硫酸銅浴中への鉛の溶出が阻止されると共に、陽極での主反応である酸素発生により電解浴中の鉛が酸化され、二酸化鉛として不溶性陽極上に析出する。二酸化鉛は酸化イリジウムに比べて酸素発生過電圧は高いが、酸素発生は可能であるので、実際の製造ラインでは二酸化鉛が析出した状態で陽極を使用し続けるのが一般的である。むしろ、二酸化鉛の析出により、電解浴中の鉛イオンを積極的に除去することができ、陽極電位の調整等により二酸化鉛の析出、鉛イオンの除去を意図的に制御することも可能である。   When such a catalyst-coated insoluble anode is used in the production of an electrolytic copper foil, the elution of lead into the copper sulfate bath, which is an electrolytic bath, is prevented, and oxygen generation, which is the main reaction at the anode, prevents the electrolytic bath. The lead inside is oxidized and deposited on the insoluble anode as lead dioxide. Although lead dioxide has a higher oxygen generation overvoltage than iridium oxide, oxygen generation is possible. Therefore, in an actual production line, it is common to continue to use the anode with lead dioxide deposited. Rather, it is possible to positively remove lead ions in the electrolytic bath by precipitation of lead dioxide, and it is also possible to intentionally control the precipitation of lead dioxide and removal of lead ions by adjusting the anode potential. .

このように不溶性陽極への二酸化鉛の析出は、必ずしも致命的な問題ではなく、むしろ電解浴中の鉛除去の点からは有利な現象でさえあるが、次のような問題の原因になることも忘れてはならない。   Thus, the deposition of lead dioxide on the insoluble anode is not necessarily a fatal problem, but is an advantageous phenomenon from the point of removing lead in the electrolytic bath, but may cause the following problems: Don't forget.

すなわち、電解銅箔には銅の高い純度が必要であると共に、箔の厚さの均一性や平滑性なども要求される。ところが、二酸化鉛は不溶性陽極の表面上で不均一に析出し、陽極と陰極間の距離を不均一にする。このため、箔の厚さの均一性や平滑性が低下し、銅箔品質上の問題が発生する。また、不溶性陽極上における二酸化鉛の析出量が増えてくると、この二酸化鉛が不溶性陽極表面の電極活性物質を覆い隠すことになる。その結果、酸素発生に対して高い触媒性を示すという電極活性物質の本来機能が損なわれ、電解電圧が上昇して消費電力が増大するという経済的デメリットも生じる。   That is, the electrolytic copper foil is required to have high copper purity, and the foil thickness is required to be uniform and smooth. However, lead dioxide deposits non-uniformly on the surface of the insoluble anode, making the distance between the anode and the cathode non-uniform. For this reason, the uniformity and smoothness of the thickness of the foil are lowered, and a problem in copper foil quality occurs. Further, as the amount of lead dioxide deposited on the insoluble anode increases, this lead dioxide masks the electrode active material on the surface of the insoluble anode. As a result, the original function of the electrode active material exhibiting high catalytic properties for oxygen generation is impaired, and an economic demerit that the electrolysis voltage increases and the power consumption increases.

そし更に致命的なのは、不溶性陽極上に二酸化鉛が析出した状態で電解操業を休止したような場合には、電解浴に接触している二酸化鉛の一部が局部電池反応により還元されて絶縁性の硫酸鉛となることである。この硫酸鉛の生成のため、その後の電解が阻害されると共に、これによって不溶性陽極が事実上使用不能になるという問題もあった。そして、これらの問題のため、銅箔製造のための電解プロセスでは、陽極上に生成した二酸化鉛や硫酸鉛を除去して、陽極機能を回復する再生作業が頻繁に必要となり、多大な労力とメンテナンスコストを必要とすると共に、そのメンテナンスのために銅箔製造の休止を余儀なくされている。   And even more fatal, when the electrolytic operation is suspended while lead dioxide is deposited on the insoluble anode, a part of the lead dioxide in contact with the electrolytic bath is reduced by the local cell reaction and becomes insulative. Of lead sulfate. The generation of lead sulfate hinders subsequent electrolysis, and this causes the problem that the insoluble anode is practically unusable. And because of these problems, the electrolytic process for producing copper foil often requires regeneration work to remove the lead dioxide and lead sulfate produced on the anode and restore the anode function, Maintenance costs are required, and copper foil production has to be suspended for maintenance.

すなわち、電解銅箔の製造では、バルブ金属基体の表面に電極活性物質を被覆した不溶性陽極の使用の結果として、鉛の溶出の問題は解消され、電解浴中の鉛を積極的に除去できる利点さえあるものの、その一方では、陽極表面への二酸化鉛、硫酸鉛の析出により陽極の使用寿命が著しく制限されるという欠点があるのである。   In other words, in the production of electrolytic copper foil, as a result of using an insoluble anode in which the surface of a valve metal substrate is coated with an electrode active material, the problem of lead elution is eliminated, and the lead in the electrolytic bath can be positively removed. On the other hand, the service life of the anode is significantly limited by the deposition of lead dioxide and lead sulfate on the anode surface.

このような事情に鑑み、本出願人は他の出願人と共に新たな「酸素発生用電極」を開発した(特許文献1)。この「酸素発生用陽極」は、図2に示すように、触媒被覆型不溶性陽極の一種であって、バルブ金属等からなる導電性の基体1の上に、非晶質の酸化イリジウムを含む触媒層2を形成したものであり、例えば触媒層2が酸化イリジウム単体の場合は、前処理を施した基体1の表面に塩化イリジウム酸が溶解した塗布液を塗布し乾燥させた後、350℃前後という比較的低温で焼成する工程を必要回数繰り返すことにより製造される。低温焼成により酸化イリジウムは非晶質となり、500℃近くの高温で焼成した結晶質の酸化イリジウムに対し、その利点を維持しつつ欠点を除去するという優れた特性を有する。   In view of such circumstances, the present applicant has developed a new “oxygen generating electrode” together with other applicants (Patent Document 1). As shown in FIG. 2, this “oxygen generating anode” is a kind of catalyst-coated insoluble anode, and is a catalyst containing amorphous iridium oxide on a conductive substrate 1 made of a valve metal or the like. For example, in the case where the catalyst layer 2 is iridium oxide alone, after applying and drying a coating solution in which iridium acid chloride is dissolved on the surface of the pretreated substrate 1, the temperature is around 350 ° C. It is manufactured by repeating the process of firing at a relatively low temperature. By low-temperature firing, iridium oxide becomes amorphous, and has excellent characteristics of removing defects while maintaining its advantages over crystalline iridium oxide fired at a high temperature close to 500 ° C.

特開2004−238697号公報JP 2004-238697 A

すなわち、非晶質の酸化イリジウムは、結晶質の酸化イリジウムに比較して、酸素発生触媒能が高く、したがって酸素過電圧が低いと共に、鉛イオンから二酸化鉛を生成する反応に対しては過電圧が高くなる(二酸化鉛の析出電位を選択的に高くする)という作用を示す。その結果、陽極での酸素発生が促進される一方で、二酸化鉛の析出が抑制されることから、二酸化鉛の析出に伴う種々の問題が解決され、陽極の使用寿命の延長が期待されるのである。   In other words, amorphous iridium oxide has a higher oxygen generation catalytic ability than crystalline iridium oxide, and therefore has a low oxygen overvoltage and a high overvoltage for reactions that produce lead dioxide from lead ions. (Selectively increasing the deposition potential of lead dioxide). As a result, oxygen generation at the anode is promoted, while lead dioxide precipitation is suppressed, so various problems associated with lead dioxide precipitation are solved, and the service life of the anode is expected to be extended. is there.

ところが、電解銅箔の製造ラインにこの不溶性陽極を実際に適用した結果は、意外にも陽極の使用寿命は延びず、むしろ短くなる傾向さえあることが判明した。それは、非晶質の酸化イリジウムを含む触媒層の剥離耐久性が低く、僅かの使用期間でも使用に差し支えるほどに触媒層の剥離が進行するおそれがあるからである。すなわち、二酸化鉛の析出抑制という電気化学的な成果を問う以前に、触媒層の剥離耐久性の低さが問題になるのである。   However, as a result of actually applying this insoluble anode to an electrolytic copper foil production line, it has been surprisingly found that the service life of the anode does not increase, but rather tends to be shortened. This is because the catalyst layer containing amorphous iridium oxide has low peeling durability, and the catalyst layer may be peeled to such an extent that it can be used even for a short period of use. That is, before asking the electrochemical result of suppressing the precipitation of lead dioxide, the low peeling durability of the catalyst layer becomes a problem.

すなわち、非晶質の酸化イリジウムのみでは、触媒層に容易にクラックを発生させる。そして、そのクラックから酸性の電解液が浸透し、基体を酸化、腐食させる結果、触媒層の剥離が促進されるのである。   That is, cracks are easily generated in the catalyst layer only with amorphous iridium oxide. Then, the acidic electrolytic solution permeates from the cracks, and the base is oxidized and corroded. As a result, peeling of the catalyst layer is promoted.

非晶質の酸化イリジウムを含む触媒層の耐久性に関する問題については、例えば非特許文献1に説明されており、また、前述した特許文献1でも考慮されており、その対策として、非特許文献1では基体と触媒層の間に中間層を設けることの有効性が、また特許文献1では、より具体的に、タンタル又はその合金からなる中間層を設けることの有効性が示されている。基体と触媒層の間にタンタルの中間層が介在すると、基体の酸化、腐食が抑制され、その結果として触媒層の剥離が抑制されるのである。   The problem relating to the durability of the catalyst layer containing amorphous iridium oxide is described in Non-Patent Document 1, for example, and is also considered in Patent Document 1 described above. Then, the effectiveness of providing an intermediate layer between the substrate and the catalyst layer is shown, and Patent Document 1 shows the effectiveness of providing an intermediate layer made of tantalum or an alloy thereof more specifically. When an intermediate layer of tantalum is interposed between the substrate and the catalyst layer, oxidation and corrosion of the substrate are suppressed, and as a result, peeling of the catalyst layer is suppressed.

H.TAKAHASHI,M.MORIMITSU,R.OTOGAWA and M.MATSUNAGA.The 56th Annual Meeting of ISE(International Society of Electrochemistry) abstracts.(2005)1062H.TAKAHASHI, M.MORIMITSU, R.OTOGAWA and M.MATSUNAGA.The 56th Annual Meeting of ISE (International Society of Electrochemistry) abstracts. (2005) 1062

しかしながら、タンタル又はその合金からなる中間層は、通常はスパッタリング法、イオンプレーティング法、CVD法等の技術的に高度な方法で形成されるため、非晶質の酸化イリジウムを含む触媒層の形成に比べて非常に多くのコストがかかり、不溶性陽極の製造コストを大きく高める原因となる。ちなみに、非晶質の酸化イリジウムを含む触媒層の形成は、前述したとおり、例えば触媒層が酸化イリジウム単体の場合は、塩化イリジウム酸が溶解した塗布液を基体の表面に塗布し乾燥させた後、焼成するという焼成工程の繰り返しにより行われる。   However, since an intermediate layer made of tantalum or an alloy thereof is usually formed by a technically advanced method such as sputtering, ion plating, or CVD, formation of a catalyst layer containing amorphous iridium oxide. Compared with this, a very high cost is required, which causes a significant increase in the manufacturing cost of the insoluble anode. Incidentally, the formation of the catalyst layer containing amorphous iridium oxide is, as described above, for example, when the catalyst layer is made of iridium oxide alone, after the coating solution in which chloroiridic acid is dissolved is applied to the surface of the substrate and dried. , By repeating the firing step of firing.

本発明の目的は、電解銅箔の製造等に不溶性陽極として使用された場合の陽極上への二酸化鉛の析出を触媒層の形成により抑制すると共に、その触媒層の剥離を抑制することにより、不溶性陽極の使用寿命を総合的に延長し、しかも経済性に著しく優れる酸素発生用電極を提供することにある。   The purpose of the present invention is to suppress the precipitation of lead dioxide on the anode when used as an insoluble anode in the production of an electrolytic copper foil, etc., by suppressing the separation of the catalyst layer, An object of the present invention is to provide an electrode for oxygen generation that extends the service life of an insoluble anode comprehensively and is extremely excellent in economic efficiency.

上記目的を達成するために、本発明者らは、第1に非晶質の酸化イリジウム系触媒層は不可欠であると考え、その本来の実力を発揮させるためには、その触媒層の剥離耐久性を向上させることが必要であり、そのためには基体と触媒層の間の中間層が重要であると考えて、タンタル系の中間層に代わる経済的な中間層の開発に着手した。そして、様々に試行錯誤した結果、導電性の基体と非晶質の酸化イリジウム系触媒層との間に、結晶質の酸化イリジウム系中間層を介在させるのが有効であるとの知見を得た。   In order to achieve the above object, the present inventors firstly consider that an amorphous iridium oxide catalyst layer is indispensable, and in order to exert its original ability, the separation durability of the catalyst layer is considered. In order to achieve this, the intermediate layer between the substrate and the catalyst layer is considered important, and development of an economical intermediate layer to replace the tantalum-based intermediate layer was started. As a result of various trials and errors, it was found that it is effective to interpose a crystalline iridium oxide intermediate layer between the conductive substrate and the amorphous iridium oxide catalyst layer. .

結晶質の酸化イリジウムは、剥離耐久性に優れ、不溶性陽極の表面に触媒層(電極活性物質)として従来から使用されてきた。しかし、電解銅箔の製造では二酸化鉛の析出、これによる絶縁性の硫酸鉛の付着により使用寿命が制限されてきた。しかし、中間層の場合は、陽極表面に露出する触媒層の場合と異なり、二酸化鉛の析出、これによる絶縁性の硫酸鉛の付着は問題にならず、優れた剥離耐久性等が上層の触媒層の弱点補強に効果的に機能するのである。   Crystalline iridium oxide has excellent peeling durability and has been conventionally used as a catalyst layer (electrode active material) on the surface of an insoluble anode. However, in the manufacture of electrolytic copper foil, the service life has been limited by the deposition of lead dioxide and the resulting adhesion of insulating lead sulfate. However, in the case of the intermediate layer, unlike the case of the catalyst layer exposed on the anode surface, the deposition of lead dioxide and the resulting adhesion of insulating lead sulfate are not a problem, and the superior catalyst has excellent peeling durability. It works effectively to strengthen the weak points of the layer.

そして更に重要な点は、結晶質の酸化イリジウムも非晶質の酸化イリジウムも、同じ塩化イリジウム酸が溶解した塗布液の塗布・焼成により基体上に成膜でき、焼成温度等の焼成条件の僅かの変更だけで、両者をつくり分けることができるという点である。つまり、中間層を触媒層と同じ酸化イリジウム系とすることで、中間層もその上の触媒層も実質的に同じ工程で形成することが可能となるのである。このため、成形コストが嵩むタンタル系の中間層を用いる場合と比べて、経済性が著しく改善されることになる。   More importantly, both crystalline iridium oxide and amorphous iridium oxide can be formed on a substrate by applying and baking a coating solution in which the same iridium chloric acid is dissolved, and there are few baking conditions such as the baking temperature. It is a point that it is possible to create both by just changing the. That is, by making the intermediate layer the same iridium oxide type as the catalyst layer, the intermediate layer and the catalyst layer thereon can be formed in substantially the same step. For this reason, economic efficiency is remarkably improved as compared with the case of using a tantalum-based intermediate layer that increases the molding cost.

本発明の酸素発生用電極は、かかる知見を基礎として完成されたものであり、導電性の基体と、該基体上に形成された非晶質の酸化イリジウムを含む触媒層とを有する酸素発生用電極であって、前記基体と前記触媒層との間に結晶質の酸化イリジウムを含む中間層を有することを構成上の特徴点としている。   The oxygen generating electrode of the present invention has been completed on the basis of such knowledge, and has an electroconductive substrate and a catalyst layer containing amorphous iridium oxide formed on the substrate. The electrode is characterized by having an intermediate layer containing crystalline iridium oxide between the substrate and the catalyst layer.

本発明の酸素発生用電極においては、第1に、電極表面が非晶質の酸化イリジウムを含む触媒層で被覆されるために、電解銅箔の製造や銅メッキにおいて使用される電解浴中の鉛に起因する二酸化鉛の析出、これに伴う絶縁性の硫酸鉛の析出が抑制され、この点から使用寿命が延びる。第2に、基体と触媒層の間に、結晶質の酸化イリジウムを含む中間層が介在している。この中間層は耐食性、耐久性に優れ、触媒層のクラックから浸透する電解浴による基体の酸化、腐食を抑制し、触媒層の剥離を抑制する。このため、触媒層の剥離耐久性が向上し、この点からも電極の使用寿命が延びる。第3に、非晶質の酸化イリジウムを含む触媒層と結晶質の酸化イリジウムを含む中間層とが、共に低コストな焼成法にて形成でき、焼成温度や塗布液の組成の若干の相違を除けば、実質的に同じ方法で形成できるので、形成コストが安価となる。   In the oxygen generating electrode of the present invention, first, since the electrode surface is coated with a catalyst layer containing amorphous iridium oxide, the electrode in an electrolytic bath used in the production of electrolytic copper foil and copper plating is used. Precipitation of lead dioxide due to lead and the accompanying precipitation of insulating lead sulfate are suppressed, and the service life is extended from this point. Second, an intermediate layer containing crystalline iridium oxide is interposed between the substrate and the catalyst layer. This intermediate layer is excellent in corrosion resistance and durability, suppresses oxidation and corrosion of the substrate by the electrolytic bath penetrating from cracks in the catalyst layer, and suppresses peeling of the catalyst layer. For this reason, the peeling durability of the catalyst layer is improved, and the service life of the electrode is extended from this point. Third, the catalyst layer containing amorphous iridium oxide and the intermediate layer containing crystalline iridium oxide can both be formed by a low-cost firing method, and there are some differences in firing temperature and composition of the coating solution. Otherwise, it can be formed by substantially the same method, so the formation cost is low.

本発明の酸素発生用電極において、導電性の基体は、材質に関してはチタン、タンタル、ジルコニウム、ニオブ等のバルブ金属、チタン−タンタル、チタン−ニオブ、チタン−パラジウム、チタン−タンタル−ニオブ等のバルブ金属を主体とする合金、又は導電性ダイヤモンド(例えばホウ素をドープしたダイヤモンド)等が好適であり、その形状は板状、網状、棒状、多孔質などの種々の形状が可能であり、用途に応じて適宜選択すればよい。また、上記バルブ金属、合金、導電性ダイヤモンドを鉄、ニッケルなどのバルブ金属以外の金属又は導電性セラミックスの表面に被覆させた材質も使用可能である。   In the electrode for oxygen generation according to the present invention, the conductive substrate is made of a valve metal such as titanium, tantalum, zirconium, or niobium, or a valve such as titanium-tantalum, titanium-niobium, titanium-palladium, or titanium-tantalum-niobium. An alloy mainly composed of metal, or conductive diamond (for example, diamond doped with boron) is suitable, and the shape can be various shapes such as plate, net, rod, and porous. May be selected as appropriate. A material obtained by coating the valve metal, alloy, or conductive diamond on the surface of a metal other than the valve metal, such as iron or nickel, or conductive ceramics can also be used.

導電性の基体上に形成される中間層は、単層構造を基本とするが、複数層を積層した多層構造であってもよい。単層構造の場合、その中間層は結晶質の酸化イリジウムを含むものとなり、多層構造の場合は、少なくとも1層が結晶質の酸化イリジウムを含むものであればよい。典型的な多層構造は、結晶質の酸化イリジウムを含む層と非晶質の酸化イリジウムを含む層が交互に積層された繰り返し構造である。   The intermediate layer formed on the conductive substrate basically has a single layer structure, but may have a multilayer structure in which a plurality of layers are stacked. In the case of a single-layer structure, the intermediate layer contains crystalline iridium oxide, and in the case of a multilayer structure, at least one layer may contain crystalline iridium oxide. A typical multilayer structure is a repeated structure in which layers containing crystalline iridium oxide and layers containing amorphous iridium oxide are alternately stacked.

結晶質の酸化イリジウムを含む中間層は、結晶質の酸化イリジウム単独でもよいし、結晶質の酸化イリジウム以外の金属酸化物の1種又は2種以上を含む混合物であってもよい。結晶質の酸化イリジウムに添加される金属酸化物としては、例えばチタン、タンタル、ニオブ、タングステン、ジルコニウムなどの酸化物を挙げることができ、非晶質の酸化イリジウムの添加も可能である。   The intermediate layer containing crystalline iridium oxide may be crystalline iridium oxide alone or a mixture containing one or more metal oxides other than crystalline iridium oxide. Examples of the metal oxide added to crystalline iridium oxide include oxides such as titanium, tantalum, niobium, tungsten, and zirconium, and amorphous iridium oxide can also be added.

結晶質の酸化イリジウムに他の金属酸化物を混合する利点は、酸化イリジウムの消耗及び導電性基体からの剥離・脱落等が抑制され、中間層の脆化を防ぐことによって、電極の耐久性を向上させることができるという作用である。典型的な混合物は、結晶質の酸化イリジウムに、非晶質の酸化タンタル及び/又は結晶質の酸化チタンを混合したものである。   The advantage of mixing other metal oxides with crystalline iridium oxide is that the consumption of iridium oxide and exfoliation / detachment from the conductive substrate are suppressed, and the durability of the electrode is improved by preventing embrittlement of the intermediate layer. The effect is that it can be improved. A typical mixture is a mixture of crystalline iridium oxide and amorphous tantalum oxide and / or crystalline titanium oxide.

結晶質の酸化イリジウムを含む中間層では、その酸化イリジウム量は、金属換算で45〜99原子%が好ましく、50〜95原子%が特に好ましい。結晶質の酸化イリジウムと混合する金属酸化物の含有量は、金属換算で55〜1原子%が好ましく、50〜5原子%が特に好ましい。   In the intermediate layer containing crystalline iridium oxide, the amount of iridium oxide is preferably 45 to 99 atomic%, particularly preferably 50 to 95 atomic% in terms of metal. The content of the metal oxide mixed with the crystalline iridium oxide is preferably 55 to 1 atomic%, particularly preferably 50 to 5 atomic% in terms of metal.

中間層上に形成される触媒層は、非晶質の酸化イリジウムを含み、電極表面を覆う。この触媒層は、非晶質の酸化イリジウム単独でもよいし、非晶質の酸化イリジウム以外の金属酸化物の1種又は2種以上を含む混合物でもよい。非晶質の酸化イリジウムに添加される金属酸化物としては、例えば結晶質の酸化イリジウムの他、チタン、タンタル、ニオブ、タングステン、ジルコニウムなどの酸化物を挙げることができる。非晶質の酸化イリジウムにこれらの金属酸化物を添加することにより、触媒層の消耗及び基体からの剥離、脱落が抑制され、その耐久性が向上する。   The catalyst layer formed on the intermediate layer contains amorphous iridium oxide and covers the electrode surface. The catalyst layer may be amorphous iridium oxide alone or a mixture containing one or more metal oxides other than amorphous iridium oxide. Examples of the metal oxide added to the amorphous iridium oxide include crystalline iridium oxide and oxides such as titanium, tantalum, niobium, tungsten, and zirconium. By adding these metal oxides to amorphous iridium oxide, consumption of the catalyst layer and peeling and dropping off from the substrate are suppressed, and its durability is improved.

触媒層中の非晶質の酸化イリジウム量は、金属換算で45〜99原子%が好ましく、50〜95原子%が特に好ましい。非晶質の酸化イリジウムと混合する金属酸化物の含有量は、金属換算で55〜1原子%が好ましく、50〜5原子%が特に好ましい。   The amount of amorphous iridium oxide in the catalyst layer is preferably 45 to 99 atomic%, particularly preferably 50 to 95 atomic% in terms of metal. The content of the metal oxide mixed with the amorphous iridium oxide is preferably 55 to 1 atomic%, particularly preferably 50 to 5 atomic% in terms of metal.

触媒層を構成する混合物の代表的なものは、非晶質の酸化イリジウムと結晶質の酸化イリジウムと非晶質の酸化タンタルとを含む3元系の混合物である。非晶質の酸化イリジウムと共に結晶質の酸化イリジウムが混在することにより、結晶質の酸化イリジウムは下層の中間層に対して付着力を高めると共に、非晶質の酸化イリジウムの脆化を抑制することにより、触媒層の耐久性を高める。更に非晶質の酸化タンタルが混在すると、これが非晶質の酸化イリジウムと結晶質の酸化イリジウムとの間を結着し、この点からも触媒層の耐久性を向上させる。また、非晶質の酸化タンタルの混合は、酸化イリジウムの非晶質化を促進する作用も有する。   A typical mixture constituting the catalyst layer is a ternary mixture containing amorphous iridium oxide, crystalline iridium oxide, and amorphous tantalum oxide. By mixing crystalline iridium oxide together with amorphous iridium oxide, crystalline iridium oxide increases adhesion to the lower intermediate layer and suppresses embrittlement of amorphous iridium oxide. Thus, the durability of the catalyst layer is increased. Further, when amorphous tantalum oxide is mixed, this binds between amorphous iridium oxide and crystalline iridium oxide, and also from this point, the durability of the catalyst layer is improved. In addition, the mixture of amorphous tantalum oxide also has an action of promoting the amorphization of iridium oxide.

本発明の酸素発生用電極は、電極表面に非晶質の酸化イリジウムを含む触媒層を有するので、当該電極を電解銅箔の製造や銅メッキに使用する場合にあっても、電極表面への二酸化鉛の析出を効果的に抑制することができる。また、触媒層と基体との間に結晶質の酸化イリジウムを含む中間層を有するので、触媒層の剥離、脱落を抑制することができる。すなわち、二酸化鉛の析出抑制という電気化学的な面と、触媒層の耐久性向上の両面から、電極の使用寿命を大幅に延長することができる。更に、中間層もその上の触媒層も共に酸化イリジウムを用いるので、焼成温度や塗布液組成を変える以外、実質的に同一の簡易な焼成法で両層を形成でき、経済性に著しく優れる。   Since the electrode for oxygen generation of the present invention has a catalyst layer containing amorphous iridium oxide on the electrode surface, even when the electrode is used for the production of electrolytic copper foil or copper plating, Precipitation of lead dioxide can be effectively suppressed. In addition, since the intermediate layer containing crystalline iridium oxide is provided between the catalyst layer and the substrate, peeling and dropping of the catalyst layer can be suppressed. That is, the service life of the electrode can be greatly extended from both the electrochemical aspect of suppressing lead dioxide precipitation and the improvement of the durability of the catalyst layer. Furthermore, since both the intermediate layer and the catalyst layer on the intermediate layer use iridium oxide, both layers can be formed by substantially the same simple firing method except that the firing temperature and the composition of the coating solution are changed, and the economy is remarkably excellent.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示す酸素発生用電極の模式断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an oxygen generating electrode showing an embodiment of the present invention.

本実施形態の酸素発生用電極は、例えば電解法による銅箔の製造に使用される触媒被覆型の不溶性陽極である。この不溶性陽極は、導電性の基体1の表面に中間層3を介して触媒層2が形成されている。基体1はチタン等のバルブ金属からなり、中間層3は結晶質の酸化イリジウム、或いは結晶質の酸化イリジウムを主体とし、更にこれ以外の酸化物を適量含有した混合物からなる。また触媒層2は、非晶質の酸化イリジウム、或いは非晶質の酸化イリジウムを主体とし、更にこれ以外の酸化物を適量含有した混合物からなる。   The oxygen generating electrode of the present embodiment is a catalyst-coated insoluble anode used, for example, in the production of copper foil by electrolysis. In this insoluble anode, a catalyst layer 2 is formed on the surface of a conductive substrate 1 via an intermediate layer 3. The substrate 1 is made of a valve metal such as titanium, and the intermediate layer 3 is made of crystalline iridium oxide or a mixture mainly containing crystalline iridium oxide and further containing an appropriate amount of other oxides. The catalyst layer 2 is made of amorphous iridium oxide or a mixture mainly containing amorphous iridium oxide and further containing an appropriate amount of other oxides.

このような不溶性陽極を製造するには、まず塩化イリジウム酸等が溶解した塗布液を調製する。前処理を施した基体1の表面に塗布液を塗布し乾燥させた後、酸化イリジウムの結晶化に必要な500℃前後、例えば470℃で加熱し焼成する。必要に応じてこれを繰り返すことにより、基体1の表面に、結晶質の酸化イリジウムを含む所定厚の中間層3を形成する。   In order to manufacture such an insoluble anode, first, a coating solution in which chloroiridic acid or the like is dissolved is prepared. After the coating liquid is applied to the surface of the substrate 1 that has been pretreated and dried, it is heated and baked at around 500 ° C., for example, 470 ° C. necessary for crystallization of iridium oxide. By repeating this as necessary, an intermediate layer 3 having a predetermined thickness containing crystalline iridium oxide is formed on the surface of the substrate 1.

中間層3の形成が終わると、その中間層3の表面に、前記と同様の塩化イリジウム酸等が溶解した塗布液を再び塗布し、乾燥させた後、酸化イリジウムが結晶化しない350℃前後、例えば340℃という比較的低温で加熱し焼成する。そして、所定厚が得られるまでこれを繰り返すことにより、中間層3の上に、更に非晶質の酸化イリジウムを含む所定厚の触媒層2を形成し、不溶性陽極を完成させる。   When the formation of the intermediate layer 3 is finished, a coating solution in which the same chloroiridic acid or the like is dissolved is applied again to the surface of the intermediate layer 3, and after drying, around 350 ° C. at which iridium oxide does not crystallize, For example, it is heated and fired at a relatively low temperature of 340 ° C. Then, by repeating this until a predetermined thickness is obtained, a catalyst layer 2 having a predetermined thickness further containing amorphous iridium oxide is formed on the intermediate layer 3 to complete an insoluble anode.

製造された不溶性陽極を使用して電解銅箔を製造するには、銅イオンを含む電解浴中で当該不溶性陽極をローラー状の陰極と組み合わせ、通電を行うことにより、陰極上に銅を薄く析出させる。薄く析出する銅を陰極上から連続的にはぎ取ることにより、電解銅箔が連続的に製造される。銅イオンを含む電解浴としては、銅イオンを含む硫酸酸性の水溶液(硫酸銅浴)が使用される。   In order to produce an electrolytic copper foil using the produced insoluble anode, the insoluble anode is combined with a roller-like cathode in an electrolytic bath containing copper ions, and copper is thinly deposited on the cathode by conducting current. Let An electrolytic copper foil is continuously produced by continuously stripping thinly deposited copper from the cathode. As the electrolytic bath containing copper ions, a sulfuric acid aqueous solution (copper sulfate bath) containing copper ions is used.

ここで、硫酸銅浴中には不純物として鉛イオンが含まれている。このため、陽極での主反応である酸素発生により電解浴中の鉛が酸化され、二酸化鉛として不溶性陽極上に析出する危険がある。しかし、不溶性陽極の表面が、非晶質の酸化イリジウムを含む触媒層2で被覆されているため、その表面への二酸化鉛の析出が抑制され、その結果として絶縁性の硫酸鉛の生成も抑制される。   Here, the copper sulfate bath contains lead ions as impurities. For this reason, there is a danger that lead in the electrolytic bath is oxidized by oxygen generation, which is the main reaction at the anode, and is deposited on the insoluble anode as lead dioxide. However, since the surface of the insoluble anode is coated with the catalyst layer 2 containing amorphous iridium oxide, the precipitation of lead dioxide on the surface is suppressed, and as a result, the formation of insulating lead sulfate is also suppressed. Is done.

しかし、非晶質の酸化イリジウムを含む触媒層2は、一方でクラック、剥離等を生じやすい上に、クラックを通した硫酸酸性の電解液の浸透により基体1の表面を酸化、腐食させ、剥離、脱落を急速に進行させる危険がある。しかるに、当該不溶性陽極では、触媒層2の下地層として、結晶性の酸化イリジウムを含む中間層3が設けられている。この中間層3は、基体1の表面を効果的に保護する上に、上層の触媒層2とは馴染みがよく密着性が高いため、触媒層2の剥離、脱落を効果的に抑制する。   However, the catalyst layer 2 containing amorphous iridium oxide, on the other hand, is prone to cracking, peeling and the like, and the surface of the substrate 1 is oxidized and corroded by permeation of the sulfuric acid acidic electrolyte through the cracks. There is a danger of the dropout proceeding rapidly. However, in the insoluble anode, an intermediate layer 3 containing crystalline iridium oxide is provided as an underlayer of the catalyst layer 2. The intermediate layer 3 effectively protects the surface of the substrate 1 and is well-familiar with the upper catalyst layer 2 and has high adhesion, and therefore effectively prevents the catalyst layer 2 from peeling off and falling off.

かくして、当該不溶性陽極では、触媒層2が陽極表面に長期間保持され、その表面への二酸化鉛の析出を抑制し続けることにより、長期間の使用寿命が確保される。しかも、触媒層2もその下地層である中間層2も焼成法により形成される上に、同種の塗布液が使用される。このため、高性能でありながら製造コストが非常に低く抑制される。   Thus, in the insoluble anode, the catalyst layer 2 is held on the anode surface for a long period of time, and the long-term service life is ensured by continuing to suppress the deposition of lead dioxide on the surface. In addition, the catalyst layer 2 and the intermediate layer 2 that is the base layer are formed by the firing method, and the same kind of coating solution is used. For this reason, the manufacturing cost is suppressed to a very low level while having high performance.

次に、本発明の実施例を示し、比較例と対比することにより、本発明の効果を明らかにする。   Next, examples of the present invention will be shown, and the effects of the present invention will be clarified by comparing with comparative examples.

(実施例1)
市販のチタン板(長さ5cm、幅1cm、厚さ1.5mm)を10%のシュウ酸溶液中に90℃で60分間浸漬してエッチング処理した後、水洗した。6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、イリジウム金属換算で70mg/mlとなるように塩化イリジウム酸(H2 IrCl6 ・H2 O)を溶解した塗布液を調製し、この塗布液を上記チタン板に塗布した。これを120℃で10分間乾燥し、次いで470℃に保持した電気炉内で20分間焼成して、上記チタン板上に中間層を形成した。この段階で電極をX線回折法により構造解析した結果、IrO2 に相当する回折ピークが認められ、中間層が結晶質の酸化イリジウムから形成されていることを確認した。
Example 1
A commercially available titanium plate (length 5 cm, width 1 cm, thickness 1.5 mm) was immersed in a 10% oxalic acid solution at 90 ° C. for 60 minutes for etching treatment, and then washed with water. A coating solution prepared by dissolving iridium acid chloride (H 2 IrCl 6 · H 2 O) in a butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid so as to be 70 mg / ml in terms of iridium metal. It prepared and apply | coated this coating liquid on the said titanium plate. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 470 ° C. for 20 minutes to form an intermediate layer on the titanium plate. As a result of structural analysis of the electrode by X-ray diffraction at this stage, a diffraction peak corresponding to IrO 2 was observed, and it was confirmed that the intermediate layer was formed of crystalline iridium oxide.

次いで、形成された中間層上に上記塗布液を再び塗布した。これを120℃で10分間乾燥し、次いで340℃に保持した電気炉内で20分間焼成した。上記の塗布、乾燥、焼成を5回繰り返して、中間層上に触媒層を形成した電極を作製した。この電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークは認められず、この電極の触媒層が非晶質の酸化イリジウムから形成されていることを確認した。 Subsequently, the said coating liquid was again apply | coated on the formed intermediate | middle layer. This was dried at 120 ° C. for 10 minutes and then baked in an electric furnace maintained at 340 ° C. for 20 minutes. The above application, drying and firing were repeated 5 times to produce an electrode having a catalyst layer formed on the intermediate layer. As a result of structural analysis of this electrode by the X-ray diffraction method, no diffraction peak corresponding to IrO 2 was observed in the X-ray diffraction image, and it was confirmed that the catalyst layer of this electrode was formed from amorphous iridium oxide. confirmed.

作製された電極の触媒層をポリテトラフルオロエチレン製テープで被覆して面積を1cm2 に規制したものを陽極に、白金板(長さ2cm、幅2cm、厚さ0.5mm)を陰極として、定電流電解を行った。使用した電解浴は、硫酸ナトリウムを溶解し、硫酸によってpHを1.2に調整した硫酸ナトリウム液であり、電解条件は、陽極単位面積当たりの電流密度1.0A/cm2 、温度50℃とした。電解時の電圧が初期値から5V上昇した時間を電極の寿命として評価したところ、電極の寿命は200時間以上であった。 The prepared catalyst layer of the electrode was covered with a polytetrafluoroethylene tape and the area was regulated to 1 cm 2 as an anode, and a platinum plate (length 2 cm, width 2 cm, thickness 0.5 mm) as a cathode, Constant current electrolysis was performed. The electrolytic bath used was a sodium sulfate solution in which sodium sulfate was dissolved and the pH was adjusted to 1.2 with sulfuric acid. The electrolysis conditions were a current density of 1.0 A / cm 2 per unit area of the anode and a temperature of 50 ° C. did. When the time during which the voltage during electrolysis was increased by 5 V from the initial value was evaluated as the life of the electrode, the life of the electrode was 200 hours or more.

(比較例1)
実施例1における電極の作製方法において、中間層の作製工程を省き、焼成温度を340℃として塗布、乾燥、焼成を5回繰り返して、基板上に触媒層を直接形成した電極を作製した。作製された電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークは認められず、この電極の触媒層が非晶質の酸化イリジウムから形成されていることを確認した。実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は50時間未満であった。
(Comparative Example 1)
In the electrode manufacturing method in Example 1, the intermediate layer manufacturing step was omitted, and the electrode was prepared by directly forming the catalyst layer on the substrate by repeating coating, drying, and baking at a baking temperature of 340 ° C. five times. As a result of structural analysis of the produced electrode by the X-ray diffraction method, no diffraction peak corresponding to IrO 2 is observed in the X-ray diffraction image, and the catalyst layer of this electrode is formed of amorphous iridium oxide. It was confirmed. When constant current electrolysis was performed by the method and conditions described in Example 1, the life of the electrode was less than 50 hours.

(比較例2)
実施例1における電極の製造方法において、中間層の作製工程を省き、焼成温度を380℃とした塗布、乾燥、焼成を5回繰り返して、基板上に触媒層を直接形成した電極を作製した。作製された電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークとブロードな回折像が認められ、この電極の触媒層が非晶質の酸化イリジウムと結晶質の酸化イリジウムから形成されていることを確認した。そして、実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は50時間未満であった。
(Comparative Example 2)
In the method for producing an electrode in Example 1, the intermediate layer preparation step was omitted, and coating, drying, and firing at a firing temperature of 380 ° C. were repeated five times to produce an electrode in which the catalyst layer was directly formed on the substrate. As a result of structural analysis of the produced electrode by the X-ray diffraction method, a diffraction peak corresponding to IrO 2 and a broad diffraction image are recognized in the X-ray diffraction image, and the catalyst layer of this electrode is made of amorphous iridium oxide. It was confirmed that it was formed from crystalline iridium oxide. And when the constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was less than 50 hours.

(実施例2)
市販のチタン板(長さ5cm、幅1cm、厚さ1.5mm)を10%のシュウ酸溶液中に90℃で60分間浸漬してエッチング処理した後、水洗した。6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、イリジウム金属換算で70mg/mlとなるように塩化イリジウム酸(H2 IrCl6 ・H2 O)を溶解した塗布液を調製し、この塗布液を上記チタン板に塗布した。これを120℃で10分間乾燥し、次いで470℃に保持した電気炉内で20分間焼成して、チタン板上に中間層を形成した。この段階で電極をX線回折法により構造解析した結果、IrO2 に相当する回折ピークが認められ、中間層が結晶質の酸化イリジウムから形成されていることを確認した。
(Example 2)
A commercially available titanium plate (length 5 cm, width 1 cm, thickness 1.5 mm) was immersed in a 10% oxalic acid solution at 90 ° C. for 60 minutes for etching treatment, and then washed with water. A coating solution prepared by dissolving iridium acid chloride (H 2 IrCl 6 · H 2 O) in a butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid so as to be 70 mg / ml in terms of iridium metal. It prepared and apply | coated this coating liquid on the said titanium plate. This was dried at 120 ° C. for 10 minutes and then baked in an electric furnace maintained at 470 ° C. for 20 minutes to form an intermediate layer on the titanium plate. As a result of structural analysis of the electrode by X-ray diffraction at this stage, a diffraction peak corresponding to IrO 2 was observed, and it was confirmed that the intermediate layer was formed of crystalline iridium oxide.

次いで、6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、塩化イリジウム酸(H2 IrCl6 ・H2 O)と塩化タンタル(TaCl5 )を、これらがモル比で80:20となり、且つイリジウムとタンタルの合計が金属換算で70mg/mlとなるように溶解した塗布液を調製した。この塗布液を上記中間層上に塗布した。これを120℃で10分間乾燥し、次いで340℃に保持した電気炉内で20分間焼成した。上記の塗布、乾燥、焼成を5回繰り返して、上記中間層の上に触媒層を形成した電極を作製した。 Next, butyl iridium acid (H 2 IrCl 6 .H 2 O) and tantalum chloride (TaCl 5 ) were added to a butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid in a molar ratio of 80 The coating solution was prepared so that the total amount of iridium and tantalum was 70 mg / ml in terms of metal. This coating solution was applied onto the intermediate layer. This was dried at 120 ° C. for 10 minutes and then baked in an electric furnace maintained at 340 ° C. for 20 minutes. The above application, drying and firing were repeated 5 times to produce an electrode having a catalyst layer formed on the intermediate layer.

作製された電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークは認められず、またTa2 5 に相当する回折ピークも認められなかったことから、この電極の触媒層が非晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。そして、実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は200時間以上であった。 As a result of structural analysis of the prepared electrode by the X-ray diffraction method, no diffraction peak corresponding to IrO 2 was observed in the X-ray diffraction image, and no diffraction peak corresponding to Ta 2 O 5 was observed. The catalyst layer of this electrode was confirmed to be formed of amorphous iridium oxide and amorphous tantalum oxide. And when constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was 200 hours or more.

(比較例3)
実施例2における電極の作製方法において、中間層の作製工程を省き、焼成温度を380℃として塗布、乾燥、焼成を5回繰り返して、基板上に触媒層を直接形成した電極を作製した。この電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークとブロードな回折像が認められ、またTa2 5 に相当する回折ピークも認められなかったことから、この電極の触媒層が非晶質の酸化イリジウムと結晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。そして、実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は50時間未満であった。
(Comparative Example 3)
In the electrode manufacturing method in Example 2, the intermediate layer manufacturing step was omitted, and the baking temperature was set to 380 ° C., and coating, drying, and baking were repeated five times to prepare an electrode in which the catalyst layer was directly formed on the substrate. As a result of structural analysis of this electrode by the X-ray diffraction method, a diffraction peak corresponding to IrO 2 and a broad diffraction image were observed in the X-ray diffraction image, and a diffraction peak corresponding to Ta 2 O 5 was not observed. From this, it was confirmed that the catalyst layer of this electrode was formed of amorphous iridium oxide, crystalline iridium oxide, and amorphous tantalum oxide. And when the constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was less than 50 hours.

(実施例3)
市販のチタン板(長さ5cm、幅1cm、厚さ1.5mm)を10%のシュウ酸溶液中に90℃で60分間浸漬してエッチング処理した後、水洗した。6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、塩化イリジウム酸(H2 IrCl6 ・H2 O)と塩化タンタル(TaCl5 )を、これらがモル比で80:20となり、且つイリジウムとタンタルの合計が金属換算で70mg/mlとなるように溶解した塗布液を調製し、この塗布液を上記チタン板に塗布した。これを120℃で10分間乾燥し、次いで470℃に保持した電気炉内で20分間焼成して中間層を形成した。この段階で電極をX線回折法により構造解析した結果、IrO2 に相当する回折ピークのみが認められたが、Ta2 5 に相当する回折ピークは認められなかったことから、中間層が結晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。
(Example 3)
A commercially available titanium plate (length 5 cm, width 1 cm, thickness 1.5 mm) was immersed in a 10% oxalic acid solution at 90 ° C. for 60 minutes for etching treatment, and then washed with water. A butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid is mixed with iridium chloroiridate (H 2 IrCl 6 .H 2 O) and tantalum chloride (TaCl 5 ) in a molar ratio of 80:20. Then, a coating solution was prepared so that the total of iridium and tantalum was 70 mg / ml in terms of metal, and this coating solution was applied to the titanium plate. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 470 ° C. for 20 minutes to form an intermediate layer. As a result of structural analysis of the electrode by X-ray diffraction at this stage, only a diffraction peak corresponding to IrO 2 was observed, but no diffraction peak corresponding to Ta 2 O 5 was observed. It was confirmed to be formed from high quality iridium oxide and amorphous tantalum oxide.

次いで、6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、イリジウム金属換算で70mg/mlとなるように塩化イリジウム酸(H2 IrCl6 ・H2 O)を溶解した塗布液を調製した。この塗布液を上記中間層上に塗布した。これを120℃で10分間乾燥し、次いで340℃に保持した電気炉内で20分間焼成した。上記の塗布、乾燥、焼成を5回繰り返して、上記中間層上に触媒層を形成した電極を作製した。製作された電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークは認められず、この電極の触媒層が非晶質の酸化イリジウムから形成されていることを確認した。そして、実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は200時間以上であった。 Subsequently, iridium acid chloride (H 2 IrCl 6 · H 2 O) was dissolved in butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid so as to be 70 mg / ml in terms of iridium metal. A liquid was prepared. This coating solution was applied onto the intermediate layer. This was dried at 120 ° C. for 10 minutes and then baked in an electric furnace maintained at 340 ° C. for 20 minutes. The above application, drying and firing were repeated 5 times to produce an electrode having a catalyst layer formed on the intermediate layer. As a result of structural analysis of the manufactured electrode by the X-ray diffraction method, no diffraction peak corresponding to IrO 2 is observed in the X-ray diffraction image, and the catalyst layer of this electrode is formed of amorphous iridium oxide. It was confirmed. And when constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was 200 hours or more.

(実施例4)
市販のチタン板(長さ5cm、幅1cm、厚さ1.5mm)を10%のシュウ酸溶液中に90℃で60分間浸漬してエッチング処理した後、水洗した。6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、塩化イリジウム酸(H2 IrCl6 ・H2 O)と塩化タンタル(TaCl5 )を、これらがモル比で80:20となり、且つイリジウムとタンタルの合計が金属換算で70mg/mlとなるように溶解した塗布液を調製し、この塗布液を上記チタン板に塗布した。これを120℃で10分間乾燥し、次いで470℃に保持した電気炉内で20分間焼成して、上記チタン板上に中間層を作製した。この段階で電極をX線回折法により構造解析した結果、IrO2 に相当する回折ピークのみが認められたが、Ta2 5 に相当する回折ピークは認められなかったことから、中間層が結晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。
Example 4
A commercially available titanium plate (length 5 cm, width 1 cm, thickness 1.5 mm) was immersed in a 10% oxalic acid solution at 90 ° C. for 60 minutes for etching treatment, and then washed with water. A butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid is mixed with iridium chloroiridate (H 2 IrCl 6 .H 2 O) and tantalum chloride (TaCl 5 ) in a molar ratio of 80:20. Then, a coating solution was prepared so that the total of iridium and tantalum was 70 mg / ml in terms of metal, and this coating solution was applied to the titanium plate. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 470 ° C. for 20 minutes to produce an intermediate layer on the titanium plate. As a result of structural analysis of the electrode by X-ray diffraction at this stage, only a diffraction peak corresponding to IrO 2 was observed, but no diffraction peak corresponding to Ta 2 O 5 was observed. It was confirmed to be formed from high quality iridium oxide and amorphous tantalum oxide.

次いで、上記中間層上に上記塗布液を再び塗布した。これを120℃で10分間乾燥し、次いで340℃に保持した電気炉内で20分間焼成した。上記の塗布、乾燥、焼成を5回繰り返して、上記中間層上に触媒層を形成した電極を作製した。作製された電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークは認められず、またTa2 5 に相当する回折ピークも認められなかったことから、この電極の触媒層が非晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。そして、実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は200時間以上であった。 Next, the coating solution was applied again on the intermediate layer. This was dried at 120 ° C. for 10 minutes and then baked in an electric furnace maintained at 340 ° C. for 20 minutes. The above application, drying and firing were repeated 5 times to produce an electrode having a catalyst layer formed on the intermediate layer. As a result of structural analysis of the prepared electrode by the X-ray diffraction method, no diffraction peak corresponding to IrO 2 was observed in the X-ray diffraction image, and no diffraction peak corresponding to Ta 2 O 5 was observed. The catalyst layer of this electrode was confirmed to be formed of amorphous iridium oxide and amorphous tantalum oxide. And when constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was 200 hours or more.

(実施例5)
市販のチタン板(長さ5cm、幅1cm、厚さ1.5mm)を10%のシュウ酸溶液中に90℃で60分間浸漬してエッチング処理した後、水洗した。6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、イリジウム金属換算で70mg/mlとなるように塩化イリジウム酸(H2 IrCl6 ・H2 O)を溶解した塗布液を調製し、この塗布液を上記チタン板に塗布した。これを120℃で10分間乾燥し、次いで470℃に保持した電気炉内で20分間焼成して上記チタン板上に中間層を形成した。この段階で電極をX線回折法により構造解析した結果、IrO2 に相当する回折ピークが認められ、中間層が結晶質の酸化イリジウムから形成されていることを確認した。
(Example 5)
A commercially available titanium plate (length 5 cm, width 1 cm, thickness 1.5 mm) was immersed in a 10% oxalic acid solution at 90 ° C. for 60 minutes for etching treatment, and then washed with water. A coating solution prepared by dissolving iridium acid chloride (H 2 IrCl 6 · H 2 O) in a butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid so as to be 70 mg / ml in terms of iridium metal. It prepared and apply | coated this coating liquid on the said titanium plate. This was dried at 120 ° C. for 10 minutes and then baked in an electric furnace maintained at 470 ° C. for 20 minutes to form an intermediate layer on the titanium plate. As a result of structural analysis of the electrode by X-ray diffraction at this stage, a diffraction peak corresponding to IrO 2 was observed, and it was confirmed that the intermediate layer was formed of crystalline iridium oxide.

次いで、上記中間層上に上記塗布液を塗布した。これを120℃で10分間乾燥し、次いで380℃に保持した電気炉内で20分間焼成した。上記の塗布、乾燥、焼成を5回繰り返して、上記中間層上に触媒層を形成した電極を作製した。作製された電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークとブロードな回折像が認められ、この電極の触媒層が非晶質の酸化イリジウムと結晶質の酸化イリジウムから形成されていることを確認した。そして実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は200時間以上であった。 Subsequently, the said coating liquid was apply | coated on the said intermediate | middle layer. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 380 ° C. for 20 minutes. The above application, drying and firing were repeated 5 times to produce an electrode having a catalyst layer formed on the intermediate layer. As a result of structural analysis of the produced electrode by the X-ray diffraction method, a diffraction peak corresponding to IrO 2 and a broad diffraction image are recognized in the X-ray diffraction image, and the catalyst layer of this electrode is made of amorphous iridium oxide. It was confirmed that it was formed from crystalline iridium oxide. And when the constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was 200 hours or more.

(実施例6)
市販のチタン板(長さ5cm、幅1cm、厚さ1.5mm)を10%のシュウ酸溶液中に90℃で60分間浸漬してエッチング処理した後、水洗した。6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、塩化イリジウム酸(H2 IrCl6 ・H2 O)と塩化タンタル(TaCl5 )を、これらがモル比で80:20となり、且つイリジウムとタンタルの合計が金属換算で70mg/mlとなるように溶解した塗布液を調製し、この塗布液を上記チタン板に塗布した。これを120℃で10分間乾燥し、次いで470℃に保持した電気炉内で20分間焼成して中間層を作製した。この段階で電極をX線回折法により構造解析した結果、IrO2 に相当する回折ピークのみが認められたが、Ta2 5 に相当する回折ピークは認められなかったことから、中間層が結晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。
(Example 6)
A commercially available titanium plate (length 5 cm, width 1 cm, thickness 1.5 mm) was immersed in a 10% oxalic acid solution at 90 ° C. for 60 minutes for etching treatment, and then washed with water. A butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid is mixed with iridium chloroiridate (H 2 IrCl 6 .H 2 O) and tantalum chloride (TaCl 5 ) in a molar ratio of 80:20. Then, a coating solution was prepared so that the total of iridium and tantalum was 70 mg / ml in terms of metal, and this coating solution was applied to the titanium plate. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 470 ° C. for 20 minutes to produce an intermediate layer. As a result of structural analysis of the electrode by X-ray diffraction at this stage, only a diffraction peak corresponding to IrO 2 was observed, but no diffraction peak corresponding to Ta 2 O 5 was observed. It was confirmed to be formed from high quality iridium oxide and amorphous tantalum oxide.

次いで、6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、イリジウム金属換算で70mg/mlとなるように塩化イリジウム酸(H2 IrCl6 ・H2 O)を溶解した塗布液を調製した。この塗布液を上記中間層上に塗布した。これを120℃で10分間乾燥し、次いで380℃に保持した電気炉内で20分間焼成した。上記の塗布、乾燥、焼成を5回繰り返して、上記中間層上に触媒層を形成した電極を作製した。この電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークとブロードな回折像が認められ、この電極の触媒層が非晶質の酸化イリジウムと結晶質の酸化イリジウムから形成されていることを確認した。そして、実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は200時間以上であった。 Subsequently, iridium acid chloride (H 2 IrCl 6 · H 2 O) was dissolved in butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid so as to be 70 mg / ml in terms of iridium metal. A liquid was prepared. This coating solution was applied onto the intermediate layer. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 380 ° C. for 20 minutes. The above application, drying and firing were repeated 5 times to produce an electrode having a catalyst layer formed on the intermediate layer. As a result of structural analysis of this electrode by the X-ray diffraction method, a diffraction peak corresponding to IrO 2 and a broad diffraction image are observed in the X-ray diffraction image, and the catalyst layer of this electrode is amorphous iridium oxide and crystalline It was confirmed that it was formed from iridium oxide. And when constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was 200 hours or more.

(実施例7)
市販のチタン板(長さ5cm、幅1cm、厚さ1.5mm)を10%のシュウ酸溶液中に90℃で60分間浸漬してエッチング処理した後、水洗した。6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、イリジウム金属換算で70mg/mlとなるように塩化イリジウム酸(H2 IrCl6 ・H2 O)を溶解した塗布液を調製し、この塗布液を上記チタン板に塗布した。これを120℃で10分間乾燥し、次いで470℃に保持した電気炉内で20分間焼成して中間層を作製した。この段階で電極をX線回折法により構造解析した結果、IrO2 に相当する回折ピークが認められ、中間層が結晶質の酸化イリジウムから形成されていることを確認した。
(Example 7)
A commercially available titanium plate (length 5 cm, width 1 cm, thickness 1.5 mm) was immersed in a 10% oxalic acid solution at 90 ° C. for 60 minutes for etching treatment, and then washed with water. A coating solution prepared by dissolving iridium acid chloride (H 2 IrCl 6 · H 2 O) in a butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid so as to be 70 mg / ml in terms of iridium metal. It prepared and apply | coated this coating liquid on the said titanium plate. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 470 ° C. for 20 minutes to produce an intermediate layer. As a result of structural analysis of the electrode by X-ray diffraction at this stage, a diffraction peak corresponding to IrO 2 was observed, and it was confirmed that the intermediate layer was formed of crystalline iridium oxide.

次いで、6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、塩化イリジウム酸(H2 IrCl6 ・H2 O)と塩化タンタル(TaCl5 )を、これらがモル比で80:20となり、且つイリジウムとタンタルの合計が金属換算で70mg/mlとなるように溶解した塗布液を調製した。この塗布液を上記中間層上に塗布した。これを120℃で10分間乾燥し、次いで380℃に保持した電気炉内で20分間焼成した。上記の塗布、乾燥、焼成を5回繰り返して、上記中間層上に触媒層を形成した電極を作製した。作製された電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークとブロードな回折像が認められ、またTa2 5 に相当する回折ピークも認められなかったことから、この電極の触媒層が非晶質の酸化イリジウムと結晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。そして、実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は200時間以上であった。 Next, butyl iridium acid (H 2 IrCl 6 .H 2 O) and tantalum chloride (TaCl 5 ) were added to a butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid in a molar ratio of 80 The coating solution was prepared so that the total amount of iridium and tantalum was 70 mg / ml in terms of metal. This coating solution was applied onto the intermediate layer. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 380 ° C. for 20 minutes. The above application, drying and firing were repeated 5 times to produce an electrode having a catalyst layer formed on the intermediate layer. As a result of structural analysis of the produced electrode by X-ray diffraction method, a diffraction peak corresponding to IrO 2 and a broad diffraction image are recognized in the X-ray diffraction image, and a diffraction peak corresponding to Ta 2 O 5 is also recognized. Therefore, it was confirmed that the catalyst layer of this electrode was formed of amorphous iridium oxide, crystalline iridium oxide, and amorphous tantalum oxide. And when constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was 200 hours or more.

(実施例8)
市販のチタン板(長さ5cm、幅1cm、厚さ1.5mm)を10%のシュウ酸溶液中に90℃で60分間浸漬してエッチング処理した後、水洗した。6vol%の濃塩酸を含むブタノール(n−C4 9 OH)溶液に、塩化イリジウム酸(H2 IrCl6 ・H2 O)と塩化タンタル(TaCl5 )を、これらがモル比で80:20となり、且つイリジウムとタンタルの合計が金属換算で70mg/mlとなるように溶解した塗布液を調製し、この塗布液を上記チタン板に塗布した。これを120℃で10分間乾燥し、次いで470℃に保持した電気炉内で20分間焼成して中間層を作製した。この段階で電極をX線回折法により構造解析した結果、IrO2 に相当する回折ピークのみが認められたが、Ta2 5 に相当する回折ピークは認められなかったことから、中間層が結晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。
(Example 8)
A commercially available titanium plate (length 5 cm, width 1 cm, thickness 1.5 mm) was immersed in a 10% oxalic acid solution at 90 ° C. for 60 minutes for etching treatment, and then washed with water. A butanol (n-C 4 H 9 OH) solution containing 6 vol% concentrated hydrochloric acid is mixed with iridium chloroiridate (H 2 IrCl 6 .H 2 O) and tantalum chloride (TaCl 5 ) in a molar ratio of 80:20. Then, a coating solution was prepared so that the total of iridium and tantalum was 70 mg / ml in terms of metal, and this coating solution was applied to the titanium plate. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 470 ° C. for 20 minutes to produce an intermediate layer. As a result of structural analysis of the electrode by X-ray diffraction at this stage, only a diffraction peak corresponding to IrO 2 was observed, but no diffraction peak corresponding to Ta 2 O 5 was observed. It was confirmed to be formed from high quality iridium oxide and amorphous tantalum oxide.

次いで、上記中間層上に上記塗布液を再び塗布した。これを120℃で10分間乾燥し、次いで380℃に保持した電気炉内で20分間焼成した。上記の塗布、乾燥、焼成を5回繰り返して、上記中間層上に触媒層を形成した電極を作製した。この電極をX線回折法により構造解析した結果、X線回折像にはIrO2 に相当する回折ピークとブロードな回折像が認められ、またTa2 5 に相当する回折ピークも認められなかったことから、この電極の触媒層が非晶質の酸化イリジウムと結晶質の酸化イリジウムと非晶質の酸化タンタルから形成されていることを確認した。そして、実施例1に記した方法・条件で定電流電解を行ったところ、電極の寿命は200時間以上であった。 Next, the coating solution was applied again on the intermediate layer. This was dried at 120 ° C. for 10 minutes, and then baked in an electric furnace maintained at 380 ° C. for 20 minutes. The above application, drying and firing were repeated 5 times to produce an electrode having a catalyst layer formed on the intermediate layer. As a result of structural analysis of this electrode by the X-ray diffraction method, a diffraction peak corresponding to IrO 2 and a broad diffraction image were observed in the X-ray diffraction image, and a diffraction peak corresponding to Ta 2 O 5 was not observed. From this, it was confirmed that the catalyst layer of this electrode was formed of amorphous iridium oxide, crystalline iridium oxide, and amorphous tantalum oxide. And when constant current electrolysis was performed by the method and conditions described in Example 1, the lifetime of the electrode was 200 hours or more.

(実施例9)
実施例1〜8、比較例1〜3と同じ方法で製作した電極の触媒層をポリテトラフルオロエチレン製テープで被覆して面積を1cm2 に規制したものを陽極に、白金板(長さ2cm、幅2cm、厚さ0.5mm)を陰極として、定電流電解を行った。電解液は、30wt%の硝酸鉛を溶解し、硝酸によってpHを0.7に調整した硝酸鉛浴であり、電解条件は、陽極単位面積当たりの電流密度40mA/cm2 、温度70℃、電解時間5分とした。電解後の陽極をX線回折法により解析した結果、全ての電極において触媒層表面への二酸化鉛の生成は認められなかった。
Example 9
Examples 1 to 8 and Comparative Examples 1 to 3 were prepared by coating a catalyst layer of an electrode with a polytetrafluoroethylene tape and regulating the area to 1 cm 2 as an anode with a platinum plate (length 2 cm). , Width 2 cm, thickness 0.5 mm) was used as a cathode, and constant current electrolysis was performed. The electrolytic solution is a lead nitrate bath in which 30 wt% lead nitrate is dissolved and the pH is adjusted to 0.7 with nitric acid. The electrolysis conditions are current density of 40 mA / cm 2 per unit area of anode, temperature of 70 ° C., electrolysis The time was 5 minutes. As a result of analyzing the anode after electrolysis by the X-ray diffraction method, the formation of lead dioxide on the surface of the catalyst layer was not recognized in all the electrodes.

(実施例10)
実施例1〜8、比較例1〜3と同じ方法で製作した電極の触媒層をポリテトラフルオロエチレン製テープで被覆して面積を1cm2 に規制したものを陽極に、白金板(長さ2cm、幅2cm、厚さ0.5mm)を陰極として、定電流電解を行った。電解液は、20ppmの硫酸鉛を溶解し、硫酸によってpHを1に調整した硫酸鉛浴であり、電解条件は、陽極単位面積当たりの電流密度200mA/cm2 、温度60℃、電解時間5分とした。全ての電極において電解後の触媒層表面には析出物は認められず、また電解後の電極をX線回折法により解析したが、二酸化鉛の生成は確認できなかった。
(Example 10)
Examples 1 to 8 and Comparative Examples 1 to 3 were prepared by coating a catalyst layer of an electrode with a polytetrafluoroethylene tape and regulating the area to 1 cm 2 as an anode with a platinum plate (length 2 cm). , Width 2 cm, thickness 0.5 mm) was used as a cathode, and constant current electrolysis was performed. The electrolyte is a lead sulfate bath in which 20 ppm of lead sulfate is dissolved and the pH is adjusted to 1 with sulfuric acid. The electrolysis conditions are current density of 200 mA / cm 2 per unit area of anode, temperature of 60 ° C., electrolysis time of 5 minutes. It was. In all the electrodes, no deposits were observed on the surface of the catalyst layer after electrolysis, and the electrodes after electrolysis were analyzed by X-ray diffraction, but formation of lead dioxide could not be confirmed.

以上のように、導電性の基体と非晶質の酸化イリジウムを含む触媒層との間に結晶質の酸化イリジウムを含む中間層を有する実施例1〜8では、中間層のない比較例1〜3よりも定電流電解試験において高耐久性を有することが判った。また、実施例1〜8では触媒層上に二酸化鉛の生成が確認されなかったことから、結晶質の酸化イリジウムを含む中間層を有することによって、従来の酸素発生用電極に比べて、酸化鉛の生成が極めて効果的に抑制される特徴を維持しながら、なおかつ高耐久性であることが判った。   As described above, in Examples 1 to 8 having the intermediate layer containing crystalline iridium oxide between the conductive substrate and the catalyst layer containing amorphous iridium oxide, Comparative Examples 1 to 1 having no intermediate layer were used. 3 was found to have higher durability in the constant current electrolytic test than 3. Moreover, in Examples 1-8, since the production | generation of lead dioxide was not confirmed on the catalyst layer, it has lead oxide compared with the electrode for conventional oxygen generation by having an intermediate | middle layer containing crystalline iridium oxide. It has been found that it is highly durable while maintaining the characteristics that the formation of is extremely effectively suppressed.

本発明の一実施形態を示す酸素発生用電極の模式断面図である。It is a schematic cross section of the electrode for oxygen generation showing one embodiment of the present invention. 従来の酸素発生用電極(触媒被覆型電極)の模式断面図である。It is a schematic cross section of a conventional electrode for oxygen generation (catalyst-coated electrode).

符号の説明Explanation of symbols

1 基体
2 触媒層
3 中間層
1 Substrate 2 Catalyst layer 3 Intermediate layer

Claims (4)

導電性の基体と、該基体上に形成された非晶質の酸化イリジウムを含む触媒層とを有する酸素発生用電極であって、前記基体と前記触媒層との間に結晶質の酸化イリジウムを含む中間層を有することを特徴とする酸素発生用電極。   An electrode for oxygen generation having a conductive substrate and a catalyst layer containing amorphous iridium oxide formed on the substrate, wherein crystalline iridium oxide is interposed between the substrate and the catalyst layer. An oxygen generating electrode, comprising an intermediate layer. 前記中間層は、結晶質の酸化イリジウムと共に、非晶質の酸化タンタルを含む請求項1に記載の酸素発生用電極。   The electrode for generating oxygen according to claim 1, wherein the intermediate layer contains amorphous tantalum oxide together with crystalline iridium oxide. 前記中間層は、結晶質の酸化イリジウムと共に、結晶質の酸化チタンを含む請求項1又は2に記載の酸素発生用電極。   The oxygen generation electrode according to claim 1, wherein the intermediate layer includes crystalline titanium oxide together with crystalline iridium oxide. 前記中間層は、複数層のうちの少なくとも1層が結晶質の酸化イリジウムを含む多層構造である請求項1に記載の酸素発生用電極。   2. The oxygen generating electrode according to claim 1, wherein the intermediate layer has a multilayer structure in which at least one of the plurality of layers contains crystalline iridium oxide.
JP2005341182A 2005-11-25 2005-11-25 Oxygen generating electrode Expired - Fee Related JP4771130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341182A JP4771130B2 (en) 2005-11-25 2005-11-25 Oxygen generating electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341182A JP4771130B2 (en) 2005-11-25 2005-11-25 Oxygen generating electrode

Publications (2)

Publication Number Publication Date
JP2007146215A true JP2007146215A (en) 2007-06-14
JP4771130B2 JP4771130B2 (en) 2011-09-14

Family

ID=38207975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341182A Expired - Fee Related JP4771130B2 (en) 2005-11-25 2005-11-25 Oxygen generating electrode

Country Status (1)

Country Link
JP (1) JP4771130B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146269A1 (en) * 2008-05-24 2009-12-03 Freeport-Mcmoran Corporation Multi-coated electrode and method of making
WO2009151044A1 (en) * 2008-06-09 2009-12-17 学校法人同志社 Anodes for electrolytic winning of zinc and cobalt and method for electrolytic winning
JP2009293117A (en) * 2008-06-09 2009-12-17 Doshisha Anode for use in electrowinning zinc, and electrowinning method
WO2010001971A1 (en) * 2008-07-03 2010-01-07 旭化成ケミカルズ株式会社 Cathode for hydrogen generation and method for producing the same
JP2010001556A (en) * 2008-06-23 2010-01-07 Doshisha Anode for use in electrowinning cobalt, and method for electrowinning cobalt
WO2013038928A1 (en) 2011-09-13 2013-03-21 学校法人同志社 Positive electrode for electrolytic plating and electrolytic plating method using positive electrode
WO2013099780A2 (en) 2011-12-26 2013-07-04 Permelec Electrode Ltd. High-load durable anode for oxygen generation and manufacturing method for the same
WO2013100165A2 (en) 2011-12-26 2013-07-04 Permelec Electrode Ltd. Anode for oxygen generation and manufacturing method for the same
CN103476970A (en) * 2011-03-25 2013-12-25 学校法人同志社 Anode for electrowinning and electrowinning method using same
KR20140101424A (en) 2011-12-26 2014-08-19 페르메렉덴꾜꾸가부시끼가이샤 Anode for oxygen generation and manufacturing method for the same
CN109735884A (en) * 2019-03-19 2019-05-10 贵州省冶金化工研究所有限责任公司 A kind of rodlike metal-based compound anode material preparation method
CN112553657A (en) * 2019-09-10 2021-03-26 马赫内托特殊阳极(苏州)有限公司 Electrode and preparation method and application thereof
WO2023208026A1 (en) * 2022-04-28 2023-11-02 中国石油化工股份有限公司 Transition metal-doped iridium-based composite catalyst, and preparation and application thereof
KR102661792B1 (en) 2020-11-30 2024-04-30 한국과학기술원 Iridium Oxide-Based Electrocatalyst and Preparation Method Thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195294A (en) * 1992-01-20 1993-08-03 Nippon Steel Corp Production of insoluble electrode
JPH08199384A (en) * 1995-01-23 1996-08-06 Ishifuku Metal Ind Co Ltd Electrolyzing electrode and its production
JP2004238697A (en) * 2003-02-07 2004-08-26 Daiso Co Ltd Electrode for oxygen generation
JP2005089779A (en) * 2003-09-12 2005-04-07 Wako Sangyo:Kk Electrode for electrolysis and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195294A (en) * 1992-01-20 1993-08-03 Nippon Steel Corp Production of insoluble electrode
JPH08199384A (en) * 1995-01-23 1996-08-06 Ishifuku Metal Ind Co Ltd Electrolyzing electrode and its production
JP2004238697A (en) * 2003-02-07 2004-08-26 Daiso Co Ltd Electrode for oxygen generation
JP2005089779A (en) * 2003-09-12 2005-04-07 Wako Sangyo:Kk Electrode for electrolysis and manufacturing method therefor

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022004B2 (en) 2008-05-24 2011-09-20 Freeport-Mcmoran Corporation Multi-coated electrode and method of making
WO2009146270A1 (en) * 2008-05-24 2009-12-03 Freeport-Mcmoran Corporation An electrochemically active composition, methods of making, and uses thereof
WO2009146269A1 (en) * 2008-05-24 2009-12-03 Freeport-Mcmoran Corporation Multi-coated electrode and method of making
US8124556B2 (en) 2008-05-24 2012-02-28 Freeport-Mcmoran Corporation Electrochemically active composition, methods of making, and uses thereof
CN102912385B (en) * 2008-06-09 2015-06-10 学校法人同志社 Anodes for electrolytic winning of cobalt and method for electrolytic winning
JP2009293117A (en) * 2008-06-09 2009-12-17 Doshisha Anode for use in electrowinning zinc, and electrowinning method
JP4516617B2 (en) * 2008-06-09 2010-08-04 学校法人同志社 Anode for electrowinning zinc and electrowinning method
WO2009151044A1 (en) * 2008-06-09 2009-12-17 学校法人同志社 Anodes for electrolytic winning of zinc and cobalt and method for electrolytic winning
EP2287364A1 (en) * 2008-06-09 2011-02-23 The Doshisha Anodes for electrolytic winning of zinc and cobalt and method for electrolytic winning
EP2287364A4 (en) * 2008-06-09 2011-07-06 Doshisha Anodes for electrolytic winning of zinc and cobalt and method for electrolytic winning
CN102912385A (en) * 2008-06-09 2013-02-06 学校法人同志社 Anodes for electrolytic winning of zinc and cobalt and method for electrolytic winning
US8357271B2 (en) 2008-06-09 2013-01-22 The Doshisha Anode for use in zinc and cobalt electrowinning and electrowinning method
EP2508651A1 (en) * 2008-06-09 2012-10-10 The Doshisha Anode for use in cobalt electrowinning and electrowinning method
JP2010001556A (en) * 2008-06-23 2010-01-07 Doshisha Anode for use in electrowinning cobalt, and method for electrowinning cobalt
JP4516618B2 (en) * 2008-06-23 2010-08-04 学校法人同志社 Anode for electrolytic collection of cobalt and electrolytic collection method
WO2010001971A1 (en) * 2008-07-03 2010-01-07 旭化成ケミカルズ株式会社 Cathode for hydrogen generation and method for producing the same
US8425740B2 (en) 2008-07-03 2013-04-23 Asahi Kasei Chemicals Corporation Cathode for hydrogen generation and method for producing the same
JP5395791B2 (en) * 2008-07-03 2014-01-22 旭化成ケミカルズ株式会社 Cathode for hydrogen generation and method for producing the same
CN103476970A (en) * 2011-03-25 2013-12-25 学校法人同志社 Anode for electrowinning and electrowinning method using same
EP2690200A4 (en) * 2011-03-25 2014-03-19 Doshisha Anode for electrowinning and electrowinning method using same
AU2012234150B2 (en) * 2011-03-25 2015-07-02 The Doshisha Anode for electrowinning and electrowinning method using same
WO2013038928A1 (en) 2011-09-13 2013-03-21 学校法人同志社 Positive electrode for electrolytic plating and electrolytic plating method using positive electrode
US9556534B2 (en) 2011-09-13 2017-01-31 The Doshisha Anode for electroplating and method for electroplating using anode
KR20140101424A (en) 2011-12-26 2014-08-19 페르메렉덴꾜꾸가부시끼가이샤 Anode for oxygen generation and manufacturing method for the same
KR20140101425A (en) 2011-12-26 2014-08-19 페르메렉덴꾜꾸가부시끼가이샤 High-load durable anode for oxygen generation and manufacturing method for the same
WO2013100165A2 (en) 2011-12-26 2013-07-04 Permelec Electrode Ltd. Anode for oxygen generation and manufacturing method for the same
WO2013099780A2 (en) 2011-12-26 2013-07-04 Permelec Electrode Ltd. High-load durable anode for oxygen generation and manufacturing method for the same
CN109735884A (en) * 2019-03-19 2019-05-10 贵州省冶金化工研究所有限责任公司 A kind of rodlike metal-based compound anode material preparation method
CN112553657A (en) * 2019-09-10 2021-03-26 马赫内托特殊阳极(苏州)有限公司 Electrode and preparation method and application thereof
WO2021047687A3 (en) * 2019-09-10 2021-04-29 Magneto Special Anodes (suzhou) Co., Ltd. Electrode and preparation method and use thereof
CN112553657B (en) * 2019-09-10 2023-06-02 马赫内托特殊阳极(苏州)有限公司 Electrode and preparation method and application thereof
KR102661792B1 (en) 2020-11-30 2024-04-30 한국과학기술원 Iridium Oxide-Based Electrocatalyst and Preparation Method Thereof
WO2023208026A1 (en) * 2022-04-28 2023-11-02 中国石油化工股份有限公司 Transition metal-doped iridium-based composite catalyst, and preparation and application thereof

Also Published As

Publication number Publication date
JP4771130B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4771130B2 (en) Oxygen generating electrode
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
JP5686456B2 (en) Method for producing oxygen generating anode
JP3914162B2 (en) Oxygen generating electrode
RU2568546C2 (en) Anode for electroextraction and method of electroextraction with its use
US9556534B2 (en) Anode for electroplating and method for electroplating using anode
JP4341838B2 (en) Electrode cathode
JP4516618B2 (en) Anode for electrolytic collection of cobalt and electrolytic collection method
JP5686455B2 (en) Method for producing anode for oxygen generation for high load resistance
JP5862883B2 (en) Method for plating metal material and method for producing solid polymer electrolyte membrane / catalyst metal composite electrode
JP5686457B2 (en) Method for producing oxygen generating anode
EP0955395B1 (en) Electrolyzing electrode and process for the production thereof
JP2768904B2 (en) Oxygen generating electrode
US5665218A (en) Method of producing an oxygen generating electrode
JP2885913B2 (en) Anode for chromium plating and method for producing the same
JP2925938B2 (en) Oxygen generating electrode and method for producing the same
RU2691967C1 (en) Method of making an electrode from reinforced lead dioxide
JPH0499294A (en) Oxygen generating anode and its production
JP2002275697A (en) Anode for generating oxygen
JPH0355558B2 (en)
JPH0417689A (en) Electrode for electrolyzing water and production thereof
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JP4942551B2 (en) Electrode for electrolysis
JP2019081919A (en) Electrolytic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees