JPH0355558B2 - - Google Patents

Info

Publication number
JPH0355558B2
JPH0355558B2 JP62035406A JP3540687A JPH0355558B2 JP H0355558 B2 JPH0355558 B2 JP H0355558B2 JP 62035406 A JP62035406 A JP 62035406A JP 3540687 A JP3540687 A JP 3540687A JP H0355558 B2 JPH0355558 B2 JP H0355558B2
Authority
JP
Japan
Prior art keywords
electrode
iridium
tantalum
electrodes
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62035406A
Other languages
Japanese (ja)
Other versions
JPS63203800A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3540687A priority Critical patent/JPS63203800A/en
Publication of JPS63203800A publication Critical patent/JPS63203800A/en
Publication of JPH0355558B2 publication Critical patent/JPH0355558B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、各種電気化学反応装置などの表面処
理などに好適に用いられる電極とその製造方法に
関する。 従来技術 従来から磁気デバイス用金属薄膜の電解析出、
コネクタ用の金メツキや印刷配線基板の電着銅な
どによる回路形成などの分野から、自動車の車体
などを構成する鋼板などのたとえば亜鉛メツキ
(亜鉛単体または亜鉛合金によるめつき)などの
表面処理または、製缶用鋼板のたとえば錫メツキ
などの表面処理分野などまで、電解析出反応を利
用する表面処理技術が広く行なわれている。この
ような表面処理は、電極が浸漬された電解槽中に
被処理物を浸漬し、前記電極と被処理物との間に
通電することによつて前記電解析出を行う。この
ような電解処理に用いられる電極の材質などが電
解現象に多大な影響を及ばすことが知られてい
る。 従来では、このような電極には酸化鉛(PbO2
電極やフエライト電極または白金めつきチタン電
極などが用いられていた。 これらの材料から成る電極は、電解液中の有機
薬品や有機添加剤を比較的高速に分解し、これに
よつて電解液の劣化をもたらし、このような電解
液を清浄化するためたとえば活性炭による過作
業を行なう必要がある。このためにこの電解工程
を含む製造ラインの全体を停止しなければならな
いという問題点があつた。 また金めつき、光沢銅めつきや製缶用錫めつき
などを行なう産業分野では、めつき用の電極とし
て白金/チタン電極がアノードとして用いられて
いる。このような各種めつきを行なうためのめつ
き液中には、やはり各種有機薬品や有機添加剤が
用いられており、前述の従来例と同様にこれらを
高速に分解してしまうという問題点がある。さら
に所定の電解速度を得るために印加される電圧を
比較的高く設定しなければならず、大きな電力を
消費してしまうという問題点があつた。まためつ
き工程の進行に伴い電極が不動態化してしまい、
電極としての寿命が比較的短時間であるという問
題点がある。 さらにたとえば金めつきを行なう場合などにお
いて、めつき金属(金)の酸化数を増大してしま
い、消費電力量が大きくなつてしまうという問題
点があつた。すなわち金めつきを行なう場合、金
の酸化数を下記のような反応によつて増大してし
まう。 Au+→Au3+ ……(1) したがつて3価の陽イオンとなつた金イオンを
被めつき物上の析出するためには、下記の第2式
および第3式で示す還元作用が行なわれる必要が
あり、第2式で示される還元作用を行なうための
電力が無駄となつてしまう。 Au3+→Au+ ……(2) Au+→Au ……(3) さらに他の従来技術として、特開昭55−38951
が挙げられる。これはチタン(Ti)にタンタル
(Ta)、ニオブ(Nb)、亜鉛(Zn)などを0.05〜
10重量%を含む合金を基体とし、この基体上にタ
ンタルとイリジウムとの混合酸化物被膜を形成す
るようにしている。また他の従来技術として、特
開昭57−192281が挙げられる。これはチタン製基
体上に、酸化イリジウム(IrO2)と酸化タンタル
(Ta2O5)などの金属酸化物を形成するが、これ
らの間に中間層として酸化ニオブ(Nb2O5)や酸
化タンタルなどの導電性酸化物層を、金属量換算
で0.001〜1g/m2の層厚に形成する。これらの
先行技術は、電極の不動態状態への進行を抑制し
て長寿命化を図りかつ、電極電圧を低下させて省
エネルギーを図ろうとするものである。 しかしこれらはいずれも、基体上に複数種類の
金属の混合酸化物を形成するに当たつて、たとえ
ば450℃で1時間以上の加熱を行なう焼成工程を
含んでおり、このようにして製造された電極は各
種電解液中の有機物を分解してしまうという問題
点があつた。 発明が解決しようとする問題点 本発明は、上述の従来技術が有する諸問題に鑑
みてなされたものであつて、その目的とするとこ
ろは消費エネルギを格段に削減することができる
とともに長寿命を得ることができ、かつ有機物の
分解作用が従来技術と比して格段に低減され、製
造効率を向上できる電極およびその製造方法を提
供することである。 問題点を解決するための手段 本発明は、酸化イリジウム(IrO2)と酸化タン
タル(Ta2O5)との混合物であつて、イリジウム
とタンタルとの重量比が1:1.5〜1:4の範囲
に選ばれるそのような混合物から成る被膜が、チ
タン(Ti)製基材上に形成されてなることを特
徴とする電極である。 さらに本発明は、イリジウム(Ir)とタンタル
(Ta)との各塩化物のアルコール溶液を、チタン
製基材上に塗布し、約120℃で乾燥し、 塗布工程および乾燥工程を複数回繰返し、 酸化雰囲気中で、350℃〜400℃で20分間加熱す
るようにしたことを特徴とする電極の製造方法。 作 用 本発明に従えば、イリジウム(Ir)とタンタル
(Ta)との各塩化物のアルコール溶液を、チタン
製基材上に塗布乾燥し、酸化雰囲気中で350℃〜
400℃で加熱する。このとき前記イリジウムとタ
ンタルとの各塩化物の配合比は、イリジウムとタ
ンタルとの重量比が1:1.5〜1:4の範囲とな
るように選ぶ。このようにして製造された電極
は、従来技術と同等の電解速度を得る場合でも、
それに必要な印加電圧を低減することができる。
またこのような電極が浸漬される処理液中の陽イ
オンを、多価イオンする作用が可及的に抑制さ
れ、これによつて消費エネルギを格段に削減でき
る。 またこのような電極は、不動態状態となる変化
が抑制されており、電極としての長寿命化を図る
ことができる。また前記処理液中に各種有機物が
含有されている場合であつても、これを分解する
ことがなく、したがつて処理液は清浄な状態に保
たれ、このような電極を用いる製造工程が含まれ
る製造ラインを停止して処理液を浄化するなどの
処理作業が可及的に抑制される。これによつて作
業能率が格段に向上される。 実施例 () 本件電極の製造工程例 本件電極を製造するにあたつて、金属チタン
(Ti)から成る基材を準備する。この基材上に
イリジウム(Ir)とタンタル(Ta)の塩化物
(IrCl4およびTaCl5)のアルコール溶液(溶媒
はメタノール、ブタノール、イソプロパノール
などの各種のアルコールを用いてよい)を塗布
する。このとき前記アルコール溶液中のイリジ
ウム(Ir)とタンタル(Ta)との重量比は、
1:1.5〜1:4の範囲に選ばれる。この後、
約120℃の温度で乾燥した後、350℃の温度で20
分間焼成する。この塗布工程、半乾燥工程、焼
成工程を所望の回数繰返して、所望の電極を製
造する。 () 第1実施例 (ア) 実験内容 塩化イリジウム(IrCl4)の20%塩酸溶液
を蒸発させ、得られたペーストをメタノール
に溶解した後、塩化タンタル(TaCl5)のメ
タノール溶液と混合する。一方、前記混合物
が塗布されるチタン(Ti)製基材を研磨し
た後、70℃の7%塩酸で表面処理して水洗い
し、キムワイプで水分を払拭した後、自然乾
燥する。このようにして得られた基材上に前
記混合物を塗布し、120℃、10分間加熱して
半乾燥させた後、350℃、20分間加熱して焼
成する。このような塗布、乾燥および焼成工
程を、たとえば6回繰返して前記チタン基材
上に約1μmの薄膜を得る。このようにして
本件発明に従う電極(以下、本件電極と称す
る)を得た。なお、焼成温度が350℃以下で
は塩化イリジウムと塩化タンタルの混合物が
充分に酸化せず、所望の電極を製造すること
ができない。 (イ) イリジウムとタンタルとの配合比と焼成温
度とについて 第1図はこのようにして製造される本件電
極において、イリジウムとタンタルとの配合
比と焼成温度とを変えて製造した電極を陽極
として使用した場合の該陽極の炭酸ガス
(CO2)の発生量の変化を示すグラフである。
第1図においてラインl1〜l5、焼成温度
550℃、500℃、450℃、400℃、350℃の場合
にそれぞれ対応する。またグラフにおいて縦
軸は炭酸ガスの発生量(cm3)であり、横軸は
イリジウムとタンタルとの総量に対するイリ
ジウムの配合比(Ir/Ir+総量に対するイリ
ジウムの配合比(Ir/(Ir+Ta)、重量%)
である。 本件実験例は、硫酸ニツケルNiSO4
6H2Oの50g/とNa2WO4・2H2Oの70g/
とを含み、かつクエン酸を90g/の濃度
で含むNi−W合金めつき液を用いた。また
陽極は面積2cm2のものを用い、電流密度
20A/dm2で25分間の通電、すなわち600ク
ーロンの電荷量による通電を行なつた。 従来技術の項で述べたように、めつき液な
どに含まれるクエン酸などの有機物はこのよ
うな通電によつて分散されると、炭酸ガスを
発生する。このようなガスの発生は有機物の
分解の進行を示しており、これによつてめつ
き液などの電解液が劣化してしまうことが知
られている。 第1図の本件実験例に示すように、炭酸ガ
ス発生の抑制について、イリジウムの配合比
が20〜40%の範囲であり、また焼成温度が前
記配合比範囲内において350℃〜450℃の範囲
で良好な結果が得られることが確認された。 第2図は前述のニツケル−タングステン合
金めつき液を電解する際にイリジウムとタン
タルの配合比と焼成温度が異なる数種の電極
を陽極として用いた場合の陽極電圧の変化を
示すグラフである。グラフの縦軸は電流密
度、横軸は通電開始以降15分後の陽極電圧を
示す。またグラフにおいてラインl6は白金
から成る従来電極の場合に対応し、ラインl
7〜l14はイリジウムとタンタルの配合比
および焼成温度の組合わせがそれぞれ(3:
7、450℃)、(2:8、400℃)、(3:7、
400℃)、(2:8、350℃)、(4:6、450
℃)、(4:6、400℃)、(4:6、350℃)、
および(3:7、350℃)の各場合に対応す
る。 第2図に示すように、陽極電圧の低減に関
して特に良好な結果を生じるイリジウムとタ
ンタルの配合比と焼成温度の組合わせは、l
12〜l14、すなわち(4:6、400℃)、
(4:6、350℃)および(3:7、350℃)
であることが確認される。ここで注目すべき
ことは、450℃焼成の電極、ラインl7に示
されるように比較的高い陽極電圧を示してい
ることである。したがつて、炭酸ガスを発生
せず、かつ陽極電圧の低減に関しても有効な
電極の焼成温度としては350〜400℃が適当で
あり、450℃は焼成温度として適当でないこ
とが示された。 下記第1表は焼成温度350℃〜400℃の電極
を選んでニツケル−タングステン合金めつき
用陽極として用いた場合の作動寿命の測定結
果を示す。この寿命の測定は、電解槽中に浸
漬した陽極と陰極間に電源電圧10Vを接続
し、可変抵抗器で陽極にかかる電流密度を
20A/dm2に設定して行なつた。すなわち、
通電当初は両電極間の電圧降下は3V程度で
あるが、電解が進行すると電極が消耗してチ
タン基材上のイリジウム/タンタル酸化物被
膜が減少して基材が露出し、基材が不動態化
してしまう。そのため、両電極間の電圧降下
は約3Vから10Vに向つて急速に上昇する。
この時点を寿命として計測したものである。
INDUSTRIAL APPLICATION FIELD The present invention relates to an electrode suitably used for surface treatment of various electrochemical reaction devices, etc., and a method for manufacturing the same. Conventional technology Conventionally, electrolytic deposition of metal thin films for magnetic devices,
From fields such as circuit formation using gold plating for connectors and electrodeposited copper for printed wiring boards, to surface treatments such as zinc plating (plating with zinc alone or zinc alloy) on steel plates that make up automobile bodies, etc. 2. Description of the Related Art Surface treatment techniques using electrolytic deposition reactions are widely used in the field of surface treatment, such as tin plating of steel plates for can manufacturing. In such surface treatment, the electrolytic deposition is performed by immersing the object to be treated in an electrolytic bath in which an electrode is immersed, and applying electricity between the electrode and the object to be treated. It is known that the material of the electrodes used in such electrolytic treatment has a great influence on electrolytic phenomena. Traditionally, such electrodes have been made using lead oxide (PbO 2 ).
Electrodes, ferrite electrodes, or platinum-plated titanium electrodes were used. Electrodes made of these materials decompose organic chemicals and organic additives in the electrolyte relatively quickly, thereby leading to deterioration of the electrolyte, and to clean such electrolytes, e.g. activated carbon is used. It is necessary to overwork. For this reason, there was a problem in that the entire production line including this electrolytic process had to be stopped. Furthermore, in industrial fields where gold plating, bright copper plating, tin plating for can manufacturing, etc. are performed, platinum/titanium electrodes are used as anodes for plating. Various organic chemicals and organic additives are used in the plating solution used to perform these types of plating, and as with the conventional example described above, there is the problem that these decompose at a high speed. be. Furthermore, in order to obtain a predetermined electrolysis rate, the applied voltage must be set relatively high, resulting in a problem that a large amount of power is consumed. Also, as the plating process progresses, the electrode becomes passivated.
There is a problem that the life span as an electrode is relatively short. Furthermore, when gold plating is performed, for example, the oxidation number of the plating metal (gold) increases, resulting in an increase in power consumption. That is, when gold plating is performed, the oxidation number of gold is increased by the following reaction. Au + →Au 3+ ...(1) Therefore, in order to precipitate gold ions, which have become trivalent cations, on the coated material, the reduction action shown by the following equations 2 and 3 is required. must be performed, and the electric power for performing the reduction action shown by the second equation is wasted. Au 3+ →Au + ……(2) Au + →Au ……(3) Furthermore, as another conventional technology, JP-A-55-38951
can be mentioned. This is titanium (Ti), tantalum (Ta), niobium (Nb), zinc (Zn), etc.
An alloy containing 10% by weight is used as a base, and a mixed oxide film of tantalum and iridium is formed on this base. Further, as another prior art, Japanese Patent Application Laid-open No. 192281/1983 can be mentioned. This forms metal oxides such as iridium oxide (IrO 2 ) and tantalum oxide (Ta 2 O 5 ) on a titanium substrate, but between these metal oxides such as niobium oxide (Nb 2 O 5 ) and oxide A conductive oxide layer such as tantalum is formed to a thickness of 0.001 to 1 g/m 2 in terms of metal content. These prior art techniques attempt to extend the life of the electrode by suppressing the progress of the electrode into a passive state, and to save energy by lowering the electrode voltage. However, all of these involve a firing process in which a mixed oxide of multiple types of metals is formed on the substrate, for example, by heating at 450°C for one hour or more, and the products manufactured in this way The problem was that the electrodes decomposed organic substances in various electrolytes. Problems to be Solved by the Invention The present invention has been made in view of the problems of the above-mentioned prior art, and its purpose is to significantly reduce energy consumption and extend life. It is an object of the present invention to provide an electrode and a method for manufacturing the same, which can be obtained by reducing the decomposition effect of organic substances significantly compared to conventional techniques and improving manufacturing efficiency. Means for Solving the Problems The present invention provides a mixture of iridium oxide (IrO 2 ) and tantalum oxide (Ta 2 O 5 ), the weight ratio of iridium to tantalum being 1:1.5 to 1:4. The electrode is characterized in that a coating made of such a mixture selected from the range is formed on a titanium (Ti) substrate. Furthermore, in the present invention, an alcohol solution of each chloride of iridium (Ir) and tantalum (Ta) is applied onto a titanium base material, dried at about 120°C, and the application process and drying process are repeated multiple times. A method for manufacturing an electrode, comprising heating at 350°C to 400°C for 20 minutes in an oxidizing atmosphere. Effect According to the present invention, an alcoholic solution of each chloride of iridium (Ir) and tantalum (Ta) is coated and dried on a titanium base material, and then heated at 350°C to 350°C in an oxidizing atmosphere.
Heat at 400℃. At this time, the blending ratio of each chloride of iridium and tantalum is selected so that the weight ratio of iridium and tantalum is in the range of 1:1.5 to 1:4. Even when the electrode manufactured in this way obtains the same electrolysis rate as the conventional technology,
The applied voltage required for this can be reduced.
Further, the effect of converting cations into multivalent ions in the processing liquid in which such an electrode is immersed is suppressed as much as possible, thereby significantly reducing energy consumption. Further, such an electrode is suppressed from changing into a passive state, and can have a long life as an electrode. Furthermore, even if the processing solution contains various organic substances, it will not be decomposed, and therefore the processing solution will be kept in a clean state, and the manufacturing process using such an electrode will not be included. Processing operations such as stopping the production line and purifying the processing liquid are suppressed as much as possible. This greatly improves work efficiency. Example () Example of manufacturing process of the present electrode In manufacturing the present electrode, a base material made of metallic titanium (Ti) is prepared. An alcoholic solution of iridium (Ir) and tantalum (Ta) chlorides (IrCl 4 and TaCl 5 ) (the solvent may be any of various alcohols such as methanol, butanol, and isopropanol) is applied onto this substrate. At this time, the weight ratio of iridium (Ir) and tantalum (Ta) in the alcohol solution is
The ratio is selected in the range of 1:1.5 to 1:4. After this,
After drying at a temperature of about 120℃, then drying at a temperature of 350℃ for 20
Bake for a minute. The coating process, semi-drying process, and firing process are repeated a desired number of times to produce a desired electrode. () First Example (a) Experiment Details A 20% hydrochloric acid solution of iridium chloride (IrCl 4 ) is evaporated, the resulting paste is dissolved in methanol, and then mixed with a methanol solution of tantalum chloride (TaCl 5 ). Meanwhile, the titanium (Ti) substrate to which the mixture is applied is polished, then surface treated with 7% hydrochloric acid at 70° C., washed with water, wiped with Kimwipe, and air-dried. The mixture is applied onto the base material thus obtained, heated at 120° C. for 10 minutes to semi-dry it, and then heated at 350° C. for 20 minutes to bake. Such coating, drying and firing steps are repeated, for example, six times to obtain a thin film of about 1 μm on the titanium substrate. In this way, an electrode according to the present invention (hereinafter referred to as the present electrode) was obtained. Note that if the firing temperature is below 350°C, the mixture of iridium chloride and tantalum chloride will not be sufficiently oxidized, making it impossible to manufacture the desired electrode. (b) About the blending ratio of iridium and tantalum and the firing temperature Figure 1 shows the electrode manufactured in this way, with the electrode manufactured by changing the blending ratio of iridium and tantalum and the firing temperature as an anode. It is a graph showing changes in the amount of carbon dioxide gas (CO 2 ) generated by the anode when used.
In Figure 1, lines l1 to l5, firing temperature
Corresponds to 550℃, 500℃, 450℃, 400℃, and 350℃ respectively. In the graph, the vertical axis is the amount of carbon dioxide gas generated (cm 3 ), and the horizontal axis is the blending ratio of iridium to the total amount of iridium and tantalum (Ir/Ir + blending ratio of iridium to the total amount (Ir/(Ir+Ta)), weight %)
It is. This experimental example uses nickel sulfate NiSO4 .
50g/ of 6H 2 O and 70g/ of Na 2 WO 4・2H 2 O
A Ni--W alloy plating solution containing citric acid at a concentration of 90 g/ was used. In addition, the anode used has an area of 2 cm 2 , and the current density
Current was applied at 20 A/dm 2 for 25 minutes, that is, with a charge of 600 coulombs. As described in the section on the prior art, when organic substances such as citric acid contained in a plating solution are dispersed by such electric current, carbon dioxide gas is generated. The generation of such gas indicates the progress of decomposition of organic matter, and it is known that this causes deterioration of electrolyte solutions such as plating solutions. As shown in the present experimental example in Figure 1, in order to suppress carbon dioxide gas generation, the iridium blending ratio is in the range of 20 to 40%, and the firing temperature is in the range of 350°C to 450°C within the above blending ratio range. It was confirmed that good results could be obtained. FIG. 2 is a graph showing changes in anode voltage when several types of electrodes having different blending ratios of iridium and tantalum and firing temperatures are used as anodes when electrolyzing the aforementioned nickel-tungsten alloy plating solution. The vertical axis of the graph shows the current density, and the horizontal axis shows the anode voltage 15 minutes after the start of current application. Also, in the graph, line l6 corresponds to the case of a conventional electrode made of platinum, and line l6 corresponds to the case of a conventional electrode made of platinum.
7 to 114 have a combination of iridium and tantalum compounding ratio and firing temperature (3:
7, 450℃), (2:8, 400℃), (3:7,
400℃), (2:8, 350℃), (4:6, 450
℃), (4:6, 400℃), (4:6, 350℃),
and (3:7, 350°C). As shown in Figure 2, the combination of iridium and tantalum ratio and firing temperature that produces particularly good results in terms of reducing the anode voltage is l
12~l14, i.e. (4:6, 400°C),
(4:6, 350℃) and (3:7, 350℃)
It is confirmed that What should be noted here is that the electrode fired at 450°C shows a relatively high anode voltage as shown in line 17. Therefore, it was shown that 350 to 400°C is an appropriate firing temperature for an electrode that does not generate carbon dioxide gas and is effective in reducing the anode voltage, and that 450°C is not an appropriate firing temperature. Table 1 below shows the results of measuring the operating life of selected electrodes with a firing temperature of 350 DEG C. to 400 DEG C. and used as anodes for plating nickel-tungsten alloys. To measure this life, connect a power supply voltage of 10V between the anode and cathode immersed in the electrolytic bath, and adjust the current density applied to the anode using a variable resistor.
It was set at 20A/ dm2 . That is,
When electricity is first applied, the voltage drop between the two electrodes is about 3V, but as electrolysis progresses, the electrodes wear out and the iridium/tantalum oxide film on the titanium base material decreases, exposing the base material and leaving the base material intact. It becomes dynamic. Therefore, the voltage drop between the two electrodes rapidly increases from about 3V to 10V.
This point was measured as the lifespan.

【表】 第1表に示すように焼成温度400℃の電極
の寿命が最も長い。しかしながら400℃焼成
の電極は、寿命に達するに先立つ約50時間以
前から電解液中の有機物の分解を開始するこ
とが確認された。したがつて、有機物の分解
反応の起こらない有効寿命はイリジウムとタ
ンタルの配合比が4:6の電極について約
1350時間となる。一方、焼成温度350℃およ
び380℃の電極は寿命に達するまで有機物を
分解しないことが確認された。 したがつて本実施例で示した電極の、有機
物非分解性能、陽極電圧、寿命の測定結果か
ら、イリジウムとタンタルの配合比は2:8
〜4:6が好ましいことが結論づけられる。
また、焼成温度は350℃〜400℃の範囲が良好
であることが結論づけられる。またその中で
も寿命に達するまで有機物を分解しない特性
を持つ電極の焼成温度としては約350℃〜380
℃が最適であることが結論づけられた。 (ウ) イリジウムとタンタルとの混合酸化物の被
膜層厚について 前述の実験例では、混合酸化物層を約1μ
mの層厚に形成した。この層厚をむやみに薄
くすると、焼成体の下地であるチタン板表面
に非導電性酸化物被膜が形成され、電気抵抗
が増大してしまうという問題点が生じる。一
方、この混合酸化物被膜は層厚10μm程度で
も、前述の効果を得られることが本件発明者
によつて確認されているが、約50μmを超え
る場合、焼成体は電気的に半導体的特性を有
しており、したがつて導通抵抗が増大してし
まうという問題を生じる。 第3図は従来の白金電極と本件電極との電
極電位と電流密度とに関連する特性を示すグ
ラフである。グラフの縦軸は電流密度、横軸
は電極電位とし、浴温65℃の金めつき浴を用
いる。これら条件下で600クローンの通電を
行なつた後、従来例の本件電極とに関して、
発生される炭酸ガスおよび酸素ガスを捕集し
てその発生量が計測すると、下記の第2表と
計測結果が得られた。
[Table] As shown in Table 1, the electrode fired at a firing temperature of 400°C has the longest life. However, it was confirmed that the electrodes fired at 400°C start decomposing organic matter in the electrolyte about 50 hours before reaching the end of their lifespan. Therefore, the useful life without decomposition reactions of organic substances is approximately 4:6 for an electrode with a blending ratio of iridium and tantalum of 4:6.
That's 1350 hours. On the other hand, it was confirmed that the electrodes fired at 350°C and 380°C did not decompose organic matter until the end of their lifespan. Therefore, from the measurement results of the organic substance non-decomposition performance, anode voltage, and life of the electrode shown in this example, the blending ratio of iridium and tantalum is 2:8.
It is concluded that ~4:6 is preferred.
Moreover, it is concluded that the firing temperature is preferably in the range of 350°C to 400°C. Among these, the firing temperature for electrodes that do not decompose organic substances until the end of their life is approximately 350℃ to 380℃.
It was concluded that ℃ is optimal. (c) Regarding the thickness of the mixed oxide layer of iridium and tantalum In the above experimental example, the mixed oxide layer was approximately 1 μm thick.
It was formed to have a layer thickness of m. If this layer thickness is made too thin, a problem arises in that a non-conductive oxide film is formed on the surface of the titanium plate, which is the base of the fired product, and the electrical resistance increases. On the other hand, the inventor of the present invention has confirmed that the above-mentioned effects can be obtained even when the mixed oxide film has a layer thickness of about 10 μm, but when the thickness exceeds about 50 μm, the fired product exhibits electrical semiconductor characteristics. Therefore, a problem arises in that conduction resistance increases. FIG. 3 is a graph showing characteristics related to electrode potential and current density of a conventional platinum electrode and the present electrode. The vertical axis of the graph is the current density, and the horizontal axis is the electrode potential, and a gold plating bath with a bath temperature of 65°C is used. After energizing 600 clones under these conditions, with respect to the conventional electrode,
When the generated carbon dioxide gas and oxygen gas were collected and the amounts generated were measured, the following Table 2 and measurement results were obtained.

【表】 第3図に明らかなように、ラインl5で示
される本件電極(イリジウム、タンタルの配
合比は4:6で350℃の焼成温度)は電極電
位が従来例(ラインl6)より格段に低いこ
とが確認される。また発生される炭酸ガス量
を比較すると、本件では従来例の18.2%程度
に削減されており、それだけ電解液の劣化が
抑制されていることを示している。 また上記第2表のように計測された発生ガ
ス量の総量を酸素ガスに換算してみると、前
記発生ガス中の炭酸ガスは従来例の白金電極
では2電子反応によつて発生され、本件電極
では1電子反応によつて発生されることが確
認されているので、従来例では、 12+11/2=17.5c.c. ……(4) が得られ、本件電極による発生ガスの酸素ガ
ス換算は37c.c.となる。したがつて従来例の白
金電極と本件電極とをそれぞれ用いた場合の
上記第1式で示される電解浴中イオンの多価
イオンへの酸化反応の程度は、従来例では、 (38−17.5)/38×100=54% ……(5) 程度であり、本件電極では、 (38−37)/38×100=2.6% ……(6) であることが算出される。したがつてこの点
に関しても、本件電極を用いることによつて
上記第2式を参照して説明した電気エネルギ
のロス分を従来例の4.8%程度に削減するこ
とができる。 以上のように本実施例によれば、金めつきを
行なう場合の金イオンの多価イオンへの酸化の
程度を1/25程度に削減でき、有機物の分解の程
度を1/5程度に削減できる。さらに電極電位を
1/2程度に低減でき、電力コストは2/3程度に削
減できる。 () 第2実験例 本実験例では、硫酸亜鉛(ZnSO4・7H2O)
300g/と硫酸ナトリウム(Na2SO4)100
g/とを混合し、硫酸(H2SO4)で水素イ
オン濃度をPH1.2に調整する。このようなめつ
き浴を60℃の液温に保持しつつ、電流密度0〜
20A/dm2の条件で通電を行なう。 第4図はこのようにして行なわれる亜鉛めつき
に用いられる陽極として、従来例の白金陽極と数
種類の本件電極を用いた場合の陽極電位を示すグ
ラフである。グラフの縦軸は電流密度、横軸は陽
極電位であり、ラインl17は従来例の白金陽極
の場合に対応し、ラインl18〜l20は本件陽
極であつて、イリジウムとタンタルとの配合比と
焼成温度との組合わせを(8:2、500℃)、
(9:1、350℃)および(4:6、350℃)にそ
れぞれ設定した場合に対応する。本実験例におい
ても第4図に明らかなように、ラインl20で示
される製造条件の電極が最も好適な結果を得てい
ることが理解される。 効 果 以上のように本発明によれば、イリジウム
(Ir)とタンタル(Ta)との各塩化物のアルコー
ル溶液をチタン製基材上に塗布乾燥し、酸化雰囲
気中で350℃〜400℃で加熱する。このとき前記イ
リジウムとタンタルとの各塩化物の配合比は、イ
リジウムとタンタルとの重量比が1:1.5〜1:
4の範囲となるように選ぶ。このようにして製造
された電極は、従来技術と同等の電解速度を得る
場合でも、それに必要な印加電圧を低くすること
ができる。またこのような電極が浸漬される処理
液中の陽イオンをむやみに多価イオンに酸化する
ことが抑制され、これによつて消費エネルギを格
段に削減できる。 またこのような電極は、不動態状態となる変化
が抑制されており、電極としての長寿命化を図る
ことができる。特に前記処理液中に各種有機物が
含有されている場合、これを分解することがな
く、したがつて処理液は清浄な状態に保たれ、こ
のような電極を用いる製造工程が含まれる製造ラ
インを停止して処理液を浄化するなどの処理作業
が不必要となる。これによつて作業能率が格段に
向上される。
[Table] As is clear from Figure 3, the electrode potential of the present electrode shown by line 15 (mixing ratio of iridium and tantalum is 4:6 and firing temperature of 350°C) is significantly higher than that of the conventional example (line 16). It is confirmed that it is low. Furthermore, when comparing the amount of carbon dioxide gas generated, in this case it was reduced to about 18.2% of the conventional example, which shows that deterioration of the electrolyte solution is suppressed to that extent. Furthermore, when the total amount of generated gas measured as shown in Table 2 above is converted into oxygen gas, carbon dioxide gas in the generated gas is generated by a two-electron reaction in the conventional platinum electrode, and the present case It has been confirmed that the gas is generated by a one-electron reaction at the electrode, so in the conventional example, 12 + 11/2 = 17.5 cc...(4) is obtained, and the gas generated by this electrode is equivalent to 37 c. c. Therefore, when the platinum electrode of the conventional example and the present electrode are used, the degree of oxidation reaction of ions in the electrolytic bath to multivalent ions as shown by the above first equation is (38-17.5) in the conventional example. /38×100=54%...(5), and for the present electrode, it is calculated to be (38-37)/38×100=2.6%...(6). Therefore, regarding this point as well, by using the electrode of the present invention, the electrical energy loss explained with reference to the second equation above can be reduced to about 4.8% of the conventional example. As described above, according to this example, the degree of oxidation of gold ions into multivalent ions during gold plating can be reduced to about 1/25, and the degree of decomposition of organic matter can be reduced to about 1/5. can. Furthermore, the electrode potential can be reduced to about 1/2, and the power cost can be reduced to about 2/3. () Second experimental example In this experimental example, zinc sulfate (ZnSO 4 7H 2 O)
300g/and sodium sulfate (Na 2 SO 4 ) 100
g/ and adjust the hydrogen ion concentration to PH1.2 with sulfuric acid (H 2 SO 4 ). While maintaining such a plating bath at a liquid temperature of 60℃, the current density is 0~
Power is applied under the condition of 20A/ dm2 . FIG. 4 is a graph showing the anode potential when a conventional platinum anode and several types of electrodes of the present invention are used as anodes for galvanizing performed in this manner. The vertical axis of the graph is the current density, and the horizontal axis is the anode potential. Line 117 corresponds to the case of the conventional platinum anode, and lines 118 to 120 correspond to the present anode, and the blending ratio of iridium and tantalum and firing. The combination with temperature (8:2, 500℃),
(9:1, 350°C) and (4:6, 350°C) respectively. In this experimental example as well, as is clear from FIG. 4, it is understood that the electrode manufactured under the manufacturing conditions indicated by line 120 obtained the most suitable results. Effects As described above, according to the present invention, an alcoholic solution of each chloride of iridium (Ir) and tantalum (Ta) is applied onto a titanium base material, dried, and then heated at 350°C to 400°C in an oxidizing atmosphere. Heat. At this time, the mixing ratio of each chloride of iridium and tantalum is such that the weight ratio of iridium and tantalum is 1:1.5 to 1:
Choose a range of 4. Electrodes manufactured in this manner can reduce the required applied voltage even when obtaining an electrolysis rate equivalent to that of the prior art. In addition, unnecessary oxidation of cations in the processing liquid in which such an electrode is immersed into multivalent ions is suppressed, thereby significantly reducing energy consumption. Further, such an electrode is suppressed from changing into a passive state, and can have a long life as an electrode. In particular, if the processing liquid contains various organic substances, it will not be decomposed, and therefore the processing liquid will be kept clean, making it easier to operate a manufacturing line that includes manufacturing processes using such electrodes. There is no need for processing operations such as stopping and purifying the processing liquid. This greatly improves work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本件電極の特性をそれぞれ説
明するグラフである。
FIG. 1 to FIG. 4 are graphs each explaining the characteristics of the present electrode.

Claims (1)

【特許請求の範囲】 1 酸化イリジウム(IrO2)と酸化タンタル
(Ta2O5)との混合物であつて、イリジウムとタ
ンタルとの重量比が1:1.5〜1:4の範囲に選
ばれるような混合物からなる被膜が、チタン
(Ti)製基材上に形成されて成ることを特徴とす
る電極。 2 イリジウム(Ir)とタンタル(Ta)との各
塩化物のアルコール溶液を、チタン製基材上に塗
布し、 約120℃で乾燥し、 塗布工程および乾燥工程を複数回繰返し、 酸化雰囲気中で、350℃〜400℃で20分間加熱す
るようにしたことを特徴とする電極の製造方法。
[Claims] 1. A mixture of iridium oxide (IrO 2 ) and tantalum oxide (Ta 2 O 5 ), such that the weight ratio of iridium to tantalum is selected in the range of 1:1.5 to 1:4. 1. An electrode characterized in that a film made of a mixture is formed on a titanium (Ti) base material. 2 Alcohol solutions of iridium (Ir) and tantalum (Ta) chlorides were applied onto a titanium substrate, dried at approximately 120°C, and the application and drying processes were repeated multiple times in an oxidizing atmosphere. , a method for producing an electrode, characterized by heating at 350°C to 400°C for 20 minutes.
JP3540687A 1987-02-17 1987-02-17 Electrode and its production Granted JPS63203800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3540687A JPS63203800A (en) 1987-02-17 1987-02-17 Electrode and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3540687A JPS63203800A (en) 1987-02-17 1987-02-17 Electrode and its production

Publications (2)

Publication Number Publication Date
JPS63203800A JPS63203800A (en) 1988-08-23
JPH0355558B2 true JPH0355558B2 (en) 1991-08-23

Family

ID=12441009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3540687A Granted JPS63203800A (en) 1987-02-17 1987-02-17 Electrode and its production

Country Status (1)

Country Link
JP (1) JPS63203800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699780A1 (en) 1992-03-11 1996-03-06 TDK Corporation Oxygen generating electrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2616024B2 (en) * 1989-07-14 1997-06-04 日本鋼管株式会社 Manufacturing method of electro-galvanized steel sheet with low degree of electrode damage
JPH0499294A (en) * 1990-08-09 1992-03-31 Daiso Co Ltd Oxygen generating anode and its production
JP4516617B2 (en) * 2008-06-09 2010-08-04 学校法人同志社 Anode for electrowinning zinc and electrowinning method
JP4516618B2 (en) * 2008-06-23 2010-08-04 学校法人同志社 Anode for electrolytic collection of cobalt and electrolytic collection method
CN111088493A (en) * 2019-12-26 2020-05-01 西安泰金工业电化学技术有限公司 Preparation method of titanium anode with titanium-based coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437948A (en) * 1981-10-16 1984-03-20 Bell Telephone Laboratories, Incorporated Copper plating procedure
JPS60155699A (en) * 1983-12-27 1985-08-15 Permelec Electrode Ltd Method for electrolyzing metal by liquid power supply method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437948A (en) * 1981-10-16 1984-03-20 Bell Telephone Laboratories, Incorporated Copper plating procedure
JPS60155699A (en) * 1983-12-27 1985-08-15 Permelec Electrode Ltd Method for electrolyzing metal by liquid power supply method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699780A1 (en) 1992-03-11 1996-03-06 TDK Corporation Oxygen generating electrode

Also Published As

Publication number Publication date
JPS63203800A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
Yang et al. Effects of manganese nitrate concentration on the performance of an aluminum substrate β-PbO2–MnO2–WC–ZrO2 composite electrode material
JP4771130B2 (en) Oxygen generating electrode
DE1671422B2 (en) ELECTRODE FOR USE IN ELECTROLYTIC PROCESSES AND METHODS FOR THEIR PRODUCTION
JPS6411718B2 (en)
Yang et al. Effects of current density on preparation and performance of Al/conductive coating/a-PbO2-CeO2-TiO2/ß-PbO2-MnO2-WC-ZrO2 composite electrode materials
EP0046727A1 (en) Improved anode with lead base and method of making same
DE19523307A1 (en) Chrome plating process using trivalent chromium
JPS62274087A (en) Durable electrode for electrolysis and its production
CN106283125A (en) Metal electro-deposition coated titanium electrode and preparation method thereof
CA1058552A (en) Electrodes
CN101016632B (en) Process of preparing metal oxide electrode by polymeric precursor thermal decomposition method
Yang et al. Electrochemical behavior of rolled Pb–0.8% Ag anodes in an acidic zinc sulfate electrolyte solution containing Cl− ions
JP2014526608A (en) Oxygen generating anode and method for producing the same
KR890001110B1 (en) Process for electrolightic treatment of metal by liquid power feeding
JPH0575840B2 (en)
JPH0355558B2 (en)
US4437948A (en) Copper plating procedure
JP2885913B2 (en) Anode for chromium plating and method for producing the same
US5665218A (en) Method of producing an oxygen generating electrode
Zhang et al. Anodic behavior and microstructure of Al/Pb–Ag anode during zinc electrowinning
Pavlović et al. On the use of platinized and activated titanium anodes in some electrodeposition processes
CN114592218A (en) Titanium-based anode and preparation method and application thereof
TWI802731B (en) Electrode for the electroplating or electrodeposition of a metal
JP2722263B2 (en) Electrode for electrolysis and method for producing the same