JPS63203800A - Electrode and its production - Google Patents

Electrode and its production

Info

Publication number
JPS63203800A
JPS63203800A JP3540687A JP3540687A JPS63203800A JP S63203800 A JPS63203800 A JP S63203800A JP 3540687 A JP3540687 A JP 3540687A JP 3540687 A JP3540687 A JP 3540687A JP S63203800 A JPS63203800 A JP S63203800A
Authority
JP
Japan
Prior art keywords
electrode
coating
iridium
tantalum
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3540687A
Other languages
Japanese (ja)
Other versions
JPH0355558B2 (en
Inventor
Takashi Komi
小見 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Co Ltd
Original Assignee
Shimizu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Co Ltd filed Critical Shimizu Co Ltd
Priority to JP3540687A priority Critical patent/JPS63203800A/en
Publication of JPS63203800A publication Critical patent/JPS63203800A/en
Publication of JPH0355558B2 publication Critical patent/JPH0355558B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To permit extension of the life of the titled electrode, reduction of energy consumption and improvement in working efficiency by coating an alcohol soln. of respective chlorides of Ir and Ta on a Ti base material and drying the coating, then heating the same in an oxidizing atmosphere. CONSTITUTION:The electrode suitable for a surface treatment such as electrolytic deposition is produced by coating the alcohol soln. of the respective chlorides of Ir and Ta on the base material consisting of metal Ti, drying the coating at about 120 deg.C, repeating the coating stage and drying stage plural times and calcining the coatings for 20min at 350-400 deg.C in the oxidizing atmosphere. The compounding ratio of the respective chlorides of Ir and Ta is so selected that the weight ratio of Ir and Ta is within a (1:1.5)-(1:4) range. The reduction of energy consumption is permitted with the above-mentioned electrode by this method; for example, the prescribed electrolytic speed is obtd. with the lower applied voltage; in addition, the change to bring the electrode into a passive state is suppressed and longer life as the electrode is obtd. Decomposition of the org. matter contained in the treating liquid is obviated and the operation to clean the treating liquid is decreased. The working efficiency is thus improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種電気化学反応装置などの表面処理などに
好適に用いられる電極とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrode suitable for use in surface treatment of various electrochemical reaction devices, etc., and a method for manufacturing the same.

従来技術 従来から磁気デバイス用金属薄膜の電解析出、コネクタ
用の金メッキや印刷配線基板の電’1w4などによる回
路形成などの分野から、自動車の車体などを構成する鋼
板などのたとえば亜鉛メッキ(亜鉛単体または亜鉛合金
によるめっき)などの表面処理または、91缶用鋼板の
たとえば錫メッキなどの表面処理分野などまで、電解析
出反応を利用する表面処理技術が広く行なわれている。
BACKGROUND ART Conventionally, electrolytic deposition of metal thin films for magnetic devices, gold plating for connectors, and circuit formation using electrolyte 1w4 for printed wiring boards have been used, for example, zinc plating (zinc plating) for steel plates constituting automobile bodies, etc. Surface treatment techniques that utilize electrolytic deposition reactions are widely used in the field of surface treatments such as zinc alloy plating or tin plating of steel sheets for 91 cans.

このような表面処理は、電極が浸漬された電解槽中に被
処理物を浸漬し、前記電極と被処理物との間に通電する
ことによって前記電解析出を行う、このような電解処理
に用いられる電極の材質などが電解IJ1.象に多大な
影響を及ぼすことが知られている。
Such surface treatment is carried out by electrolytic treatment, in which the object to be treated is immersed in an electrolytic bath in which an electrode is immersed, and the electrolytic deposition is performed by passing electricity between the electrode and the object to be treated. The material of the electrode used is electrolytic IJ1. It is known to have a significant impact on elephants.

従来では、このような電極には酸化鉛(p bo□)電
極やフェライト電極または白金めつきチタン電極などが
用いられていた。
Conventionally, lead oxide (pbo□) electrodes, ferrite electrodes, platinum-plated titanium electrodes, and the like have been used as such electrodes.

これらの材料から成る電極は、電解液中の有機薬品や育
成添加剤を比較的高速に分解し、これによって電解液の
劣化をもたらし、このような電解液を清浄化するためた
とえば活性炭によるア過作業を行なう必要がある。この
ためにこの電解工程を含む製造ラインの全体を停止しな
ければならないという問題点があった。
Electrodes made of these materials decompose organic chemicals and growth additives in the electrolyte relatively quickly, thereby causing deterioration of the electrolyte, and cleaning such electrolytes requires, for example, abrasion with activated carbon. work needs to be done. Therefore, there was a problem in that the entire production line including this electrolytic process had to be stopped.

また金めっき、光沢銅めっきや製缶用錫めっきなどを行
なう産業分野では、めっき用の電極として白金/チタン
mlがアノードとして用いられている。このような各種
めっきを行なうためのめっき液中には、やはり各種有機
薬品や有機添加剤が用いられており、前述の従来例と同
様にこれらを高速に分解してしまうという問題点がある
。さらに所定の電解速度を得るために印加される電圧を
比較的高く設定しなければならず、大きな電力を消費し
てしまうという問題点があった。まためっき工程の進行
に伴い電極が不動態化してしまい、電極としての寿命が
比較的短時間であるという問題点がある。
Furthermore, in the industrial field of gold plating, bright copper plating, tin plating for can manufacturing, etc., platinum/titanium ml is used as an anode for plating. Various organic chemicals and organic additives are also used in the plating solution for performing such various platings, and there is a problem that these are decomposed at a high speed as in the prior art example described above. Furthermore, in order to obtain a predetermined electrolysis rate, the applied voltage must be set relatively high, resulting in the problem of consuming a large amount of power. Another problem is that the electrode becomes passivated as the plating process progresses, resulting in a relatively short lifespan as an electrode.

さらにたとえば金めつきを行なう場合などにおいて、め
っき金属(金)の酸化数を増大してしまい、tlY費電
力量が大きくなってしまうという問題、αがあった。す
なわち金めつきを行なう場合、金の酸化数を下記のよう
な反応によって増大してしまう。
Furthermore, in the case of gold plating, for example, the oxidation number of the plating metal (gold) increases, resulting in a problem α in which the tlY cost and electric power amount increases. That is, when gold plating is performed, the oxidation number of gold is increased by the following reaction.

A u” −A u”           −(1)
したがって3価の陽イオンとなった金イオンを被めっき
物上に析出するためには、下記の第2式および第3式で
示す還元作用が行なわれる必要があり、第2式で示され
る還元作mを打なうための電力が無駄となってしまう。
A u”-A u”-(1)
Therefore, in order to deposit gold ions, which have become trivalent cations, on the object to be plated, it is necessary to perform the reduction action shown in the second and third equations below. The power used to operate the computer is wasted.

A u” −A u’            −(2
)Au+→Au            ・・・(3)
さらに他の従来技術として、特開昭55−38951が
挙げられる。これはチタン(T i)にタンタル(T 
a)、ニオブ(N b)、亜鉛(Zn)などを0.05
〜10fii1%を含む合金を基体とし、この基体上に
タンタルとイリジウムとの混合酸化物被膜を形成するよ
うにしている。また他の従来技術として、特開昭57−
192281が挙げられる。これはチタン製基体上に、
酸化イリジウム(IrC)2)と酸化タンタル(Tl1
2O5)などの金属酸化物を形成するが、これらの間に
中間層として酸化ニオブ(NbzOs)や酸化タンタル
などの導電性酸化物層を、金属量換算で0.001〜1
g/m”の層厚に形成する。これらの先行技術は、電極
の不動態状態への進行を抑制して氏か命化を図りかつ、
電極電圧を低下させて省エネルギを図ろうとするもので
ある。
A u” -A u' -(2
)Au+→Au...(3)
Still another prior art is disclosed in Japanese Patent Application Laid-Open No. 55-38951. This is titanium (T i) and tantalum (T
a), niobium (N b), zinc (Zn), etc. at 0.05
An alloy containing ~10fii1% is used as a base, and a mixed oxide film of tantalum and iridium is formed on this base. In addition, as another conventional technique, Japanese Patent Laid-Open No. 57-
192281 is mentioned. This is on a titanium base,
Iridium oxide (IrC)2) and tantalum oxide (Tl1)
A conductive oxide layer such as niobium oxide (NbzOs) or tantalum oxide is formed as an intermediate layer between them at a concentration of 0.001 to 1 in terms of metal content.
These prior art technologies aim to save life by suppressing the progression of the electrode to a passive state, and
This is an attempt to save energy by lowering the electrode voltage.

しかしこれらはいずれも、基体上に複数種類の金属の混
合酸化物を形成するに当たって、たとえば450℃で1
時間以上の加熱を行なう焼成工程を含んでおり、このよ
うにして製造された電極は各種電解液中の有機物を分解
してしまうという問題点があった。
However, in all of these methods, when forming a mixed oxide of multiple types of metals on a substrate, for example,
This method involves a firing step in which heating is performed for more than an hour, and electrodes manufactured in this manner have the problem of decomposing organic substances in various electrolytes.

発明が解決しようとする問題点 本発明は、上述の従来技術が有する諸8題に鑑みてなさ
れたものであって、その目的とするところは消費エネル
ギをe 段に削減することがでさるとともに長寿命を得
ることができ、かつ有機物の分解作用が従来技術と比し
て格段に低減され、製造効率を向上できる電極およびそ
の製造方法を提供することである。
Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned eight problems of the prior art, and its purpose is to reduce energy consumption by e times. It is an object of the present invention to provide an electrode and a method for manufacturing the same that can have a long life, have a significantly reduced decomposition effect of organic matter compared to conventional techniques, and can improve manufacturing efficiency.

間m点を解決するための手段 本発明は、酸化イリジウム(IrO2)と酸化タンタル
(Taxes)との混合物であって、イリジウムとタン
タルとの重量比が1:1.5〜1:4 の範囲に選ばれ
るそのような混合物から成る被膜が、チタン(Ti)製
基材上に形成されてなることを特徴とする電極である。
The present invention provides a mixture of iridium oxide (IrO2) and tantalum oxide (Taxes) in which the weight ratio of iridium to tantalum is in the range of 1:1.5 to 1:4. This electrode is characterized in that a film made of such a mixture selected from the following is formed on a titanium (Ti) base material.

さらに本発明は、イリジウム(Ir)とタンタル(Ta
)との各塩化物のアルコール溶液を、チタン製基材上に
塗布し、約120℃で乾燥し、 塗布工程および乾燥工程を複数回繰返し、酸化雰囲気中
で、350℃〜400℃で20分間加熱するようにした
ことを特徴とする電極の製造方法である。
Furthermore, the present invention provides iridium (Ir) and tantalum (Ta).
) was applied onto a titanium substrate, dried at about 120°C, the application and drying steps were repeated several times, and the solution was heated at 350°C to 400°C for 20 minutes in an oxidizing atmosphere. This is a method of manufacturing an electrode characterized by heating it.

作  用 本発明に従えば、イリジウム(Ir)とタンタル(T 
a)との各塩化物のアルコール溶液を、チタン製基材上
に塗布乾燥し、酸化雰囲気中で350℃〜400℃で加
熱する。このとき前記イリノウムとタンタルとの各塩化
物の配合比は、イリジウムとタンタルとの重量比が1:
1,5〜1:4 の範囲となるように選」ζ、このよう
にして製造された電極は、従来技術と同等の電解速度を
得る場合でも、それに必要な印加電圧を低減することが
できる。
Function According to the present invention, iridium (Ir) and tantalum (T
An alcoholic solution of each chloride in a) is applied onto a titanium substrate, dried, and heated at 350°C to 400°C in an oxidizing atmosphere. At this time, the compounding ratio of each chloride of ilinium and tantalum is such that the weight ratio of iridium and tantalum is 1:
1.5 to 1:4, electrodes manufactured in this way can reduce the applied voltage required to achieve an electrolysis rate equivalent to that of conventional techniques. .

またこのような電極が浸漬される処理液中の陽イオンを
、多価イオンに酸化する作用が可及的に抑制され、これ
によって消費エネルギを格段に削減できる。
In addition, the effect of oxidizing cations in the processing liquid in which such an electrode is immersed into multivalent ions is suppressed as much as possible, thereby significantly reducing energy consumption.

またこのような電極は、不動態状態となる変化が抑制さ
れており、電極としての長寿命化を図ることができる。
Further, such an electrode is suppressed from changing into a passive state, and can have a long life as an electrode.

また前記処理液中に各種有機物が含有されている場合で
あっても、これを分解することがなく、したがって処理
液は清浄な状態に保たれ、このような電極を用いるS!
造工程が含まれる製造ラインを停止して処理液を浄″化
するなどの処理作業が可及的に抑制される。これによっ
て作業能率が格段に向上される。
Furthermore, even if the processing liquid contains various organic substances, they will not be decomposed, and therefore the processing liquid will be kept in a clean state.
Processing operations such as stopping the manufacturing line that includes the manufacturing process and purifying the processing liquid are suppressed as much as possible.This greatly improves work efficiency.

実施例 (1)本件?a極の製造工程例 本件電極を!ll造するにあたって、金属チタン(Ti
)から成る基材を準備する。この基材上にイリジウム(
Ir)とタンタル(T a)の塩化物(IrC,i’−
およびTaCf5)のアルコール溶液(溶媒はメタ/−
ル、ブタノール、インプロパツールなど各種のアルコー
ルを用いてよい)を塗布する。このとき前記アルコール
溶液中のイリジウム(Ir)とタンタル(T a)との
重量比は、1:1.5〜1:4の範囲に選ばれる。この
後、約120℃の温度で乾燥した後、350℃の温度で
20分間焼成する。この塗布工程、半乾燥工程、焼成工
程を所望の回数1!返して、所望の電極を製造する。
Example (1) This case? Example of manufacturing process for a-pole This electrode! In manufacturing, titanium metal (Ti
) is prepared. Iridium (
Ir) and tantalum (Ta) chloride (IrC, i'-
and TaCf5) in alcohol solution (solvent is meta/-
(You can use various alcohols such as alcohol, butanol, impropatul, etc.). At this time, the weight ratio of iridium (Ir) and tantalum (Ta) in the alcohol solution is selected in the range of 1:1.5 to 1:4. Thereafter, it is dried at a temperature of about 120°C, and then baked at a temperature of 350°C for 20 minutes. Repeat this coating process, semi-drying process, and baking process as many times as you want! Return it to manufacture the desired electrode.

(II )m 1実験例 (ア)実験内容 塩化イリジウム(IrCf4)の20%塩酸溶液を蒸発
させ、得られたペーストをメタノールに溶解した後、塩
化タンタル(T aC7s)のメタノール溶液と混合す
る。一方、前記混合物が塗布されるチタン(T i)製
基材を研磨した後、70℃の7%塩酸で表面処理しで水
洗いし、キムワイプで水分を払拭した後、自然乾燥する
。このようにしで得られた基材上に前記混合物を塗布し
、120℃、10分間加熱して半乾燥させた後、350
℃、20分間加熱して焼成する。このような塗布、乾燥
および焼成工程を、たとえば6回繰返して前記チタン基
村上に約1μ−の薄膜を得る。このようして本件発明に
従う電極(以下、本件電極と称する)を得た。なお、焼
成温度が350℃以下では塩化イリジウムと塩化タンタ
ルの混合物が充分に酸化せず、所望の電極を製造するこ
とができない。
(II)m1 Experimental Example (A) Experimental Content A 20% hydrochloric acid solution of iridium chloride (IrCf4) is evaporated, the resulting paste is dissolved in methanol, and then mixed with a methanol solution of tantalum chloride (TaC7s). Meanwhile, the titanium (T i ) base material to which the mixture is applied is polished, then surface treated with 7% hydrochloric acid at 70° C., washed with water, wiped with Kimwipe, and air-dried. The mixture was coated on the base material obtained in this way, heated at 120°C for 10 minutes to semi-dry it, and then heated to 350°C.
C. for 20 minutes. Such coating, drying and firing steps are repeated, for example, six times to obtain a thin film of about 1 μm on the titanium substrate. In this way, an electrode according to the present invention (hereinafter referred to as the present electrode) was obtained. Note that if the firing temperature is lower than 350° C., the mixture of iridium chloride and tantalum chloride will not be sufficiently oxidized, making it impossible to manufacture the desired electrode.

(イ)イリジウムとタンタルとの配合比と焼成温度とに
つりで 第1図はこのようにして製造される本件電極において、
イリジウムとタンタルとの配合比と焼成温度とを変えて
製造した?4極を陽極として使用した場合の該陽極の炭
酸ガス(CO2)の発生量の変化を示すグツ7である。
(a) Figure 1 shows the electrode manufactured in this way, depending on the blending ratio of iridium and tantalum and the firing temperature.
Was it manufactured by changing the blending ratio of iridium and tantalum and the firing temperature? Fig. 7 shows changes in the amount of carbon dioxide gas (CO2) generated by the anode when a quadrupole is used as the anode.

第1図においてフィン!1〜!5は、焼成温度550℃
、SOO℃、450℃、400℃、350℃の場合にそ
れぞれ対応する。またグラフにおいて縦軸は炭l!!ガ
スの発生ユ(cm’)であ’)、[11はイリジウムと
タンタルとの総量に対するイリジウムの配合比(Ir/
(Ir+総量に対するイリジウムの配合比(Ir/(I
r+Ta)、m11%)である。
In Figure 1, Fin! 1~! 5 is firing temperature 550℃
, SOO°C, 450°C, 400°C, and 350°C, respectively. Also, in the graph, the vertical axis is charcoal l! ! 11 is the ratio of iridium to the total amount of iridium and tantalum (Ir/
(Blending ratio of iridium to total amount of Ir+ (Ir/(I
r+Ta), m11%).

本件実験例は、硫酸ニッケルN iS O、・ 6I4
20の50g/IとNa、WO,” 2H20の’Fo
g/J?とを含み、かつクエン酸を90g/J! の濃
度で含むN1−W合金めっき液を用いた。また陽極は面
積2 am”のものを用い、電流密度20 A / d
Il12で25分間の通電、すなわち600クーロンの
電荷量による通電を行なった。
This experimental example uses nickel sulfate N iSO, 6I4
50g/I of 20 and Na, WO, 'Fo of 2H20
g/J? Contains 90g/J of citric acid! An N1-W alloy plating solution containing a concentration of . In addition, the anode used has an area of 2 am'', and the current density is 20 A/d.
Current was applied with Il12 for 25 minutes, that is, with a charge amount of 600 coulombs.

従来技術の項で述べたように、めっlkaなどに含まれ
るクエン酸などの有機物はこのような通電によって分解
されると、炭酸がスを発生する。このようなガスの発生
は有機物の分解の進行を示しており、これによってめっ
き液などの電解液が劣化してしまうことが知られている
As described in the section on the prior art, when organic substances such as citric acid contained in metallurgy are decomposed by such energization, carbonic acid is generated. The generation of such gas indicates the progress of decomposition of organic matter, and it is known that this causes deterioration of electrolytes such as plating solutions.

第1図の本件実験例に示すように、炭酸ガス発生の抑制
について、イリジウムの配合比が20〜40%のffl
囲であり、また焼成温度が前記配合比ffi囲内におい
て350℃〜450℃の範囲で良好な結果が得られるこ
とが確認された。
As shown in the present experimental example in Figure 1, ffl with an iridium blending ratio of 20 to 40% was used to suppress carbon dioxide gas generation.
It was also confirmed that good results could be obtained when the firing temperature was within the range of 350°C to 450°C within the range of the mixing ratio ffi.

第2図は前述のニッケルータングステン合金めっき液を
電解する際にイリジウムとタンタルの配合比と焼成温度
が異なる数種の電極を陽極として用いた場合の陽極電圧
の変化を示すグラフである。
FIG. 2 is a graph showing changes in anode voltage when several types of electrodes having different blending ratios of iridium and tantalum and firing temperatures are used as anodes when electrolyzing the aforementioned nickel-tungsten alloy plating solution.

グラフの縦軸は電流密度、横軸は通電開始以降15分後
の陽極電圧を示す、またグラフにおいてライン16は白
金から成る従来電極の場合に対応し、ライン!7〜./
14はイリジウムとタンタルの配合比および焼成温度の
組合わせがそれぞれ(3ニア、450℃)、(2:8.
400℃)、(3ニア、400℃)、(2:8.350
℃)、(4:6,450℃)、(4:6,400℃)、
(4:6.350℃)、および(3ニア、350℃)の
各場合に対応する。
The vertical axis of the graph shows the current density, and the horizontal axis shows the anode voltage 15 minutes after the start of energization. In the graph, line 16 corresponds to the case of a conventional electrode made of platinum, and line ! 7~. /
No. 14 has a combination of iridium and tantalum compounding ratio and firing temperature of (3 near, 450° C.) and (2:8.
400℃), (3 near, 400℃), (2:8.350
℃), (4:6,450℃), (4:6,400℃),
(4:6.350°C) and (3 near, 350°C).

PIS2図に示すように、陽極電圧の低減に関して待に
良好な結果を生じるイリジウムとタンタルの配合比と焼
成温度の組合わせは、!12〜714、すなわち(4:
6.400℃)、(4:6.350℃)および(3ニア
、350℃)であることが確認される。ここで注口すべ
きことは、450℃焼成の電極は、ライン17に示され
るように比較的高い陽極電圧を示していることである。
As shown in PIS2 diagram, the combination of iridium and tantalum compounding ratio and firing temperature yields the best results in terms of reducing the anode voltage. 12 to 714, i.e. (4:
6.400°C), (4:6.350°C) and (3 near, 350°C). What should be noted here is that the electrode fired at 450° C. shows a relatively high anode voltage as shown by line 17.

したがって、炭N1〃スを発生せず、かつ陽極電圧の低
減に閃しても有効な電極の焼成温度としては350〜4
00℃が適当であり、450℃は焼成温度として適当で
ないことが示された。
Therefore, the firing temperature for the electrode that does not generate carbon N1 gas and is effective for reducing the anode voltage is 350 to 4
It was shown that 00°C is suitable and 450°C is not suitable as a firing temperature.

下記第1表は焼成温度350℃〜400℃の電極を選ん
でニッケルータングステン合金めっき用陽極として用い
た場合の作動寿命の測定結果を示す、この寿命の測定は
、電解槽中に浸漬した陽極と陰極間に電源電圧10Vを
接続し、可変抵抗器で陽極にかかる電流密度を20A/
dsi2に設定して行なった。すなわち、通電当初は両
電極間の電圧降下は3v程度であるが、電解が進行する
と電極が消耗してチタン基村上のイリジウム/タンタル
酸化物被膜が減少して基材が露出し、基材が不動態化し
てしまう、そのため、両電極間の電圧降下は約3■から
IOVに向って急速に上昇する。
Table 1 below shows the results of measuring the operating life of electrodes with a firing temperature of 350°C to 400°C when used as anodes for nickel-tungsten alloy plating. A power supply voltage of 10V is connected between the and cathode, and the current density applied to the anode is set to 20A/20A with a variable resistor.
I set it to dsi2. In other words, when electricity is first applied, the voltage drop between the two electrodes is about 3V, but as electrolysis progresses, the electrodes are consumed and the iridium/tantalum oxide film on the titanium substrate is reduced, exposing the base material. As a result, the voltage drop between the two electrodes increases rapidly from about 3 cm to IOV.

この時点を寿命としで計測したものである。This point was defined as the life span and was measured.

第    1    表 2 (単位=時間) ftS1表に示すように焼成温度400℃の電極の寿命
が最も長い、しかしながら400”C焼成の電極は、寿
命に達するに先立つ約50時間以前から一電解液中の有
機物の分解を開始することが確認された。したがって、
有機物の分解反応の起こらない有効寿命はイリジウムと
タンタルの配合比が4:6の電極について約1350時
間となる。一方、焼成温度350℃およV380℃の電
極は寿命に達するまで有機物を分解しないことが確認さ
れた。
Table 1 Table 2 (Unit = Hours) As shown in the ftS1 table, the electrode fired at 400°C has the longest life. However, the electrode fired at 400"C has a long lifespan of about 50 hours before reaching the end of its life. It was confirmed that the decomposition of organic matter started.
The useful life of an electrode with an iridium to tantalum ratio of 4:6 is about 1,350 hours without any decomposition reaction of organic matter. On the other hand, it was confirmed that the electrodes fired at a firing temperature of 350° C. and a V of 380° C. did not decompose organic matter until the end of their life.

したがって本実験例で示した電極の、有機物非分解性能
、陽極電圧、寿命の測定結果から、イリジウムとタンタ
ルの配合比は2:8〜4:6が好ましいことが結論づけ
られる。また、焼成温度は350℃〜400℃の範囲が
良好であることが結論づけられる。またその中でも寿命
に達するまで有機物を分解しない特性を持つ電極の焼成
温度としては約350℃〜380℃が最適であることが
結論づけられた。
Therefore, from the measurement results of the organic matter non-decomposition performance, anode voltage, and life of the electrode shown in this experimental example, it can be concluded that the blending ratio of iridium and tantalum is preferably 2:8 to 4:6. Further, it is concluded that the firing temperature is preferably in the range of 350°C to 400°C. Among these, it was concluded that approximately 350°C to 380°C is the optimum firing temperature for an electrode that does not decompose organic substances until the end of its life.

(つ)イリジウムとタンタルとの混合酸化物の被[!I
厚について 前述の実験例では、混合酸化物層を約1μmの層厚に形
成した。この層厚をむやみに薄くすると、焼成体の下地
であるチタン板表面に非導電性酸化物被膜が形成され、
電気抵抗が増大してしまうという問題点が生じる。一方
、この混合酸化物被膜は層厚10μ−程度でも、前述の
効果を得られることが本件発明者によって確認されてい
るが、約50μ面を超える場合、焼成体は電気的に半導
体的特性を有しており、したがって導通抵抗が増大して
しまうという問題を生じる。
(1) Mixed oxide of iridium and tantalum [! I
Regarding the thickness, in the experimental example described above, the mixed oxide layer was formed to have a layer thickness of about 1 μm. If this layer thickness is made too thin, a non-conductive oxide film will be formed on the surface of the titanium plate that is the base of the fired product.
A problem arises in that electrical resistance increases. On the other hand, the inventor of the present invention has confirmed that the above-mentioned effects can be obtained even with a layer thickness of about 10 μm in this mixed oxide film, but if the thickness exceeds about 50 μm, the fired product will electrically exhibit semiconducting properties. Therefore, a problem arises in that the conduction resistance increases.

第3図は従来の白金電極と本f’F電極との電極電位と
電流密度とにI!!連する特性を示すグラフである。グ
ラフの縦軸は電流密度、横軸は電極電位とし、浴温65
℃の金めつき浴を用いる。これら条件下’?600クロ
ーンの通電を行なった後、従来例と本件電極とに閃して
、発生される炭酸ガスお上び酸素ガスを捕集してその発
生量を計測すると、下記のfjrJ2表の計測結果が得
られた。
Figure 3 shows the electrode potential and current density of the conventional platinum electrode and the present f'F electrode. ! 3 is a graph showing related characteristics. The vertical axis of the graph is the current density, the horizontal axis is the electrode potential, and the bath temperature is 65
Use a gold plating bath at ℃. Under these conditions? After energizing 600 clones, the conventional example and the present electrode were flashed, and the generated carbon dioxide and oxygen gas were collected and the amount of generation was measured, and the measurement results are shown in the fjrJ2 table below. Obtained.

第  2  表 第3図に明らかなように、ライン、/15で示される本
件電極(イリジウム、タンタルの配合比は4:6で35
0℃の焼成温度)は電極電位が従来例(ライン!16)
より格段に低いことが確認される。
As is clear from Table 2, Figure 3, the electrode of the present invention is indicated by the line /15 (the blending ratio of iridium and tantalum is 4:6, which is 35
0℃ firing temperature), the electrode potential is the conventional example (Line! 16)
It is confirmed that it is much lower.

また発生される炭酸ガス量を比較すると、本件では従来
例の18.2%程度に削減されており、それだけ電解液
の劣化が抑制されていることを示している。
Further, when comparing the amount of carbon dioxide gas generated, in this case, it is reduced to about 18.2% of the conventional example, which shows that deterioration of the electrolyte solution is suppressed to that extent.

また上記第2表のように計測された発生が大量の総量を
酸素ガスに換算してみると、前記発生が人中の炭酸ガス
は従来例の白金電極では2電子反応によって発生され、
本f1.電極では1電子反応によって発生されることが
確認されているので、従来例では、 12+11/2=1’7.5cc     ・・・(4
)が得られ、本件電極による発生ガスの酸素ガス換算量
は37ccとなる。したがって従来例の白金電極と本件
電極とをそれぞれ用いた場合の上記fj&1式で示され
る電解浴中イオンの多価イオンへの酸化反応の程度は、
従来例では、 (38−17,5)/ 38X 100= 54%  
 ・・・(5)程度であり、本件電極では、 (38−37)/ 38X 100= 2.6%   
 −(6)であることが算出される。したがってこの点
に関しても、本件電極を用いることによって上記第2式
を参照して説明した電気エネルギのロス分を従来例の4
.8%程度に削減することができる。
Furthermore, when converting the measured total amount of generated large amount into oxygen gas as shown in Table 2 above, it is found that the carbon dioxide gas generated in the human body is generated by a two-electron reaction with the conventional platinum electrode.
Book f1. It has been confirmed that it is generated by a one-electron reaction at the electrode, so in the conventional example, 12+11/2=1'7.5cc...(4
) is obtained, and the amount of gas generated by the present electrode in terms of oxygen gas is 37 cc. Therefore, when using the conventional platinum electrode and the present electrode, the degree of oxidation reaction of ions in the electrolytic bath to multivalent ions as shown by the above equation fj & 1 is as follows:
In the conventional example, (38-17,5)/38X 100=54%
...It is about (5), and in this electrode, (38-37) / 38X 100 = 2.6%
−(6) is calculated. Therefore, regarding this point as well, by using the present electrode, the electric energy loss explained with reference to the second equation above can be reduced by 4 times compared to the conventional example.
.. This can be reduced to about 8%.

以上のように本実施例によれば、金めつきを行なう場合
の金イオンの多価イオンへの酸化の程度を1/25程度
に削減でき、有は物の分解の程度を115程度に削減で
きる。さらに電極電位を1/2程度に低減でき、電力コ
ストは2/3程度に削減できる。
As described above, according to this embodiment, the degree of oxidation of gold ions into multivalent ions during gold plating can be reduced to about 1/25, and the degree of decomposition of objects can be reduced to about 115. can. Further, the electrode potential can be reduced to about 1/2, and the power cost can be reduced to about 2/3.

(I[[)第2実験例 本実験例では、硫酸亜鉛(Z n S O= ・7 H
20)300g/7と硫酸ナトリウム(Na、S O,
)100g/Iとを混合し、硫酸(H,SO,)で水素
イオン濃度をpH1,2に3’i!!する。このような
めつき浴を60℃の液温に保持しつつ、電流密度O〜2
0A/da”の条件で通電を行なう。
(I[[)Second Experimental Example In this experimental example, zinc sulfate (ZnSO= ・7H
20) 300g/7 and sodium sulfate (Na, SO,
) 100g/I, and adjust the hydrogen ion concentration to pH 1.2 with sulfuric acid (H, SO, ) 3'i! ! do. While maintaining such a plating bath at a liquid temperature of 60°C, a current density of O~2
0A/da'' condition.

Pt54図はこのようにしで行なわれる亜鉛めっきに用
いられる陽極として、従来例の白金陽極と数f1類の本
件電極を用いた場合の陽極電位を示すグラフである。グ
ラフの縦軸は電流密度、横軸は陽極電位であり、ライン
!17は従来例の白金陽極の場合に対応し、ラインJ!
18〜J!20は本件陽極であって、イリジフムとタン
タルとの配合比と焼成温度との組合わせを(8:2,5
00℃)、(9:1,350℃)および(4:6.35
0℃)にそれぞれ設定した場合に対応する6本実験例に
おいてもj!l’t4図に明らかなように、ライン12
0で示される!!造条件の電極が最も好適な結果を得て
いることが理解される。
The Pt54 diagram is a graph showing the anode potential when a conventional platinum anode and the present electrode of the number f1 type are used as the anodes used in the zinc plating performed in this manner. The vertical axis of the graph is the current density, the horizontal axis is the anode potential, and the line! 17 corresponds to the case of the conventional platinum anode, and line J!
18~J! 20 is the present anode, and the combination of the blending ratio of iridium and tantalum and the firing temperature is (8:2, 5).
00℃), (9:1,350℃) and (4:6.35
In the six experimental examples corresponding to the cases where the temperature was set to As is evident in the l't4 diagram, line 12
Indicated by 0! ! It is understood that the electrodes under the same conditions obtained the most favorable results.

効  果 以上のように本発明によれば、イリジウム(Ir)とタ
ンタル(T a)との各塩化物のアルコール溶液をチタ
ン製基材上に塗布乾燥し、酸化雰囲気中で350℃〜4
00℃で加熱する。このとき前記イリジウムとタンタル
との各塩化物の配合比は、イリジウムとタンタルとの重
i比が1:1.5 〜1:4の範囲となるように選コζ
、このようにして製造された電極は、従来技術と同等の
電解速度を得る場合でも、それに必要な印加電圧を低く
することができる。またこのような電極が浸漬される処
理液中の陽イオンをむやみに多価イオンに酸化すること
が抑制され、これによって消費エネルギを格段に削減で
きる。
Effects As described above, according to the present invention, an alcohol solution of each chloride of iridium (Ir) and tantalum (Ta) is applied and dried on a titanium base material, and then heated at 350°C to 4°C in an oxidizing atmosphere.
Heat at 00°C. At this time, the mixing ratio of each chloride of iridium and tantalum is selected such that the weight i ratio of iridium and tantalum is in the range of 1:1.5 to 1:4.
, the electrode manufactured in this way requires a lower applied voltage even when obtaining an electrolysis rate equivalent to that of the prior art. In addition, unnecessary oxidation of cations in the processing liquid in which such an electrode is immersed into multivalent ions is suppressed, thereby significantly reducing energy consumption.

またこのような?を極は、不t!JJ !!!!状態と
なる変化が抑制されており、?!極としての長寿命化を
図ることができる。特に前記処理液中に各種有機物が含
有されている場合、これを分解することがなく、したが
って処理液は清浄な状態に保たれ、このような電極をm
いる製造工程が含まれる*3XLラインを停止して処F
!!液を浄化するなどの処理作業が不必要となる。これ
によって作又能率が格段に向上される。
Like this again? The pole is not! JJ! ! ! ! The change that becomes the state is suppressed, and? ! It is possible to extend the life of the pole. In particular, when various organic substances are contained in the processing liquid, the organic substances are not decomposed, and therefore the processing liquid is kept in a clean state.
The *3XL line, which includes the manufacturing process
! ! Processing work such as purifying the liquid becomes unnecessary. This greatly improves machining efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜pA4図は本件電極の特性をそれぞれ説明する
グラフである。 代理人  弁理士 西教 圭一部 第1図 !i2合比 []r7’[r+Ta)、笈
Figures 1 to 4 are graphs each explaining the characteristics of the present electrode. Agent Patent Attorney Kei Saikyo Figure 1! i2 combination ratio []r7'[r+Ta), 笈

Claims (1)

【特許請求の範囲】[Claims] (1)酸化イリジウム(IrO_2)と酸化タンタル(
Ta_2O_5)との混合物であつて、イリジウムとタ
ンタルとの重量比が1:1.5〜1:4の範囲に選ばれ
るような混合物からなる被膜が、チタン(Ti)製基材
上に形成されて成ることを特徴とする電極。(2)イリ
ジウム(Ir)とタンタル(Ta)との各塩化物のアル
コール溶液を、チタン製基材上に塗布し、約120℃で
乾燥し、 塗布工程および乾燥工程を複数回繰返し、 酸化雰囲気中で、350℃〜400℃で20分間加熱す
るようにしたことを特徴とする電極の製造方法。
(1) Iridium oxide (IrO_2) and tantalum oxide (
A coating is formed on a titanium (Ti) substrate, the mixture being a mixture of Ta_2O_5) and having a weight ratio of iridium and tantalum in the range of 1:1.5 to 1:4. An electrode characterized by comprising: (2) An alcohol solution of each chloride of iridium (Ir) and tantalum (Ta) is applied onto a titanium substrate, dried at approximately 120°C, and the application and drying processes are repeated multiple times in an oxidizing atmosphere. A method for manufacturing an electrode, characterized in that heating is performed at 350°C to 400°C for 20 minutes.
JP3540687A 1987-02-17 1987-02-17 Electrode and its production Granted JPS63203800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3540687A JPS63203800A (en) 1987-02-17 1987-02-17 Electrode and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3540687A JPS63203800A (en) 1987-02-17 1987-02-17 Electrode and its production

Publications (2)

Publication Number Publication Date
JPS63203800A true JPS63203800A (en) 1988-08-23
JPH0355558B2 JPH0355558B2 (en) 1991-08-23

Family

ID=12441009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3540687A Granted JPS63203800A (en) 1987-02-17 1987-02-17 Electrode and its production

Country Status (1)

Country Link
JP (1) JPS63203800A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347988A (en) * 1989-07-14 1991-02-28 Nkk Corp Production of galvanized steel sheet
JPH0499294A (en) * 1990-08-09 1992-03-31 Daiso Co Ltd Oxygen generating anode and its production
JP2009293117A (en) * 2008-06-09 2009-12-17 Doshisha Anode for use in electrowinning zinc, and electrowinning method
JP2010001556A (en) * 2008-06-23 2010-01-07 Doshisha Anode for use in electrowinning cobalt, and method for electrowinning cobalt
CN111088493A (en) * 2019-12-26 2020-05-01 西安泰金工业电化学技术有限公司 Preparation method of titanium anode with titanium-based coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100196094B1 (en) 1992-03-11 1999-06-15 사토 히로시 Oxygen generating electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437948A (en) * 1981-10-16 1984-03-20 Bell Telephone Laboratories, Incorporated Copper plating procedure
JPS60155699A (en) * 1983-12-27 1985-08-15 Permelec Electrode Ltd Method for electrolyzing metal by liquid power supply method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437948A (en) * 1981-10-16 1984-03-20 Bell Telephone Laboratories, Incorporated Copper plating procedure
JPS60155699A (en) * 1983-12-27 1985-08-15 Permelec Electrode Ltd Method for electrolyzing metal by liquid power supply method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347988A (en) * 1989-07-14 1991-02-28 Nkk Corp Production of galvanized steel sheet
JPH0499294A (en) * 1990-08-09 1992-03-31 Daiso Co Ltd Oxygen generating anode and its production
JP2009293117A (en) * 2008-06-09 2009-12-17 Doshisha Anode for use in electrowinning zinc, and electrowinning method
JP4516617B2 (en) * 2008-06-09 2010-08-04 学校法人同志社 Anode for electrowinning zinc and electrowinning method
JP2010001556A (en) * 2008-06-23 2010-01-07 Doshisha Anode for use in electrowinning cobalt, and method for electrowinning cobalt
JP4516618B2 (en) * 2008-06-23 2010-08-04 学校法人同志社 Anode for electrolytic collection of cobalt and electrolytic collection method
CN111088493A (en) * 2019-12-26 2020-05-01 西安泰金工业电化学技术有限公司 Preparation method of titanium anode with titanium-based coating

Also Published As

Publication number Publication date
JPH0355558B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
Yang et al. Effects of current density on preparation and performance of Al/conductive coating/a-PbO2-CeO2-TiO2/ß-PbO2-MnO2-WC-ZrO2 composite electrode materials
JPS62274087A (en) Durable electrode for electrolysis and its production
JP7097042B2 (en) Electrode for chlorine generation
KR890001110B1 (en) Process for electrolightic treatment of metal by liquid power feeding
JPH0575840B2 (en)
JP2505560B2 (en) Electrode for electrolysis
JPS63203800A (en) Electrode and its production
US3463707A (en) Electrodeposition of lead dioxide
US4437948A (en) Copper plating procedure
JP2885913B2 (en) Anode for chromium plating and method for producing the same
CN112573626A (en) Titanium electrode and preparation method and application thereof
CN88102785A (en) Treating method for electrolytic etching of metal
US5665218A (en) Method of producing an oxygen generating electrode
CN115613083A (en) Titanium anode for copper plating field, preparation method and copper plating equipment
JP2023095833A (en) Electrode for chlorine generation
KR100523591B1 (en) Electrode and its manufacturing method using rare earth element
JPH08225977A (en) Electrode for electrolysis and its production
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
KR20210015252A (en) Method and electrode for hypochlorite production
JPS6147231B2 (en)
JPH0647749B2 (en) Durable electrode for electrolysis and method of manufacturing the same
JP2003318069A (en) Method of etching anode foil of aluminum electrolytic capacitor
JPS5925940A (en) Low overvoltage cathode having high durability and its production
JPH11335887A (en) Production of high durability electrode