JPH0347988A - Production of galvanized steel sheet - Google Patents

Production of galvanized steel sheet

Info

Publication number
JPH0347988A
JPH0347988A JP18232989A JP18232989A JPH0347988A JP H0347988 A JPH0347988 A JP H0347988A JP 18232989 A JP18232989 A JP 18232989A JP 18232989 A JP18232989 A JP 18232989A JP H0347988 A JPH0347988 A JP H0347988A
Authority
JP
Japan
Prior art keywords
electrode
current density
plating
plating solution
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18232989A
Other languages
Japanese (ja)
Other versions
JP2616024B2 (en
Inventor
Yasunobu Maekawa
前川 泰伸
Masaru Namatame
生天目 優
Toshiyuki Tsujihara
辻原 利之
Nobuyuki Nada
灘 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16116405&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0347988(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1182329A priority Critical patent/JP2616024B2/en
Publication of JPH0347988A publication Critical patent/JPH0347988A/en
Application granted granted Critical
Publication of JP2616024B2 publication Critical patent/JP2616024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To enable high-speed galvanizing, to improve productivity and to reduce the consumption of an electrode by carrying out galvanizing with an iridium oxide-based insoluble electrode at a prescribed current density and a prescribed jetting rate of a plating soln. CONSTITUTION:An iridium oxide-based coating layer is formed on an electrically conductive substrate to obtain an insoluble electrode. A steel sheet is galvanized with the electrode at 50-200A/dm<2> current density and 1-5m/sec jetting rate of a plating soln.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は不溶性電極を使用する電気亜鉛系めっき鋼板の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an electrogalvanized steel sheet using an insoluble electrode.

[従来の技術] 電気亜鉛めっき鋼板は安価な防錆鋼板として従来から広
範な需要があり、その製造方法としては自溶性の亜鉛電
極を使用するめつき方法が一般的である。然るに近年、
冬期における北米地区あるいは海岸地区での塩害による
著しい自動車の腐食が社会問題化し、その腐食防止を図
るために、自動車部材として従来の亜鉛めっき鋼板以上
に耐食性の優れた高耐食性防錆鋼板の必要が生じた。こ
れに対処するものとして、亜鉛−鉄合金めっき銅板、亜
鉛−ニッケル合金めっき鋼板等の亜鉛系電気合金めっき
鋼板の需要が急激に増大している。
[Prior Art] Electrolytic galvanized steel sheets have long been in wide demand as inexpensive rust-proof steel sheets, and the general method for manufacturing them is a plating method using self-fusing zinc electrodes. However, in recent years,
Severe corrosion of automobiles due to salt damage in winter in North America and coastal areas has become a social problem, and in order to prevent corrosion, there is a need for highly corrosion-resistant and rust-proof steel sheets that have superior corrosion resistance than conventional galvanized steel sheets for automobile parts. occured. To cope with this problem, the demand for zinc-based electrically alloyed steel sheets, such as zinc-iron alloy-plated copper sheets and zinc-nickel alloy-plated steel sheets, is rapidly increasing.

これらの合金めっき鋼板を経済的にまた安定した品質で
製造するためには、めっき液の組成をめっき層の組成に
応じて所定の濃度に維持管理すること、めっき液噴流々
速を大きくしてめっきすることが重要であり、また増大
する需要に対処するには高電流密度めっきによる生産性
の向上が不可欠である。
In order to manufacture these alloy-plated steel sheets economically and with stable quality, it is necessary to maintain and manage the composition of the plating solution at a predetermined concentration depending on the composition of the plating layer, and to increase the plating solution jet velocity. Plating is important, and improving productivity through high current density plating is essential to meet increasing demand.

めっき液組成を所定濃度に維持管理する方法として、合
金めっき層の組成に応じた合金組成をもつ自溶性の合金
電極や、合金めっき層を構成する各成分からなる単一金
属の電極を所定比率になるように陽極として配してめっ
きする所謂自溶性電極方式のめっき方式があるが、合金
電極の安定製造が容易でなかったり、めっき液組成を一
定に維持管理することに難点があり、あるいは純亜鉛め
っき鋼板と亜鉛系合金めっき鋼板を同一の設備で製造す
る兼用設備の場合には、電極の種類が多数になったり、
めっき層の組成に応じた電極に変更することが繁雑であ
る等の問題がある。このため合金め−)き鋼板を製造す
る設備においては、電極は自溶性電極でなく不溶性電極
を使用する方法が一般的である。不溶性電極による方法
の一つとしてチタン等からなる導電性基体の表面に貴金
属、例えば白金あるいは白金−イリジウム合金を被覆し
た不溶性電極を使用する方法がある。
As a method of maintaining and managing the plating solution composition at a predetermined concentration, a self-fusing alloy electrode with an alloy composition corresponding to the composition of the alloy plating layer or a single metal electrode consisting of each component constituting the alloy plating layer is used at a predetermined ratio. There is a so-called self-fusing electrode plating method in which the alloy electrode is placed as an anode and plated, but it is difficult to stably manufacture alloy electrodes, and there are difficulties in maintaining and managing the plating solution composition at a constant level. In the case of dual-purpose equipment that manufactures pure galvanized steel sheets and zinc alloy-plated steel sheets in the same equipment, there may be many types of electrodes,
There are problems such as that it is complicated to change the electrode according to the composition of the plating layer. For this reason, in equipment for manufacturing alloy-plated steel sheets, it is common to use insoluble electrodes instead of self-fusing electrodes. One method using an insoluble electrode is to use an insoluble electrode in which the surface of a conductive substrate made of titanium or the like is coated with a noble metal, such as platinum or a platinum-iridium alloy.

[発明が解決しようとする課題] しかし、白金あるいは白金合金等の貴金属を被覆した電
極を使用する電気亜鉛系めっき鋼板の製造方法において
は、めっき液組成や操業条件によっては、以下のように
、貴金属被覆層の溶解が促進されると言う問題がある。
[Problems to be Solved by the Invention] However, in the method of manufacturing electrogalvanized steel sheets using electrodes coated with noble metals such as platinum or platinum alloys, depending on the plating solution composition and operating conditions, the following problems may occur: There is a problem in that the dissolution of the noble metal coating layer is accelerated.

■ 高電流密度にすると、上記貴金属層の溶解による電
極の損傷が激しくなる。
■ When the current density is high, the damage to the electrode due to the melting of the noble metal layer becomes severe.

■ めっき液噴流々速を大きくした場合にも、上記貴金
属層の溶解による電極の損傷が激しくなる。
(2) Even when the plating solution jet velocity is increased, the damage to the electrode due to the dissolution of the noble metal layer increases.

■ めっき液中には光沢剤、pH,[衝剤、スラッジ生
成防止剤として各種の有機物を添加することがある。
(2) Various organic substances may be added to the plating solution as brighteners, pH, buffering agents, and sludge formation inhibitors.

これらの有機物が存在すると上記貴金属の溶解は一層促
進されることも知られており、このようなめっき液の場
合には短期間の操業で電極の補修を行わなければならな
い。
It is also known that the presence of these organic substances further accelerates the dissolution of the above-mentioned noble metals, and in the case of such plating solutions, the electrodes must be repaired within a short period of operation.

このため、白金あるいは白金合金等の貴金属を被覆した
電極を使用でも高電流密度にしたり、あるいは高電流密
度にする等の目的でめっき液噴流々速を大きくしたりす
ることには困難が伴い、特にめっき液中に有機物を含む
場合に困難が増加する。従ってこれらの場合には実質的
に高速めっきを行うことはできない。
For this reason, even if electrodes coated with noble metals such as platinum or platinum alloys are used, it is difficult to achieve a high current density or to increase the plating solution jet velocity for the purpose of achieving a high current density. Difficulties increase especially when the plating solution contains organic substances. Therefore, in these cases, high-speed plating cannot be practically performed.

本発明は、上記従来技術の問題点を解決し、有機物を含
んだめっき液においても高電流密度めっき、めっき液噴
流の高流速めっきが可能であり、かつ電極損傷の度合い
が小さい電気亜鉛系めっき鋼板の製造方法を提供するこ
とを目的とする。
The present invention solves the above-mentioned problems of the prior art, and provides electrolytic zinc plating that enables high current density plating and high flow rate plating with a plating solution jet even with a plating solution containing organic matter, and that causes less damage to the electrode. The purpose is to provide a method for manufacturing steel plates.

[課題を解決するための手段および作用]上記の目的を
達成するために、本発明においては不溶性電極を使用す
る電気亜鉛系めっき鋼板の製造方法において、導電性基
体に酸化イリジウムを主成分とする被覆層が形成された
電極を使用し、電流密度が50A/dm2〜200A/
dm2の範囲、めっき液噴流々速が1.0m/秒〜5.
Om/秒の範囲で電気亜鉛系めっきをする。めっき液に
は有機物からなる添加剤が含んでいることがある。
[Means and effects for solving the problem] In order to achieve the above object, in the present invention, in a method for manufacturing an electrogalvanized steel sheet using an insoluble electrode, a conductive substrate containing iridium oxide as a main component is provided. Using an electrode with a coating layer formed, the current density is 50A/dm2 to 200A/dm2.
dm2 range, the plating solution jet velocity is 1.0 m/sec to 5.
Electrolytic zinc plating is performed in the range of 0m/sec. The plating solution may contain additives made of organic substances.

酸化イリジウムを主成分とする被覆層は、高電流密度、
高めっき液噴流々速の苛酷なめつき条件においてその溶
解量は極めて少なく、まためっき液に有機物の添加剤が
含まれていてもその効果は変わらない。本発明は、この
ように消耗度が小さい被覆層を形成させ゛な電極を使用
し、その効果が特に発揮される苛酷なめっき条件による
電気亜鉛系めっき鋼板の製造方法を提供するものである
The coating layer mainly composed of iridium oxide has high current density,
Under severe plating conditions with high plating solution jet velocity, the amount dissolved is extremely small, and even if the plating solution contains organic additives, its effectiveness remains the same. The present invention provides a method for manufacturing an electrolytic zinc-plated steel sheet using such an electrode capable of forming a coating layer with low wear and severe plating conditions in which the effect is particularly exhibited.

具体的には、電流密度は、低電流密度でも十分に効果が
あるが従来技術の貴金属被覆電極使用時の限界値50A
/da2以上でその効果が顕著になる。しかし、200
 A / dm2を超えると被覆層の消耗量が大きくな
るので実用的ではない。従って電流密度は50A/dm
2以上、200A/dm2以下の範囲がよい。
Specifically, the current density is sufficiently effective even at a low current density, but the limit value when using the conventional noble metal coated electrode is 50A.
The effect becomes noticeable at /da2 or higher. However, 200
If it exceeds A/dm2, the amount of wear of the coating layer increases, which is not practical. Therefore, the current density is 50A/dm
A range of 2 or more and 200 A/dm2 or less is preferable.

また、前記従来技術の貴金属被覆電極はめつき液が静止
している状態でも被覆層の溶解が激しいが、本発明にお
いては、低めつき液噴流々速でも十分に効果を発揮する
が、特に高めつき液噴流々速、具体的には1.0m/秒
以上で効果が大きい。その上限は高めつき液噴流々速を
得るための設備の経済的な理由から5.0m/秒までの
範囲である。
In addition, in the noble metal coated electrode of the prior art, the coating layer is severely dissolved even when the plating liquid is stationary, but in the present invention, the effect is sufficiently exhibited even with a low plating liquid jet velocity, but the The effect is great when the liquid jet velocity is 1.0 m/sec or more. The upper limit is in the range of up to 5.0 m/sec due to economical reasons for equipment for obtaining high liquid jet velocity.

そして、本発明においては、光沢剤、pH緩衝剤、スラ
ッジ防止のために有機物を添加しためつき液でも、高電
流密度、高めつき液噴流々速めつきが可能である。これ
らの有機物としてはニコチン酸アミド、酢酸ソーダ、コ
ハク酸ソーダ、クエン酸等の有機薬品がある。
In the present invention, even with a plating solution to which a brightening agent, a pH buffering agent, and an organic substance are added to prevent sludge, rapid plating with a high current density and a high plating solution jet is possible. These organic substances include organic chemicals such as nicotinamide, sodium acetate, sodium succinate, and citric acid.

また、高電流密度めっきを行なう本発明においてはFe
−Zn合金めつきにおいてめっき液中のFe3+の生成
速度が低下するといった予期しない効果がみとめられる
。この理由は明らかではないが、高電流密度めっきにす
ることにより陽極界面へのFe2+の拡散が抑制される
ため陽極界面でFe2+が酸化されてFe3+になるの
が防止されるためであると考えられる。
In addition, in the present invention, which performs high current density plating, Fe
- In Zn alloy plating, an unexpected effect such as a decrease in the production rate of Fe3+ in the plating solution was observed. The reason for this is not clear, but it is thought that high current density plating suppresses the diffusion of Fe2+ to the anode interface, which prevents Fe2+ from being oxidized to Fe3+ at the anode interface. .

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

(実施例1) チタン製基体の電解面側に酸化イリジウムがイリジウム
換算で0 、25〜3 、2mg/cut被覆された不
溶性電極を使用してめっきを行い、この酸化イリジウム
被覆電極について電流密度と被覆層の消耗度の関係を調
べた。この時のめつき条件は第1表のごとくにした。な
お、比較のために、白金被覆電極および10%イリジウ
ム−白金被覆電極を使用した場合についても同様に実施
した。この結果を第1図に示す。
(Example 1) Plating was performed using an insoluble electrode coated with iridium oxide of 0, 25 to 3, 2 mg/cut in terms of iridium on the electrolytic surface side of a titanium substrate, and the current density and The relationship between the degree of wear of the coating layer was investigated. The plating conditions at this time were as shown in Table 1. For comparison, the same test was conducted using a platinum-coated electrode and a 10% iridium-platinum coated electrode. The results are shown in FIG.

第1図は電流密度に対する被覆層の消耗度をμm7年で
示した図である。この図で明らかなように、本発明の酸
化イリジウム被覆電極は消耗度が小さく、また電流密度
が上昇しても消耗度はあまり変化しない。これに対し、
白金被覆電極および10%イリジウム−白金被覆電極に
おける被覆層の消耗度は、電流密度の上昇と共に大きく
なり、特に電流密度50A/dI112付近からは急激
に増大している。
FIG. 1 is a diagram showing the degree of wear of the coating layer in μm 7 years versus current density. As is clear from this figure, the iridium oxide coated electrode of the present invention has a small degree of wear, and the degree of wear does not change much even when the current density increases. On the other hand,
The degree of wear of the coating layer in the platinum-coated electrode and the 10% iridium-platinum coated electrode increases as the current density increases, and in particular increases rapidly from around the current density of 50 A/dI112.

(実施例2) 実施例1の場合と同じ酸化イリジウム被覆電極を使用し
た場合において、めっき液噴流々速と被覆層の消耗度と
の関係を調べた。この際のめつき条件は第2表のごとく
にした。なお、比較のために、白金被覆電極及び10%
イリジウム−白金被覆電極を使用した場合についても同
様に実施した。この結果を第2図に示す。
(Example 2) When the same iridium oxide coated electrode as in Example 1 was used, the relationship between the plating solution jet velocity and the degree of wear of the coating layer was investigated. The plating conditions at this time were as shown in Table 2. For comparison, a platinum-coated electrode and a 10%
The same procedure was carried out when using an iridium-platinum coated electrode. The results are shown in FIG.

第2表 第2図はめっき液噴流々速に対する被覆層の消耗度をμ
m7年で示した図である。この図において、本発明の酸
化イリジウム被覆電極は消耗度自体が小さく、めっき液
噴流々速が大きくなっても消耗度あまり変化しない。こ
れに対し、白金被覆電極および10%イリジウム−白金
被覆電極における被覆層の消耗度は、消耗度自体が大き
い上に、めっき液噴流々速の上昇と共に大きくなってい
る。
Table 2 Figure 2 shows the degree of wear of the coating layer against the plating solution jet velocity μ
It is a diagram shown in m7 years. In this figure, the degree of wear of the iridium oxide coated electrode of the present invention is small, and the degree of wear does not change much even when the plating solution jet velocity increases. On the other hand, the degree of wear of the coating layer in the platinum-coated electrode and the 10% iridium-platinum coated electrode is not only large but also increases as the plating solution jet velocity increases.

(実施例3) 実施例1の場合と同じ酸化イリジウム被覆電極を使用し
、第2表のめっき条件で操業を行った。
(Example 3) The same iridium oxide coated electrode as in Example 1 was used, and the operation was carried out under the plating conditions shown in Table 2.

この結果、電極の使用が、通電時間4000時間、通電
量30000KAHrに達しても、電極の被覆層が消失
した箇所はなく、さらに使用継続可能の状態であった。
As a result, even when the electrode was used for 4,000 hours of energization time and 30,000 KAHr of energization, there was no place where the coating layer of the electrode had disappeared, and it was in a state where it could be continued to be used.

なお、白金被覆電極を使用する従来技術による操業実績
においては、白金の被覆層が12μmの場合、通電量1
8000 KAHr、通電時間1200時間程時間型極
の補修(白金の再被覆)が必要であった。
In addition, in the operation results using conventional technology using platinum-coated electrodes, when the platinum coating layer is 12 μm, the current flow rate is 1
Repair of the type electrode (re-coating with platinum) was required at 8,000 KAHr for about 1,200 hours.

(実施例4) 実施例1の場合と同じ酸化イリジウム被覆電極を使用し
、第2表のめっき条件で電流密度を変えた場合の電流密
度とFe’+の増化量を関係を調査した。結果を第3図
に示す。電流密度の増化によりめっき液中のFeg+の
生成速度が低下し、特に50 A / d m 2以上
の電流密度においてFe’+の生成速度の低下が顕著で
ある。
(Example 4) Using the same iridium oxide coated electrode as in Example 1, the relationship between the current density and the amount of increase in Fe'+ was investigated when the current density was changed under the plating conditions shown in Table 2. The results are shown in Figure 3. As the current density increases, the production rate of Fe'+ in the plating solution decreases, and the decrease in the production rate of Fe'+ is particularly remarkable at a current density of 50 A/dm2 or higher.

[発明の効果] 本発明においては、高電流密度、高めっき液噴流々速に
出来るので、高速めっきができ生産性が向上する。そし
て、有機物を添加しなめっき液を使用しても、不溶性電
極の被覆層を形成する酸化イリジウムの消耗度が極めて
小さく出来るので、電極の補修頻度は著しく減少出来る
[Effects of the Invention] In the present invention, high current density and high plating solution jet velocity can be achieved, so high-speed plating can be performed and productivity is improved. Furthermore, even if a plating solution containing no organic matter is used, the degree of consumption of iridium oxide forming the coating layer of the insoluble electrode can be extremely reduced, so that the frequency of repair of the electrode can be significantly reduced.

またFe−Zn合金電気めっきにおいては、高電流密度
に出来るので、めっき液中におけるFeνの生成が抑制
されF e ”の除去処理が軽減される。
In addition, in Fe-Zn alloy electroplating, since a high current density can be achieved, the generation of Feν in the plating solution is suppressed and the removal process of Fe'' is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電流密度に対する電極被覆層の消耗度を示した
図、第2図はめっき液噴流々速に対する電極被覆層の消
耗度示した図、第3図は電流密度とFe’+の生成速度
の関係を示した図である。
Figure 1 is a diagram showing the degree of wear of the electrode coating layer with respect to current density, Figure 2 is a diagram showing the degree of wear of the electrode coating layer with respect to the plating solution jet velocity, and Figure 3 is a diagram showing the degree of wear of the electrode coating layer with respect to current density and production of Fe'+. It is a figure showing the relationship of speed.

Claims (1)

【特許請求の範囲】[Claims] (1)不溶性電極を使用する電気亜鉛系めっき鋼板の製
造方法において、 導電性基体に酸化イリジウムを主成分とする被覆層が形
成された電極を使用し、電流密度が50A/dm^2〜
200A/dm^2の範囲、めっき液噴流々速が1.0
m/秒〜5.0m/秒の範囲で電気めっきすることを特
徴とする電気亜鉛系めっき鋼板の製造方法。(2)不溶
性電極を使用する電気亜鉛系めっき鋼板の製造方法にお
いて、 導電性基体に酸化イリジウムを主成分とする被覆層が形
成された電極を使用し、有機物添加剤を必須成分とする
めっき液で、電流密度が50A/dm^2〜200A/
dm^2の範囲、めっき液噴流々速が1.0m/秒〜5
.0m/秒の範囲で電気めっきすることを特徴とする電
気亜鉛系めっき鋼板の製造方法。
(1) A method for manufacturing electrogalvanized steel sheets using an insoluble electrode, in which an electrode is formed with a coating layer mainly composed of iridium oxide on a conductive substrate, and the current density is 50 A/dm^2 ~
Range of 200A/dm^2, plating solution jet velocity 1.0
A method for producing an electrolytic galvanized steel sheet, comprising electroplating at a rate in the range of m/sec to 5.0 m/sec. (2) A method for producing electrogalvanized steel sheets using an insoluble electrode, which uses an electrode in which a coating layer mainly composed of iridium oxide is formed on a conductive substrate, and a plating solution containing an organic additive as an essential component. So, the current density is 50A/dm^2~200A/
dm^2 range, plating solution jet velocity 1.0m/sec to 5
.. A method for producing an electrogalvanized steel sheet, characterized by electroplating in a range of 0 m/sec.
JP1182329A 1989-07-14 1989-07-14 Manufacturing method of electro-galvanized steel sheet with low degree of electrode damage Expired - Lifetime JP2616024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182329A JP2616024B2 (en) 1989-07-14 1989-07-14 Manufacturing method of electro-galvanized steel sheet with low degree of electrode damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182329A JP2616024B2 (en) 1989-07-14 1989-07-14 Manufacturing method of electro-galvanized steel sheet with low degree of electrode damage

Publications (2)

Publication Number Publication Date
JPH0347988A true JPH0347988A (en) 1991-02-28
JP2616024B2 JP2616024B2 (en) 1997-06-04

Family

ID=16116405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182329A Expired - Lifetime JP2616024B2 (en) 1989-07-14 1989-07-14 Manufacturing method of electro-galvanized steel sheet with low degree of electrode damage

Country Status (1)

Country Link
JP (1) JP2616024B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198292A (en) * 1981-05-27 1982-12-04 Nippon Steel Corp Production of iron-zinc alloy plated steel plate
JPS5877592A (en) * 1981-11-02 1983-05-10 Nippon Steel Corp Manufacture of steel products plated with iron-zinc alloy
JPS58161792A (en) * 1982-03-20 1983-09-26 Nippon Steel Corp Horizontal electroplating method with alloy
JPS59140383A (en) * 1983-02-01 1984-08-11 Ishifuku Kinzoku Kogyo Kk Electrode for electrolysis and its manufacture
JPS6021232A (en) * 1983-07-18 1985-02-02 Kaito Kagaku Kogyo Kk Manufacturing apparatus of plastic film
JPS62136590A (en) * 1985-12-10 1987-06-19 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
JPS63203800A (en) * 1987-02-17 1988-08-23 Shimizu:Kk Electrode and its production
JPS63235493A (en) * 1987-03-24 1988-09-30 Tdk Corp Electrode for generating oxygen and production thereof
JPH01176100A (en) * 1987-12-28 1989-07-12 Nkk Corp Nonsoluble anode for plating steel strip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198292A (en) * 1981-05-27 1982-12-04 Nippon Steel Corp Production of iron-zinc alloy plated steel plate
JPS5877592A (en) * 1981-11-02 1983-05-10 Nippon Steel Corp Manufacture of steel products plated with iron-zinc alloy
JPS58161792A (en) * 1982-03-20 1983-09-26 Nippon Steel Corp Horizontal electroplating method with alloy
JPS59140383A (en) * 1983-02-01 1984-08-11 Ishifuku Kinzoku Kogyo Kk Electrode for electrolysis and its manufacture
JPS6021232A (en) * 1983-07-18 1985-02-02 Kaito Kagaku Kogyo Kk Manufacturing apparatus of plastic film
JPS62136590A (en) * 1985-12-10 1987-06-19 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
JPS63203800A (en) * 1987-02-17 1988-08-23 Shimizu:Kk Electrode and its production
JPS63235493A (en) * 1987-03-24 1988-09-30 Tdk Corp Electrode for generating oxygen and production thereof
JPH01176100A (en) * 1987-12-28 1989-07-12 Nkk Corp Nonsoluble anode for plating steel strip

Also Published As

Publication number Publication date
JP2616024B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
TWI441945B (en) Ni-p layer system and process for its preparation
JPS62500941A (en) Electrodeposition method for iron-zinc alloy coating and electrolyte used in the method
US20010054557A1 (en) Electroplating of metals using pulsed reverse current for control of hydrogen evolution
EP2017373B1 (en) High speed method for plating palladium alloys
CN1061603C (en) Steel plate plated with zinc and method for preparation of same
WO2001077417A1 (en) Electrolytic solution for electrochemical deposit of palladium or its alloys
US9435046B2 (en) High speed method for plating palladium and palladium alloys
KR20110032540A (en) Nickel flash plating solutions, zinc-electroplated steel sheet and manufacturing method thereof
JPH0347988A (en) Production of galvanized steel sheet
JPS634635B2 (en)
EP3686319A1 (en) Indium electroplating compositions and methods for electroplating indium on nickel
Gamburg et al. Technologies for the electrodeposition of metals and alloys: electrolytes and processes
JPH0352551B2 (en)
JP3102785B1 (en) Electrogalvanized steel sheet and method for producing the same
Shanmugasigamani et al. Voltammetric studies on the role of additives in bright zinc electrodeposition from an alkaline non-cyanide bath
JPS61130498A (en) Composite plated steel sheet having superior corrosion resistance before and after coating with paint
JPH04124295A (en) Production of thick galvanized steel sheet
JPH0369996B2 (en)
JP3122632B2 (en) Electrogalvanized steel sheet with excellent surface appearance
JPH07157889A (en) Production of plated steel sheet excellent in corrosion resistance
JPS6344837B2 (en)
JPS58133395A (en) After-treatment of uncoated surface of single-surface zinc-electroplated steel sheet
KR20030054471A (en) Zn-co-w electrolyte for preventing anode passive film
Lindsay et al. Electrogalvanizing
JPH052745B2 (en)

Legal Events

Date Code Title Description
RVTR Cancellation due to determination of trial for invalidation