JPS6344837B2 - - Google Patents

Info

Publication number
JPS6344837B2
JPS6344837B2 JP15107584A JP15107584A JPS6344837B2 JP S6344837 B2 JPS6344837 B2 JP S6344837B2 JP 15107584 A JP15107584 A JP 15107584A JP 15107584 A JP15107584 A JP 15107584A JP S6344837 B2 JPS6344837 B2 JP S6344837B2
Authority
JP
Japan
Prior art keywords
plating
content
adhesion
dissolved
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15107584A
Other languages
Japanese (ja)
Other versions
JPS6130696A (en
Inventor
Itsusho Kyono
Tooru Pponjo
Koji Yamato
Toshiro Ichida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15107584A priority Critical patent/JPS6130696A/en
Publication of JPS6130696A publication Critical patent/JPS6130696A/en
Publication of JPS6344837B2 publication Critical patent/JPS6344837B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、めつき外観色調が美麗で、密着性に
すぐれ、塗装下地として好適で、塗装を含めた総
合的防錆性にすぐれた耐食鋼板、特に自動車用表
面処理鋼板の製造を目的としたZn―Fe系合金電
気めつき鋼板の製造方法に関するものである。 <従来技術とその問題点> Zn―Fe合金電気めつき鋼板は、Znめつき鋼板
の塗装適合性を改良したものであつて合金化溶融
Znめつき鋼板に匹敵するすぐれた塗装後耐食性
を有している。しかし、その工業的製造は容易で
は無く、各種の困難が伴つている。 すなわち、すでに開示されているZn―Fe合金
電気めつきの製造方法特開昭56−9386号、同57−
51283号、同57−192284号、同58−52493号、同57
−200589号でもつてしても以下の問題点があつ
た。第1にはめつき密着性が悪い場合があり、加
工時にめつき皮膜が剥離すること、第2にはFe
含有率が流速や電流密度に対して影響されやすい
場合があり、合金含有率の制御が困難であること
など多くの問題点を有していた。 <発明の目的> 本発明の目的は、めつき外観色調が美麗で、密
着性にすぐれたZn―Fe系合金電気めつき鋼板の
製造方法を提供しようとするにある。 <発明の構成> すなわち、本発明の第1の態様によれば、
Zn2+とFe2+を0.1≦Fe2+/(Fe2++Zn2+)≦0.5な
るモル濃度比で合計で0.5mol/m2以上溶解限以
内含有し、Fe3+を1g/以上溶解している塩
化物を主体とするめつき浴を使用し、電流密度20
〜200A/dm2にてめつきすることを特徴とする
めつき密着性にすぐれたZn―Fe系合金電気めつ
き鋼板の製造方法が提供される。 本発明の第2の態様によれば、Zn2+とFe2+
0.1≦Fe2+/(Fe2++Zn2+)≦0.5なるモル濃度比
で合計で0.5mol/m2以上溶解限以内含有し、
Fe3+を1g/以上溶解している塩化物を主体
とし、電導度助剤としてKCl、NH4Cl、NaCl、
CaCl2およびMgCl2よりなる群より選ばれた1種
以上を200g/以上含有し、PHが2.3〜5.0で、
浴温度が25〜70℃であるめつき浴を使用し、電流
密度20〜200A/dm2にてめつきすることを特徴
とするめつき密着性にすぐれたZn―Fe系合金電
気めつき鋼板の製造方法が提供される。 以下、本発明のめつき密着性にすぐれたZn―
Fe系合金電気めつき鋼板の製造方法につき詳細
に説明する。 Zn―Fe系合金めつきを行うめつき浴は、金属
イオンとしてはZn2+とFe2+イオンを主体とする
が、これは、塩化物の形や金属の溶解によつて調
合、供給、調整される。その濃度はZn2+とFe2+
イオンの合計で0.5mol/以上溶解限以内であ
る。この理由は、合計濃度が0.5mol/未満で
はヤケが生じやすくなるためであり、一方溶解限
を越えると固体が生成するのみで、本発明の特に
めつき密着性に対し向上の効果はない。 Fe2+/Fe2++Zn2+は0.1〜0.5が望ましいが、こ
れはFe含有率を10〜30wt%に制御するためであ
る。 めつき浴には電導度助剤としてKCl、NH4Cl、
NaCl、CaCl2、MgCl2の内より選ばれた1種以上
を200g/以上、好ましくは250g/以上含有
せしめるのがよい。これは、比較的大量に添加す
ることによる電流密度と流速に対するFe含有率
の安定性、電導度向上、ヤケの減少、電力の低減
を図るためである。 なお、塩化物浴は硫酸塩浴よりも陰極析出が高
く、また、電導度が3〜5倍高いので、電力コス
トおよび浴バランス維持上極めて有利である。 めつきにおける電流密度は20〜200A/dm2
好ましくは60〜150A/dm2が適当である。この
ように広い電流密度範囲にわたつて、密着性が良
好なZn―Feめつき鋼板を得られるのが本発明の
重要な特徴であり、操業上安定した製品が得られ
る。20A/dm2未満ではFe含有率安定性が悪くな
るためであり、200A/dm2を越えると、ヤケが
生じやすくなり、また密着性の不良な場合がある
ためである。なお、電流密度の高い方が外観色調
が光沢化し良好である。 相対流速は30mpm以上が望ましい。30mpm未
満では著しくヤケが発生しやすくなるためであ
る。 浴温は、25〜70℃が望ましい。25℃未満では密
着が劣化する場合があり、逆に70℃を超えると液
の蒸発が激しくなるためである。 PHは2.3〜5.0が望ましく、好ましくは2.5〜4.5
が望ましい。2.3未満では、陰極析出効率の低下
がおこる。そのため、電力コスト上不利となるば
かりでなく、浴バランス上も不利となる。一方
5.0を越えるとFe2+の酸化が著しく速くなるため
浴バランス上不利である。 本発明においては、上記塩類の他に、めつき密
着性およびFe含有率の流速と電流密度に対する
安定性を改良するのに有効な溶存Fe3+を含有す
る。Fe3+の含有量は1g/以上、好ましくは
2g/、さらに好ましくは4g/以上が適当
である。Fe3+の含有量が1g/未満では、め
つき密着性およびFe含有率の安定性を改善する
効果が不十分である。 Fe3+は気液接触による空気酸化による方法、
H2O2などの酸化剤によつてFe2+をFe3+に酸化す
る方法やFeCl3・6H2OなどのFe3+供給試薬を添
加する方法によつて供給することができる。 このFe3+を溶存させることによつてめつきの
密着性および電流密度や流速に対するFe含有率
の変動しやすさを効果的に改良することができる
(第1図参照)。 Zn―Fe系電気めつき液中のFe2+は空気との接
触や溶存酸素によつて酸化され、Fe3+を生成す
るが、可溶性陽極を使用する塩化物浴ではその生
成速度は小さい。また、陽極での化学反応や電解
時での電気化学反応によりFe3+の還元がおこる
ので、定常作業を行うことによりFe3+量は定常
的にほぼ落ちついたものとなる。 この溶存Fe3+の効果は電導度助剤を比較的大
量に添加した塩化物浴において特異的に効果のあ
ることを知見した。 すなわち、KCl、NH4Clなどの電導度助剤が低
濃度の場合には溶存Fe3+のFe含有率安定性改良
効果は小さい。つまり、溶存Fe3+と高濃度電導
度助剤との相乗効果によつてFe含有率安定性と
密着性を改良することができる。一方、硫酸塩浴
を使用した場合には、PHを低くすることによつて
Fe3+を溶存させることは可能であるけれども、
Fe含有率安定性、密着性は十分なものではない。 塩化物浴においても、また、Fe3+は水に対す
る溶解度がPHによつて変化し、約2以上では溶解
量が極めて小さくなることが知られている。その
結果溶存Fe3+量は約0.5g/以下となる。これ
は、Fe(OH)3沈澱が生成しやすくなるためであ
り、Fe(OH)3が生成することによりFe3+の溶存
量は小さくなる。その結果、めつき密着性、Fe
含有率安定性は不良なものとなる。また、生成す
るFe(OH)3沈澱はめつき表面に付着することに
より、めつき血陥やデンツ状不良の原因となる。 そこで、Fe3+を溶存させるためにキレート化
剤を添加する必要がある。キレート化剤によつて
Fe3+を溶存させることによつて、めつき密着性
およびFe含有率安定性が良好なものになる。し
かし、硫酸塩浴においてはFe含有率安定性、め
つき密着性の改良効果はなく、むしろ電流効率が
低下するなど、改悪することが多く、電解還元な
どの方法を用いて積極的に除去しているのが実情
である。本発明は塩化物浴においては、Fe3+
添加することによつて、めつき密着性、および
Fe含有率安定性を改良することを見いだしたと
ころに特徴がある。この場合、PHの高い領域で
は、積極的にキレート化剤を用いてFe3+を溶存
させる必要がある。 キレート化剤としては、Zn2+、Fe2+などより
もFe3+との生成定数の大きいもの、例えば、グ
リシン、アセチルアセトン、酒石酸、リンゴ酸、
コハク酸、クエン酸、EDTA、チオシアン酸、
酢酸、サリチル酸、スルホサリチル酸、チロンな
どを使用することができる。添加量はFe3+を溶
存できる程度に添加すればよい。 溶存Fe3+量が増加するに従つて電流密度と流
速に対するFe含有率の変動しやすさを改良する
ことができ、Fe含有率は安定なものになる(第
2図参照)。 従つて、Zn―Fe合金電気めつき中のFe含有率
を安定に容易に制御することができる。電流密度
や相対流速は実際の製造ラインでは制御しにく
く、また任意に設定できるものではないので、め
つき中のFe含有率を安定に制御するためには、
電流密度と流速に対するFe含有率安定性にすぐ
れることが大きな利点となる。 すなわち、本発明によつて始めてFe含有率が
ストリツプの板幅方向、長手方向、およびコイル
間で均一なZn―Feめつきを容易に製造すること
が可能となつた。 第3図に溶存Fe3+量とめつき密着性との関係
を示す。溶存Fe3+量が増加するに従つてめつき
密着性が改良されることがわかる。 なお、本発明にさらに通常の光沢剤や光沢作用
着性る化合物、またはその他の化合物を別の目的
で添加しても本発明の効果が認められるかぎり本
発明に包含されるものである。 なお、本発明でいうZn―Fe系合金めつきとは、
Zn―Fe合金電気めつきに限られず、Zn―Feを主
体とするZn―Fe系合金電気めつき、例えば、Zn
―Fe―P、Zn―Fe―Ni、Zn―Fe―Co、Zn―Fe
―Ti合金めつきなども広く包含するものである。 <実施例> 次に本発明を実施例について具体的に説明す
る。 以下の実験は回転陰極型セルを使用して行つた
ものである。表1に示すようにして種々の試験を
行い、その結果を表1に示す。 本発明例は比較例に比べていずれも良好なめつ
き密着性、Fe含有率安定性を有していることが
わかる。 なお、試験方法および評価は次の通りである。 (1) めつき密着性(OT密着曲げ) めつき面を外側にし、180°密着曲げを行な
い、その後テープ剥離を行ない、剥離量を評価
した。 (2) Fe含有率安定性 電流密度および流速をパラメーターとして変
化させ、外の条件を同一にしてFe含有率の変
動性を調べた。 評 価 めつき密着性 〇剥離なし、△やや剥離、 (OT密着曲げ) ×剥離 Fe含有率安定性 〇…0.1%/A/dm2 0.1%/mpm以内 △…0.15%A/dm2 0.15%/mpm以内 ×…0.15%A/dm2 0.15%/mpm以上 <発明の効果> このように本発明はすぐれた密着性を有する
Zn―Feめつき鋼板を電流密度と流速に対するFe
含有率を安定に制御しながら容易に製造できる。 【表】
[Detailed Description of the Invention] <Industrial Application Fields> The present invention provides a corrosion-resistant material that has a beautiful plating color tone, excellent adhesion, is suitable as a base for painting, and has excellent overall rust prevention including painting. The present invention relates to a method for manufacturing a Zn--Fe alloy electroplated steel sheet for the purpose of manufacturing steel sheets, particularly surface-treated steel sheets for automobiles. <Prior art and its problems> Zn-Fe alloy electroplated steel sheet is a Zn-plated steel sheet with improved coating compatibility.
It has excellent corrosion resistance after painting, comparable to Zn-plated steel sheets. However, its industrial production is not easy and involves various difficulties. That is, the manufacturing method of Zn--Fe alloy electroplating which has already been disclosed, JP-A Nos. 56-9386 and 57-
No. 51283, No. 57-192284, No. 58-52493, No. 57
-200589 also had the following problems. Firstly, the plating adhesion may be poor and the plating film may peel off during processing, and secondly, Fe
There have been many problems, such as the alloy content being easily affected by the flow rate and current density, making it difficult to control the alloy content. <Object of the Invention> An object of the present invention is to provide a method for manufacturing a Zn--Fe alloy electroplated steel sheet with a beautiful plating appearance and excellent adhesion. <Structure of the invention> That is, according to the first aspect of the invention,
Contains Zn 2+ and Fe 2+ at a molar concentration ratio of 0.1≦Fe 2+ / (Fe 2+ + Zn 2+ )≦0.5, with a total of 0.5 mol/m 2 or more within the solubility limit, and Fe 3+ of 1 g/m or more Using a plating bath consisting mainly of dissolved chloride, the current density is 20
Provided is a method for producing a Zn--Fe alloy electroplated steel sheet with excellent plating adhesion, which is characterized by plating at ~200 A/dm 2 . According to the second aspect of the invention, Zn 2+ and Fe 2+
Contains a total of 0.5 mol/m 2 or more within the solubility limit at a molar concentration ratio of 0.1≦Fe 2+ / (Fe 2+ + Zn 2+ )≦0.5,
Mainly chloride with 1g/or more of Fe 3+ dissolved, KCl, NH 4 Cl, NaCl, as conductivity aids.
Contains 200 g or more of one or more selected from the group consisting of CaCl 2 and MgCl 2 , and has a pH of 2.3 to 5.0,
A Zn-Fe alloy electroplated steel sheet with excellent plating adhesion, which is plated at a current density of 20 to 200 A/dm 2 using a plating bath with a bath temperature of 25 to 70°C. A manufacturing method is provided. Below, Zn-- which has excellent plating adhesion according to the present invention.
The method for manufacturing Fe-based alloy electroplated steel sheet will be explained in detail. The plating bath for Zn-Fe alloy plating mainly contains Zn 2+ and Fe 2+ ions as metal ions, which are prepared, supplied, and mixed in the form of chlorides and by dissolving metals. be adjusted. Its concentration is Zn 2+ and Fe 2+
The total amount of ions is 0.5 mol/or more, which is within the solubility limit. The reason for this is that if the total concentration is less than 0.5 mol/min, discoloration is likely to occur, while if the solubility limit is exceeded, only solids will be produced and the present invention will not have the effect of improving the plating adhesion. Fe 2+ /Fe 2+ +Zn 2+ is desirably 0.1 to 0.5, but this is to control the Fe content to 10 to 30 wt%. The plating bath contains KCl, NH 4 Cl, and conductivity aids.
It is preferable to contain 200 g/or more, preferably 250 g/or more of one or more selected from NaCl, CaCl 2 , and MgCl 2 . The purpose of this is to stabilize the Fe content with respect to current density and flow rate, improve conductivity, reduce fading, and reduce power consumption by adding a relatively large amount. It should be noted that a chloride bath has higher cathodic deposition than a sulfate bath and also has 3 to 5 times higher electrical conductivity, so it is extremely advantageous in terms of power cost and maintaining bath balance. The current density during plating is 20 to 200 A/dm 2 ,
Preferably, 60 to 150 A/dm 2 is appropriate. An important feature of the present invention is that it is possible to obtain a Zn--Fe plated steel sheet with good adhesion over such a wide current density range, and a product that is stable in operation can be obtained. This is because if it is less than 20 A/dm 2 , the stability of the Fe content will be poor, and if it exceeds 200 A/dm 2 , it will tend to cause discoloration and may have poor adhesion. Note that the higher the current density, the better the appearance color tone becomes glossy. The relative flow velocity is preferably 30mpm or higher. This is because if the speed is less than 30mpm, discoloration will occur significantly. The bath temperature is preferably 25-70°C. This is because if the temperature is lower than 25°C, the adhesion may deteriorate, and if the temperature exceeds 70°C, the evaporation of the liquid will become more intense. PH is desirably 2.3 to 5.0, preferably 2.5 to 4.5
is desirable. If it is less than 2.3, the cathodic deposition efficiency will decrease. Therefore, it is not only disadvantageous in terms of power cost but also in terms of bath balance. on the other hand
If it exceeds 5.0, the oxidation of Fe 2+ becomes extremely rapid, which is disadvantageous in terms of bath balance. In addition to the above-mentioned salts, the present invention contains dissolved Fe 3+ which is effective in improving plating adhesion and stability of Fe content with respect to flow rate and current density. The content of Fe 3+ is suitably at least 1 g/, preferably at least 2 g/, more preferably at least 4 g/. If the content of Fe 3+ is less than 1 g/g/, the effect of improving plating adhesion and stability of Fe content is insufficient. Fe 3+ can be obtained by air oxidation using gas-liquid contact;
It can be supplied by oxidizing Fe 2+ to Fe 3+ using an oxidizing agent such as H 2 O 2 or by adding a Fe 3+ supplying reagent such as FeCl 3 .6H 2 O. By dissolving this Fe 3+ , it is possible to effectively improve the adhesion of plating and the ease with which the Fe content fluctuates with respect to current density and flow rate (see Figure 1). Fe 2+ in the Zn-Fe electroplating solution is oxidized by contact with air or dissolved oxygen to form Fe 3+ , but the rate of formation is slow in a chloride bath using a soluble anode. In addition, reduction of Fe 3+ occurs due to the chemical reaction at the anode and the electrochemical reaction during electrolysis, so the amount of Fe 3+ becomes almost constant on a regular basis by performing regular operations. It was found that this effect of dissolved Fe 3+ was particularly effective in a chloride bath to which a relatively large amount of conductivity aid was added. That is, when the concentration of conductivity aids such as KCl and NH 4 Cl is low, the effect of improving the Fe content stability of dissolved Fe 3+ is small. In other words, the Fe content stability and adhesion can be improved by the synergistic effect of dissolved Fe 3+ and the high-concentration conductivity auxiliary agent. On the other hand, when using a sulfate bath, by lowering the pH,
Although it is possible to dissolve Fe 3+ ,
Fe content stability and adhesion are not sufficient. It is also known that in a chloride bath, the solubility of Fe 3+ in water changes depending on the pH, and the amount of Fe 3+ dissolved becomes extremely small when the pH is higher than about 2. As a result, the amount of dissolved Fe 3+ is about 0.5 g/or less. This is because Fe(OH) 3 precipitate is easily generated, and the amount of dissolved Fe 3+ becomes smaller due to the generation of Fe(OH) 3 . As a result, plating adhesion, Fe
The content stability becomes poor. In addition, the generated Fe(OH) 3 precipitate adheres to the plating surface, causing plating blood defects and dent-like defects. Therefore, it is necessary to add a chelating agent to dissolve Fe 3+ . By chelating agent
By dissolving Fe 3+ , good plating adhesion and Fe content stability can be achieved. However, sulfate baths do not have the effect of improving Fe content stability or plating adhesion, but rather often lead to deterioration, such as a decrease in current efficiency, so they must be actively removed using methods such as electrolytic reduction. The reality is that The present invention improves plating adhesion and
The feature is that it has been found to improve the Fe content stability. In this case, in a high PH region, it is necessary to actively use a chelating agent to dissolve Fe 3+ . Chelating agents include those that have a larger production constant with Fe 3+ than with Zn 2+ and Fe 2+ , such as glycine, acetylacetone, tartaric acid, malic acid,
Succinic acid, citric acid, EDTA, thiocyanic acid,
Acetic acid, salicylic acid, sulfosalicylic acid, tyrone, etc. can be used. The addition amount may be such that Fe 3+ can be dissolved. As the amount of dissolved Fe 3+ increases, the variability of the Fe content with respect to current density and flow rate can be improved, and the Fe content becomes stable (see Figure 2). Therefore, the Fe content in Zn--Fe alloy electroplating can be stably and easily controlled. Current density and relative flow velocity are difficult to control on actual production lines, and cannot be set arbitrarily, so in order to stably control the Fe content in plating,
A major advantage is that the Fe content is highly stable with respect to current density and flow rate. That is, the present invention has made it possible for the first time to easily produce Zn--Fe plating with a uniform Fe content in the strip width direction, longitudinal direction, and between coils. Figure 3 shows the relationship between dissolved Fe 3+ content and plating adhesion. It can be seen that as the amount of dissolved Fe 3+ increases, the plating adhesion improves. It should be noted that the present invention includes the addition of a conventional brightening agent, a compound capable of brightening, or other compounds for other purposes as long as the effects of the present invention are observed. In addition, the Zn-Fe alloy plating referred to in the present invention is
Not limited to Zn-Fe alloy electroplating, Zn-Fe alloy electroplating mainly consisting of Zn-Fe, such as Zn
-Fe-P, Zn-Fe-Ni, Zn-Fe-Co, Zn-Fe
-It broadly includes Ti alloy plating, etc. <Examples> Next, the present invention will be specifically described using examples. The following experiments were conducted using a rotating cathode cell. Various tests were conducted as shown in Table 1, and the results are shown in Table 1. It can be seen that the inventive examples all have better plating adhesion and Fe content stability than the comparative examples. The test method and evaluation are as follows. (1) Plating adhesion (OT adhesion bending) With the plating surface facing outward, 180° adhesion bending was performed, and then tape peeling was performed to evaluate the amount of peeling. (2) Stability of Fe content We investigated the variability of Fe content by changing the current density and flow rate as parameters and keeping the other conditions the same. Evaluation Plating adhesion 〇No peeling, △ Slight peeling, (OT close bending) × Peeling Fe content stability 〇…0.1%/A/dm 2 Within 0.1%/mpm △…0.15%A/dm 2 0.15% /mpm or less ×...0.15%A/dm 2 0.15%/mpm or more <Effects of the invention> As described above, the present invention has excellent adhesion.
Fe relationship between current density and flow velocity of Zn-Fe plated steel sheet
It can be easily manufactured while stably controlling the content. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明例と比較例のFe含有率安定
性を示すグラフであり、浴条件は表1の実施例1
と比較例1である。第2図は、溶存Fe3+量がFe
含有率安定性に与える影響を示すグラフであり、
第3図はめつき密着性に与える影響である。第2
図および第3図の浴条件は表1の実施例1を基準
にしている。
FIG. 1 is a graph showing the Fe content stability of the present invention example and the comparative example, and the bath conditions are as shown in Table 1 for Example 1.
and Comparative Example 1. Figure 2 shows that the amount of dissolved Fe 3+ is Fe
It is a graph showing the influence on content stability,
Figure 3 shows the effect on plating adhesion. Second
The bath conditions in Figures and Figure 3 are based on Example 1 in Table 1.

Claims (1)

【特許請求の範囲】 1 Zn2+とFe2+を0.1≦Fe2+/(Fe2++Zn2+)≦
0.5なるモル濃度比で合計で0.5mol/m2以上溶解
限以内含有し、Fe3+を1g/以上溶解してい
る塩化物を主体とするめつき浴を使用し、電流密
度20〜200A/dm2にてめつきすることを特徴と
するめつき密着性にすぐれたZn―Fe系合金電気
めつき鋼板の製造方法。 2 Zn2+とFe2+を0.1≦Fe2+/(Fe2++Zn2+)≦
0.5なるモル濃度比で合計で0.5mol/m2以上溶解
限以内含有し、Fe3+を1g/以上溶解してい
る塩化物を主体とし、電導度助剤としてKCl、
NH4Cl、NaCl、CaCl2およびMgCl2よりなる群
より選ばれた1種以上を200g/以上含有し、
PHが2.3〜5.0で、浴温度が25〜70℃であるめつき
浴を使用し、電流密度20〜200A/dm2にてめつ
きすることを特徴とするめつき密着性にすぐれた
Zn―Fe系合金電気めつき鋼板の製造方法。
[Claims] 1 Zn 2+ and Fe 2+ 0.1≦Fe 2+ /(Fe 2+ +Zn 2+ )≦
Use a plating bath mainly composed of chloride containing 0.5 mol/m 2 or more within the solubility limit at a molar concentration ratio of 0.5 and 1 g/or more of Fe 3+ dissolved, and a current density of 20 to 200 A/dm. 2. A method for producing a Zn--Fe alloy electroplated steel sheet with excellent plating adhesion, which is characterized by plating in step 2. 2 Zn 2+ and Fe 2+ 0.1≦Fe 2+ / (Fe 2+ + Zn 2+ )≦
Contains a total of 0.5 mol/m 2 or more within the solubility limit at a molar concentration ratio of 0.5, and contains chloride containing 1 g/m or more of Fe 3+ dissolved therein, KCl as a conductivity aid,
Containing 200 g/or more of one or more selected from the group consisting of NH 4 Cl, NaCl, CaCl 2 and MgCl 2 ,
Excellent plating adhesion, characterized by plating at a current density of 20 to 200 A/dm 2 using a plating bath with a pH of 2.3 to 5.0 and a bath temperature of 25 to 70°C.
A method for producing Zn-Fe alloy electroplated steel sheets.
JP15107584A 1984-07-20 1984-07-20 Manufacture of zn-fe alloy electroplated steel sheet having superior adhesion to its plating Granted JPS6130696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15107584A JPS6130696A (en) 1984-07-20 1984-07-20 Manufacture of zn-fe alloy electroplated steel sheet having superior adhesion to its plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15107584A JPS6130696A (en) 1984-07-20 1984-07-20 Manufacture of zn-fe alloy electroplated steel sheet having superior adhesion to its plating

Publications (2)

Publication Number Publication Date
JPS6130696A JPS6130696A (en) 1986-02-12
JPS6344837B2 true JPS6344837B2 (en) 1988-09-07

Family

ID=15510760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15107584A Granted JPS6130696A (en) 1984-07-20 1984-07-20 Manufacture of zn-fe alloy electroplated steel sheet having superior adhesion to its plating

Country Status (1)

Country Link
JP (1) JPS6130696A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861441A (en) * 1986-08-18 1989-08-29 Nippon Steel Corporation Method of making a black surface treated steel sheet
KR100435473B1 (en) * 1999-12-24 2004-06-10 주식회사 포스코 Method for Manufacturing alloy plating strip having superior surface corrosion resistance
US10767274B2 (en) * 2017-06-09 2020-09-08 The Boeing Company Compositionally modulated zinc-iron multilayered coatings

Also Published As

Publication number Publication date
JPS6130696A (en) 1986-02-12

Similar Documents

Publication Publication Date Title
KR890001107B1 (en) Process for preparing zn - fe base alloy electroplated steel strips
US3951759A (en) Chromium electroplating baths and method of electrodepositing chromium
US4715935A (en) Palladium and palladium alloy plating
KR910004972B1 (en) Manufacturing method of tin-cobalt, tin-nickel, tin-lead binary alloy electroplating bath and electroplating bath manufactured by this method
US2750337A (en) Electroplating of chromium
US4265715A (en) Silver electrodeposition process
JPH0230795A (en) Production of black steel sheet
US5198095A (en) Method for continuously manganese-electroplating or manganese-alloy-electroplating steel sheet
JPS6344837B2 (en)
JPS5887291A (en) Chromium electroplating bath
US4111760A (en) Method and electrolyte for the electrodeposition of cobalt and cobalt-base alloys in the presence of an insoluble anode
US4615773A (en) Chromium-iron alloy plating from a solution containing both hexavalent and trivalent chromium
JPS6130695A (en) Manufacture of zn-fe alloy electroplated steel sheet having fine appearance and color tone
CN114622194B (en) Zinc alloy environment-friendly coloring liquid and coloring process thereof
JPH0891842A (en) Production of basic chromium sulfate to be used for chromium system electroplating
JPS6367560B2 (en)
Rao et al. The electrodeposition of copper on film-covered metal surfaces
KR100294366B1 (en) Manufacturing method of mound-free iron-zinc electroplated sheets and electrolytic baths used therein
Campbell et al. Some uses of pyrophosphates in metal finishing part II. Cobalt-tungsten alloys to zinc, including pretreatment for magnesium
JP2005082856A (en) Nickel-molybdenum alloy plating liquid, plating film thereof, and plated article
JP3481378B2 (en) Method for suppressing formation of tin sludge by iron (III) ions in plating bath
Wilcox et al. The kinetics of electrode reactions III practical aspects
JPH0321638B2 (en)
JPH0390591A (en) Method for electroplating zinc-manganese alloy with high productivity
JPH06200400A (en) Method for replenishing zn-ni based alloy plating bath with zinc ion