KR100435473B1 - Method for Manufacturing alloy plating strip having superior surface corrosion resistance - Google Patents

Method for Manufacturing alloy plating strip having superior surface corrosion resistance Download PDF

Info

Publication number
KR100435473B1
KR100435473B1 KR10-1999-0061563A KR19990061563A KR100435473B1 KR 100435473 B1 KR100435473 B1 KR 100435473B1 KR 19990061563 A KR19990061563 A KR 19990061563A KR 100435473 B1 KR100435473 B1 KR 100435473B1
Authority
KR
South Korea
Prior art keywords
iron
zinc
ions
corrosion resistance
plating
Prior art date
Application number
KR10-1999-0061563A
Other languages
Korean (ko)
Other versions
KR20010058085A (en
Inventor
박흥수
한국진
김영근
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0061563A priority Critical patent/KR100435473B1/en
Publication of KR20010058085A publication Critical patent/KR20010058085A/en
Application granted granted Critical
Publication of KR100435473B1 publication Critical patent/KR100435473B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

본 발명은 아연-철(Zn-Fe) 합금전기도금강판의 제조방법에 관한 것으로, 그 목적은 제품표면결함의 발생을 막으면서 아연-철 도금층내의 철 함량을 14-20%로 높여서 내표면부식성을 개선할 수 있는 도금방법을 제공함에 있다.The present invention relates to a method for manufacturing a zinc-iron (Zn-Fe) alloy electroplated steel sheet, the purpose of which is to increase the iron content in the zinc-iron plated layer to 14-20% while preventing the occurrence of product surface defects surface corrosion resistance It is to provide a plating method that can be improved.

상기 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

Zn+2이온의 농도:56∼60g/ℓ, Fe+2이온의 농도:11∼13g/ℓ, Fe+3이온의 농도:1.0g/ℓ이하, Cl-이온의 농도:220∼240g/ℓ, 유기첨가제:1.5∼2.5이고 pH:1.5∼2.5이고 용액의 온도가 50∼60℃인 도금욕에 스트립을 75∼90mpm의 라인속도로 통과시켜 철함량이 14∼20%의 아연-철 도금층을 형성하는 것을 포함하여 이루어지는 내표면부식성이 우수한 아연-철 합금도금강판의 제조방법에 관한 것을 그 기술적요지로 한다.Concentration of Zn + 2 ions: 56-60 g / l, Fe + 2 ions: 11-13 g / l, Fe + 3 ions: 1.0 g / l or less, Cl ions: 220-240 g / l , Organic additives: 1.5 to 2.5, pH: 1.5 to 2.5, and the solution was passed through a plating bath at a line speed of 75 to 90 mpm at a temperature of 50 to 60 ° C. to form a zinc-iron plated layer of 14 to 20% of iron. The technical gist of the present invention relates to a method for producing a zinc-iron alloy plated steel sheet having excellent surface corrosion resistance including forming.

Description

내표면 부식성이 우수한 합금전기도금강판 제조방법{Method for Manufacturing alloy plating strip having superior surface corrosion resistance}Method for Manufacturing alloy plating strip having superior surface corrosion resistance}

본 발명은 아연-철(Zn-Fe) 합금전기도금강판의 제조방법에 관한 것으로, 보다 상세하게는 제품표면결함의 발생을 막으면서 아연-철 도금층내의 철 함량을 14-20%로 높여서 내표면부식성을 개선할 수 있는 도금방법에 관한 것이다.The present invention relates to a method for manufacturing a zinc-iron (Zn-Fe) alloy electroplated steel sheet, and more particularly, to increase the iron content in the zinc-iron plated layer to 14-20% while preventing the occurrence of product surface defects. It relates to a plating method that can improve the corrosiveness.

아연-철 합금 전기도금강판은 주로 자동차 외판용으로 사용되며, 가장 중요한 특성이 내표면부식성이다. 내표면부식성은 아연-철 합금층내의 철함량이 14-20%로 유지될때에 가장 좋은 것으로 알려져 있다. 아연-철 합금층내의 철함량은 도금조건과 밀접한 관계가 있다.Zinc-iron alloy electroplated steel sheet is mainly used for automobile shell, and the most important property is surface corrosion resistance. Surface corrosion resistance is known to be best when the iron content in the zinc-iron alloy layer is maintained at 14-20%. The iron content in the zinc-iron alloy layer is closely related to the plating conditions.

그런데, 종래의 아연-철 합금도금강판의 제조방법으로는 도금층내에 철의 함량을 13% 정도 밖에 올리지 못하고 있다. 간혹, 도금층내에 철함량을 14-20%정도로 높아지는 경우도 있는데, 이는 전체생산량중의 3%정도에 불과하다. 그 만큼 아연-철 도금층내에 철함량을 14% 이상으로 높일 수 있는 완성도 있는 조업조건의 도출은 어려운 실정이다.By the way, the conventional method of manufacturing a zinc-iron alloy plated steel sheet has only raised the iron content by about 13%. Occasionally, the iron content in the plating layer is increased to 14-20%, which is only about 3% of the total production. As such, it is difficult to derive the perfect working conditions that can increase the iron content in the zinc-iron plated layer to 14% or more.

아연-철 합금도금강판의 조업조건은 용액의 조성, 용액의 pH, 라인속도(강판의 도금욕내 이송속도)등이 있는데, 이들의 엄밀한 제어를 통해 아연-철 도금층내에 철함량을 높일 수 있는 것이다. 실제 라인속도를 높이면 아연-철 도금층내에 철함량이 높아지기도 하는데, 그렇게 되면 도전롤 고무의 부풀음으로 아킹(Arcing)이 발생하여 제품표면에 또 다른 결함이 유발할 수 있다. 즉, 라인속도가 높아지면 용액의 온도가 상승하게 되어 도전롤에서 고무부분이 부풀어 오르게 되고, 이에 따라 스트립과의 이격 공간의 발생으로 아크 스폿(Arc Spot)이 발생하여 제품표면에 치명적인 결함을 생기게 한다. 또한, Fe(OH)3을 주성분으로 하는 슬러지가 발생되어 도금층내에 철함량의 상향에 장애가 된다.The operating conditions of the zinc-iron alloy coated steel sheet include the composition of the solution, the pH of the solution, and the line speed (the feed rate in the plating bath of the steel sheet). The precise control of the zinc-iron alloy plate can increase the iron content in the zinc-iron plated layer. . Increasing the actual line speed also increases the iron content in the zinc-iron plated layer, which may cause arcing due to swelling of the conductive roll rubber, which may cause other defects on the surface of the product. In other words, when the line speed increases, the temperature of the solution rises and the rubber part swells in the conductive roll.As a result, an arc spot occurs due to the separation space from the strip, causing a fatal defect on the surface of the product. do. In addition, sludge containing Fe (OH) 3 as a main component is generated, which impedes an increase in the iron content in the plating layer.

본 발명은 제품표면의 결함발생 없이 아연-철 합금도금층내에 철함량을 안정적으로 확보할 수 있는 도금방법을 제공하는데, 그 목적이 있다.The present invention provides a plating method capable of stably securing the iron content in the zinc-iron alloy plating layer without occurrence of defects on the surface of the product.

도 1은 아연-철 합금도금강판의 Fe%함량과 내표면부식성과의 관계를1 is a graph showing the relationship between Fe% content and surface corrosion resistance of zinc-iron alloy plated steel sheets.

나타내는 그래프Graph

도 2는 라인속도와 전류밀도와의 상관관계를 나타내는 그래프2 is a graph showing the correlation between line speed and current density.

도 3은 라인속도와 아연-철 합금도금강판의 Fe함량과의 관계를3 shows the relationship between the line speed and the Fe content of the zinc-iron alloy plated steel sheet.

나타내는 그래프Graph

상기 목적을 달성하기 위한 본 발명의 아연-철 합금도금강판의 제조방법은, Zn+2이온의 농도:56∼60g/ℓ, Fe+2이온의 농도:11∼13g/ℓ, Fe+3이온의 농도:1.0g/ℓ미만, Cl-이온의 농도:220∼240g/ℓ, 유기첨가제:1.5∼2.5이고 pH:1.5∼2.5이고 용액의 온도가 50∼60℃인 도금욕에 스트립을 75∼90mpm의 라인속도로 통과시켜 철함량이 14∼20%인 아연-철 도금층을 형성하는 것을 포함하여 구성된다.Method for producing a zinc-iron alloy plated steel sheet of the present invention for achieving the above object, the concentration of Zn + 2 ions: 56 ~ 60g / l, Fe + 2 ions: 11 ~ 13g / l, Fe + 3 ions Concentration: Less than 1.0 g / l, Cl - ion concentration: 220-240 g / l, Organic additives: 1.5-2.5, pH: 1.5-2.5 and the solution temperature is 50-60 캜. And a zinc-iron plated layer having an iron content of 14 to 20% by passing at a line speed of 90mpm.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 아연-철 합금도금층내의 철함량을 14-20%로 하기 위한 도금방법을 제공하는데 그 특징이 있다. 아연-철 합금도금층내의 철함량이 14%가 되어야 내표면부식성을 확보할 수 있으며 20%를 넘으면 도금층파우더링이 발생할 우려가 있다.In the present invention, there is provided a plating method for setting the iron content in the zinc-iron alloy plating layer to 14-20%. If the iron content in the zinc-iron alloy plating layer is 14% to secure the surface corrosion resistance, if it exceeds 20% there is a fear that the plating layer powdering occurs.

Zn+2의 농도는 56∼60g/ℓ이 되도록 하는데, 이는 56g/ℓ 미만의 경우 Zn도금층의 형성이 저하되어 도금층 파우더링이 발생할 우려가 있으며, 60g/ℓ을 초과하는 경우에는 도금용액중의 Fe+2보다 먼저 도금에 참여하는 Zn+2이온의 과다로 도금층내 철함량의 확보에 어려움이 있기 때문이다.The concentration of Zn +2 is 56 to 60 g / l, which is less than 56 g / l, which may result in a decrease in the formation of the Zn plated layer, which may cause plating layer powdering. This is because it is difficult to secure the iron content in the plating layer due to the excess of Zn +2 ions participating in the plating before the Fe +2 .

Fe+2이온의 농도는 11∼13g/ℓ로 하는데, 이는 11g/ℓ미만의 경우 용액중 Fe이온의 농도비가 적기 때문에 도금층내 철함량을 14∼20%로 하기 어려우며, 13g/ℓ를 초과하는 경우 도금층내 철함량의 과다로 도금층의 파우더링이 발생하기 때문이다.The concentration of Fe +2 ions is 11-13 g / l, which is less than 11 g / l, and it is difficult to set the iron content in the plating layer to 14-20% because the concentration of Fe ions in the solution is small. This is because powdering of the plating layer occurs due to excessive iron content in the plating layer.

Fe+3이온이 도금용액중에 다량 존재하면 용존산소에 의해 산화되어 아래 화학식(1)과 같이 Fe(OH)3을 주성분으로 하는 슬러지가 생성되어 도금층내 철함량의 확보에 방해가 되므로, Fe+3이온의 농도는 1g/ℓ미만으로 하는 것이 바람직하다.Fe +3 ions are generated sludge is mainly composed of Fe (OH) 3 as shown in the formula (1) below to a large amount present in the plating solution is oxidized by dissolved oxygen, because of the way the securing of an iron content in the coating layer, Fe + It is preferable that the concentration of 3 ions be less than 1 g / L.

Fe+2→ Fe+3+ e-, Fe+3+ 3OH → Fe(OH)3 Fe +2 → Fe +3 + e - , Fe +3 + 3OH → Fe (OH) 3

도금용액중에 Fe+3이온의 농도를 1g/ℓ미만으로 유지하기 위해서는 도금용액에 Fe분말 및 HCl을 투입하여 화학식(2)와 같이 Fe+3를 Fe+2로 환원시키는 방법이 있다.In order to maintain the concentration of Fe +3 ions in the plating solution to less than 1 g / ℓ, Fe powder and HCl are added to the plating solution to reduce Fe +3 to Fe +2 as shown in Formula (2).

Fe분말 → Fe+2↑+ 2e- Powder Fe → Fe +2 ↑ + 2e -

2Fe+3↓ + Fe+2+2e-→ 3Fe+2 2Fe +3 ↓ + Fe +2 + 2e - → 3Fe +2

Cl-이온은 도금용액내에 철함량확보에 도움을 주는 인자로서 Cl-의 첨가로 저전류밀도에서도 철함량의 확보가 용이한데 이를 위해서는 220∼240g/ℓ의 첨가가 바람직하다. 240g/ℓ를 넘는 경우에는 도금층의 파우더링이 발생하기 때문이다.Cl - ion is a factor that can help to secure the iron content in the plating solution is Cl - is preferred to secure the iron content in the low current density by the addition of an easily together addition of 220~240g / ℓ for this. This is because powdering of the plating layer occurs when it exceeds 240 g / L.

유기첨가제(USS-P)는 도금반응시 석출과 전압을 크게 하기 때문에 도금조직을 미세화하는 것은 물론, 도금층내의 철함량 확보에 유리하게 작용하는 유기물로서 그 첨가량은 1.5∼2.5g/ℓ로 하는 것이 좋다. 1.5g/ℓ미만의 경우 철함량의 확보가 곤란하며, 2.5g/ℓ를 초과하는 경우 슬러지 발생이 증가하여 농도불균일, 폐수처리부하가 증대되는 문제가 있다.The organic additive (USS-P) is an organic substance that not only makes the plating structure fine but also works to secure the iron content in the plating layer because the deposition and the voltage increase in the plating reaction, and the addition amount is 1.5 to 2.5 g / l. good. If less than 1.5g / ℓ it is difficult to secure the iron content, if it exceeds 2.5g / ℓ there is a problem that the increase in sludge generation, concentration unevenness, waste water treatment load increases.

또한, 도금용액의 pH는 1.5∼2.5가 바람직한데, 이는 1.5미만의 경우 용액중 슬러지 발생은 감소하나 도금줄무늬 결함발생이 용이하고 양극의 화학적 소모량이 증가하여 용액농도가 불균일해지며, 2.5를 초과하는 경우 슬러지 발생이 증가하여 농도불균일, 폐수처리부하 증대등을 가져온다.In addition, the pH of the plating solution is preferably 1.5 to 2.5, which is less than 1.5, but the sludge is reduced in the solution, but plating streaks are easily generated, and the chemical consumption of the anode is increased, resulting in uneven solution concentration. In this case, sludge generation increases, resulting in uneven concentration and increased wastewater treatment load.

도금용액의 온도는 50∼60℃로 하는 것이 바람직한데, 이는 온도가 50℃미만의 경우 KCl이 석출될 우려가 있고 60℃를 초과할 경우 도전롤의 고무가 부풀어 아킹(Arching)이 발생할 가능성이 있기 때문이다.It is preferable to set the temperature of the plating solution to 50 to 60 ° C. If the temperature is less than 50 ° C, KCl may be precipitated. If the temperature exceeds 60 ° C, the rubber of the conductive roll may swell and arcing may occur. Because there is.

라인속도(Line Speed)는 전류밀도와 직접적인 관계를 가지는 인자로서 도 2에서와 같이, 라인속도가 상승함에 따라 전류밀도가 상승함을 알 수 있다. 또한, 도금층내 철함량을 14∼20%로 유지하기 위해서는 도 3에서와 같이 라인속도를 75ppm이상에서 작업할 필요가 있으나, 90mpm을 초과할 경우 한계전류밀도에서 작업이 이루어져 파우더링의 발생할 우려가 있다.Line speed is a factor that has a direct relationship with the current density, and as shown in FIG. 2, it can be seen that the current density increases as the line speed increases. In addition, in order to maintain the iron content in the plating layer to 14 to 20%, it is necessary to work at a line speed of 75ppm or more, as shown in Figure 3, but when it exceeds 90mpm, work occurs at the limiting current density, there is a fear of powdering have.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같은 도금조건으로 도금을 행한 다음, 도금층중의 Fe 함량 및 도금층 파우더링성을 측정하고, 그 결과를 하기 표 2에 나타내었다.The plating was performed under the plating conditions as shown in Table 1, and then the Fe content and the plating layer powdering property of the plating layer were measured, and the results are shown in Table 2 below.

구분division 도금용액(g/ℓ)Plating solution (g / ℓ) pHpH 유기첨가제Organic additives 라인속도Line speed 용액온도Solution temperature 전류밀도Current density Zn+2 Z n + 2 Fe+2 Fe +2 Fe+3 Fe +3 Cl- Cl - 비교예1Comparative Example 1 5454 99 3.03.0 200200 0.50.5 0.50.5 6060 4545 3636 비교예2Comparative Example 2 5555 1010 3.03.0 210210 1.01.0 1.01.0 6565 4545 39.239.2 발명예1Inventive Example 1 5656 1111 1.01.0 220220 1.51.5 1.51.5 7575 5050 45.245.2 발명예2Inventive Example 2 5757 1212 0.80.8 230230 1.51.5 1.51.5 7575 5252 45.245.2 발명예3Inventive Example 3 5858 1212 0.70.7 230230 2.02.0 2.02.0 8080 5454 48.248.2 발명예4Inventive Example 4 5959 1212 0.70.7 230230 2.02.0 2.02.0 8080 5656 48.248.2 발명예5Inventive Example 5 6060 1313 0.70.7 240240 2.52.5 2.52.5 8585 6060 51.251.2 비교예3Comparative Example 3 6161 1414 0.60.6 250250 3.03.0 3.03.0 9090 6262 54.254.2 비교예4Comparative Example 4 6262 1515 0.60.6 260260 3.03.0 3.03.0 9090 6666 54.254.2 비교예5Comparative Example 5 6363 1616 0.60.6 270270 3.03.0 3.03.0 9090 7070 54.254.2

구분division Fe함량(%)Fe content (%) 도금층 파우더링Plating Powdering 비교예1Comparative Example 1 5.05.0 미발생Not Occurred 비교예2Comparative Example 2 9.99.9 발명예1Inventive Example 1 14.514.5 발명예2Inventive Example 2 15.215.2 발명예3Inventive Example 3 15.815.8 발명예4Inventive Example 4 18.018.0 발명예5Inventive Example 5 20.020.0 비교예3Comparative Example 3 21.321.3 발생Occur 비교예4Comparative Example 4 22.822.8 비교예5Comparative Example 5 25.025.0

상기 표 2에 나타난 바와 같이, 본 발명의 조건을 만족하는 경우에는 내표면부식성 확보에 필요한 도금층내 철의 함량이 14∼20%를 만족하며, 파우더링의 발생도 없었다.As shown in Table 2, when the conditions of the present invention are satisfied, the iron content in the plating layer required to secure the surface corrosion resistance satisfies 14 to 20%, and no powdering occurs.

상술한 바와 같이, 본 발명은 내표면부식성이 우수하고 도금층 파우더링이 발생되지 않는 아연-철 합금도금층을 갖는 도금강판을 제공할 수 있는 효과가 있는 것이다.As described above, the present invention has an effect of providing a plated steel sheet having a zinc-iron alloy plated layer having excellent surface corrosion resistance and no plating layer powdering.

Claims (1)

Zn+2이온의 농도:56∼60g/ℓ, Fe+2이온의 농도:11∼13g/ℓ, Fe+3이온의 농도:1.0g/ℓ미만, Cl-이온의 농도:220∼240g/ℓ, 유기첨가제:1.5∼2.5이고 pH:1.5∼2.5이고 용액의 온도가 50∼60℃인 도금욕에 스트립을 75∼90mpm의 라인속도로 통과시켜 철함량이 14∼20%인 아연-철 도금층을 형성하는 것을 포함하여 이루어지는 내표면부식성이 우수한 아연-철 합금도금강판의 제조방법.Concentration of Zn +2 ions: 56 to 60 g / l, Fe +2 ions: 11 to 13 g / l, Fe +3 ions: less than 1.0 g / l, Cl ions: 220 to 240 g / l The organic additive: 1.5-2.5, pH: 1.5-2.5, the solution temperature is 50-60 DEG C. The strip is passed at a line speed of 75-90 mpm to form a zinc-iron plated layer of 14-20%. A method for producing a zinc-iron alloy plated steel sheet having excellent surface corrosion resistance including forming.
KR10-1999-0061563A 1999-12-24 1999-12-24 Method for Manufacturing alloy plating strip having superior surface corrosion resistance KR100435473B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0061563A KR100435473B1 (en) 1999-12-24 1999-12-24 Method for Manufacturing alloy plating strip having superior surface corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0061563A KR100435473B1 (en) 1999-12-24 1999-12-24 Method for Manufacturing alloy plating strip having superior surface corrosion resistance

Publications (2)

Publication Number Publication Date
KR20010058085A KR20010058085A (en) 2001-07-05
KR100435473B1 true KR100435473B1 (en) 2004-06-10

Family

ID=19629167

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0061563A KR100435473B1 (en) 1999-12-24 1999-12-24 Method for Manufacturing alloy plating strip having superior surface corrosion resistance

Country Status (1)

Country Link
KR (1) KR100435473B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506385B1 (en) * 2000-07-05 2005-08-10 주식회사 포스코 Manufacturing method of electrogalvanized steel sheets with good friction characteristics
KR100910520B1 (en) * 2002-09-12 2009-07-31 주식회사 포스코 Method for manufacturing Zn- Fe Electro plating steel sheet with superior phosphatzing properties and productivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121293A (en) * 1983-12-03 1985-06-28 Kawasaki Steel Corp Manufacture of zn-fe alloy galvanized steel plate consisting essentially of zn-fe alloy
JPS6130696A (en) * 1984-07-20 1986-02-12 Kawasaki Steel Corp Manufacture of zn-fe alloy electroplated steel sheet having superior adhesion to its plating
JPH01255685A (en) * 1988-04-01 1989-10-12 Kobe Steel Ltd Production of zn-fe double-plated steel sheet
KR970043320A (en) * 1995-12-26 1997-07-26 김종진 Process for manufacturing zinc-iron flash steel with excellent workability and corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121293A (en) * 1983-12-03 1985-06-28 Kawasaki Steel Corp Manufacture of zn-fe alloy galvanized steel plate consisting essentially of zn-fe alloy
JPS6130696A (en) * 1984-07-20 1986-02-12 Kawasaki Steel Corp Manufacture of zn-fe alloy electroplated steel sheet having superior adhesion to its plating
JPH01255685A (en) * 1988-04-01 1989-10-12 Kobe Steel Ltd Production of zn-fe double-plated steel sheet
KR970043320A (en) * 1995-12-26 1997-07-26 김종진 Process for manufacturing zinc-iron flash steel with excellent workability and corrosion resistance

Also Published As

Publication number Publication date
KR20010058085A (en) 2001-07-05

Similar Documents

Publication Publication Date Title
US20030205474A1 (en) Electro deposition chemistry
US5196109A (en) Trivalent chromium electrolytes and plating processes employing same
JPS62278290A (en) Galvanizing bath
KR100971555B1 (en) High concentration ni-flash plating composition for pre-treatment of cold-rolled steel sheet in electrolytic galvanized iron plating process
KR0175967B1 (en) Steel plate plated with zinc and method for preparation of the same
US4249999A (en) Electrolytic zinc-nickel alloy plating
US4448648A (en) Trivalent chromium electroplating baths
EP0079768B1 (en) Electrodeposition of chromium and its alloys
KR100435473B1 (en) Method for Manufacturing alloy plating strip having superior surface corrosion resistance
JP2007297646A (en) Method for manufacturing electrogalvanized steel sheet
US4936965A (en) Method for continuously electro-tinplating metallic material
EP0079770A1 (en) Electrodeposition of chromium and its alloys
AT510422A4 (en) METHOD FOR THE DEPOSITION OF HARTCHROM FROM CR (VI) - FREE ELECTROLYTES
KR100321374B1 (en) METHOD FOR MANUFACTURING Zn/Fe ALLOY ELECTROPLATED STEEL SHEET EXCELLENT IN PLATING ADHESION, SURFACE ROUGHNESS AND APPEARANCE
KR100506394B1 (en) Zn-Ni alloy electrolyte for good surface roughness, whiteness and suppression of edge burning
KR100419659B1 (en) A plating solution for blackening zinc-nickel alloy coated steel sheet and electroplating method for zinc-nickel steel sheet
JP2626151B2 (en) Method for producing electrogalvanized steel sheet with excellent brightness and gloss
KR940011254B1 (en) Zn-ni alloy solution for electroplating and method for producing an electroplating steel sheet of zn-ni alloy using the same
JPH10237685A (en) Method for preventing melting of steel strip in tinning bath
KR100322034B1 (en) Plating solution suitable for the manufacture of electro galvanized steel sheet with excellent surface appearance
KR20130070235A (en) Fe-based eletrolyte for galvanized steel sheets in sulfuric bath
US6022467A (en) Electrolytic tin plating process with reduced sludge production
KR100940669B1 (en) Zn-Ni Alloy Electrodeposition Electrolyte, Preparing Method of Zn-Ni Alloy Electrodeposited Steel Sheet and Steel Sheet Prepared Thereby Having Good Surface Appearance, Adhesion and Anti-Chipping
KR100436905B1 (en) Plating solution for the electroplating
KR100368221B1 (en) Electrolyte of zn-ni alloy electrodeposit in soluable anode and chroides bath and the method of manufacturing zn-ni alloy electric plating steel by using it

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080530

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee