JPH0575840B2 - - Google Patents

Info

Publication number
JPH0575840B2
JPH0575840B2 JP1142980A JP14298089A JPH0575840B2 JP H0575840 B2 JPH0575840 B2 JP H0575840B2 JP 1142980 A JP1142980 A JP 1142980A JP 14298089 A JP14298089 A JP 14298089A JP H0575840 B2 JPH0575840 B2 JP H0575840B2
Authority
JP
Japan
Prior art keywords
electrode
metal
corrosion
plate
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1142980A
Other languages
Japanese (ja)
Other versions
JPH0310099A (en
Inventor
Yukie Matsumoto
Takanobu Hayashi
Yoshiaki Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP14298089A priority Critical patent/JPH0310099A/en
Priority to EP90830250A priority patent/EP0407355A1/en
Publication of JPH0310099A publication Critical patent/JPH0310099A/en
Publication of JPH0575840B2 publication Critical patent/JPH0575840B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電気メツキ用電極に関するものであ
り、特に高い電流密度で使用される連続鋼板メツ
キ用の陽極として優れた耐久性を有する電極及び
その製造方法に関する。 〔従来の技術とその問題点〕 近年、自動車や家電製品等、種々の分野で表面
処理した薄板鋼板の需要が高まり、電気メツキに
よる帯状鋼板の連続表面被覆技術が重要となつて
いる。 このような電気メツキにおいて、従来陽極とし
て溶性電極を用いる方法から不溶性電極を用いる
方法に発展してきている。(例えば特公昭53−
18167号、特開昭56−47597号公報参照。) 不溶性電極を用いることによれば、 (1) 各種合金メツキが可能 (2) 陽極電流密度を上げ、ライン速度を上昇させ
ることによる生産性の向上 (3) 電流分布の均一化による品質の向上 (4) 陽極交換頻度の減少 等の効果が期待でき、これまで鉛電極、鉛合金電
極、白金メツキ電極等の使用が知られている。 しかし、例えば亜鉛や亜鉛合金電気メツキの際
に用いる鉛又は鉛合金電極は、不溶性が不完全で
鉛が徐々に溶出し、メツキ製品の品質を悪化さ
せ、又、多量のスラツジが生成するため、溶出し
た鉛イオンを除去する多量の吸着剤を要する等の
問題がある。 又、白金メツキ電極は高い電流密度で使用する
と容易に被覆白金が剥離し、短時間で使用不能と
なる欠点がある。 〔発明の目的〕 本発明は、従来のメツキ用不溶性電極の問題を
解消した。高電流密度での使用においても十分な
耐久性を有する電気メツキ用不溶性電極及びその
製造方法を提供することを目的とする。 〔問題点を解決するための手段〕 本発明は、電気メツキ用不溶性電極において、
耐食性金属板上に耐食性金属多孔板状体を接合し
た電極基体の表面に、白金族金属又はその酸化物
を含む電極活性物質を被覆したことを特徴とする
ものである。 以下、本発明を詳細に説明する。 本発明の電極基体は、耐食性金属板上に耐食性
金属多孔板状体を接合したものである。該耐食性
金属の材料は、電極基体として使用できるもので
あれば特に限定されないが、耐食性に優れ、機械
的強度が十分なTi、Ta、Nb、Zr又はこれらの
合金が好適である。 該金属多孔板状体の材質は、通常該金属板の材
質と同じもので良いが、異なるものでも良い。該
金属板は、電極の機械的強度を維持し、併せて十
分な通電機能を果たすため十分な厚みを有し、通
常は無孔の平板であるが曲板でも良い。該金属板
に接合する金属多孔板状体は、酸素等の大量の陽
極発生ガス気泡の抜けを良くし、気泡の滞留を防
ぐ機能を有し、又電極表面積を大幅に拡大するの
で電解電圧を低下させる効果がもたらされる。 そのため該金属多孔板状体は、開口率が5〜90
%の範囲のエキスパンドメタル、パンチングメタ
ル、金網、スダレ状ワイヤ等の多孔体が好適であ
るが、金属繊維積層体、金属繊維繊布、ワイヤロ
ール、金属フエルト、金属焼結多孔体等を用いる
ことも可能である。 又、該多孔板状体は、強度や通電量を考慮して
これらの多孔体を複数層積層しても良い。該金属
板と多孔板状体の接合は導電的に行う必要があ
り、ボルト締め、溶接法等が適用出来るが、接合
点で大電流が流れるので、接合による電気抵抗の
小さい溶接法が好ましく、溶接点を十分な数量と
して電解電圧の上昇や発熱を低下させることが出
来る。 この様にして、金属板上に金属多孔板状体を接
合して電極基体を形成し、次に電極活性物質を被
覆するが、該基体の表面を予め窒化、硼化又は炭
化処理して、より耐食性の向上等を図ることが出
来る。又、電極基体表面に中間層としてTi、
Nb、Sn、Sb、Taの内の少なくとも1種の金属
酸化物を含む導電性酸化物を設けて電極の不働態
化を防止し、耐久性等を改善することが出来る。 該中間層の形成は、次記する電極活性物質の被
覆と同様に種々の手段が適用出来るが、中間層金
属成分の塩の溶液を基体上に塗布し、加熱焼成し
て金属酸化物を形成する熱分解法が好適である。 電極活性物質の被覆は、白金族金属又はその酸
化物を含むものが電気メツキ用不溶性電極用とし
て電気化学的特性及び化学的耐久性等に優れたも
のとして用いられる。具体的には、Ru、Rh、
Pd、Ir、Pt等の白金族金属の1種又は2種以上
の金属、合金、又はこれらの金属酸化物であり、
又は更にこれらにTi、Zr、Nb、Ta、Sn等の卑
金属元素の1種以上の金属又は金属酸化物を含む
複合物質としても良い。その場合、白金族金属成
分の含有量は金属重量基準で10%以上とすること
が電極活性を良くする上で望ましい。該被覆の形
成は、特公昭48−3954号公報に詳細に記載されて
いる如き、従来知られている種々の電極被覆形成
法が適用でき、特に限定されるものではないが、
上記した電極活性物質成分金属又はその塩をこれ
らの可溶な溶媒に溶解し、塗布溶液とし、これを
前記電極基体に塗布、浸漬等により付着させ、酸
化性、中性、還元性等の雰囲気中で加熱焼成して
被覆層を形成する熱分解法が好適である。又、被
覆層は必要に応じて上記の被覆形成手段を繰り返
し行うことによつて所望の厚みとすることが出来
る。 このようにして得られた本発明の電極は、鋼板
等の連続メツキ用として使用した場合、高電流密
度でも従来の不溶性電極より耐食性や電極活性に
優れ、はるかに耐久性が良く、種々の腐食性電解
液に使用出来るので、前記した不溶性電極使用に
よる種々の効果を十分達成出来るものである。 又、本発明の電極は金属板上に金属多孔状体を
接合した複合構造をとるため、平滑板状電極に比
べて大電流を流すことが可能であり、且つ電極上
に発生する気泡の抜けが良好で滞留してもその厚
みが小さいので気泡抵抗による電圧上昇が防が
れ、メツキ鋼板のラインスピードの上昇及び省電
力等による生産性や経済性の飛躍的向上がもたら
される。 以上、本発明の電極を主に鋼板メツキ用につい
て説明したが、他の有機又は無機電解、金属表面
処理、金属採取等の用途にも本発明の電極を使用
することができる。 〔実施例〕 以下、本発明を実施例により具体的に説明する
が、本発明はこれらに限定されるものではない。 実施例 1 縦100mm、横100mm、厚さ5mmの市販純チタン板
3枚に多孔板としてそれぞれ厚さ0.1mm、0.3mm、
0.5mmで開口率50%の純チタン製のエキスパンド
メタルを溶接にて接合した3種の基体を作製し
た。該基体をアセトンにより脱脂後、純シユウ酸
溶液で洗浄し、更に純水にて洗浄し、乾燥して電
極基体とした。比較例として純チタン製のエキス
パンドメタルを接合しない上記市販純チタン板を
用い、同様にアセトンによる脱脂、熱シユウ酸及
び純水による洗浄を行い乾燥後、電極基体とし
た。 上記電極基体に塩化イリジウムと塩化タンタル
をモル比で6:4の割合でブタノールに溶解した
溶液を刷毛にて塗布し、乾燥後、空気中で550℃
にて焼成した。この操作を繰り返し、該被覆中の
イリジウム量を0.3mg/cm2とした。得られたこれ
らの電極を陽極として、軟鋼板を陰極として下記
に示した亜鉛メツキ模擬浴にて静止状態にて電解
し、その際の電解電圧(槽電圧)を測定した。 Na2SO4 100g/ (NH42SO4 100g/ PH 1.2 温 度 60℃ 電流密度 200A/dm2 更にこれらの電極を陽極とし、白金板を陰極と
して、1モル硫酸水溶液中で2A/cm2の電流密度
にて電解を行い、電極寿命試験を行つた。寿命は
電解槽電圧が10Vに達するまでの時間とした。 得られた電解電圧及び寿命の試験結果をまとめ
て表−1に示す。
[Industrial Application Field] The present invention relates to an electrode for electroplating, and particularly to an electrode having excellent durability as an anode for plating continuous steel sheets used at high current density, and a method for manufacturing the same. [Prior art and its problems] In recent years, the demand for surface-treated thin steel sheets has increased in various fields such as automobiles and home appliances, and the continuous surface coating technology of strip steel sheets by electroplating has become important. In such electroplating, the conventional method of using a soluble electrode as an anode has evolved into a method of using an insoluble electrode. (For example, Tokuko Sho 53-
See No. 18167 and Japanese Unexamined Patent Publication No. 56-47597. ) By using an insoluble electrode, (1) various alloy plating is possible (2) productivity is improved by increasing the anode current density and line speed (3) quality is improved by making the current distribution more uniform (4) Effects such as a reduction in the frequency of anode replacement can be expected, and the use of lead electrodes, lead alloy electrodes, platinum-plated electrodes, etc. has been known so far. However, for example, lead or lead alloy electrodes used in zinc or zinc alloy electroplating are incompletely insoluble, leading to gradual elution of lead, deteriorating the quality of the plating product, and producing a large amount of sludge. There are problems such as the need for a large amount of adsorbent to remove the eluted lead ions. Further, when a platinum-plated electrode is used at a high current density, the platinum coating easily peels off, and the electrode becomes unusable in a short period of time. [Object of the Invention] The present invention solves the problems of conventional insoluble electrodes for plating. An object of the present invention is to provide an insoluble electrode for electroplating that has sufficient durability even when used at high current density, and a method for manufacturing the same. [Means for solving the problems] The present invention provides an insoluble electrode for electroplating,
It is characterized in that the surface of the electrode base, which is made by bonding a corrosion-resistant metal porous plate to a corrosion-resistant metal plate, is coated with an electrode active material containing a platinum group metal or its oxide. The present invention will be explained in detail below. The electrode substrate of the present invention is obtained by bonding a corrosion-resistant metal porous plate-like body onto a corrosion-resistant metal plate. The material of the corrosion-resistant metal is not particularly limited as long as it can be used as an electrode substrate, but Ti, Ta, Nb, Zr, or an alloy thereof, which has excellent corrosion resistance and sufficient mechanical strength, is suitable. The porous metal plate may be made of the same material as the metal plate, but may be different. The metal plate has sufficient thickness to maintain the mechanical strength of the electrode and also perform a sufficient current carrying function, and is usually a non-porous flat plate, but may also be a curved plate. The porous metal plate bonded to the metal plate has the function of improving the escape of a large amount of gas bubbles generated by the anode, such as oxygen, and preventing the accumulation of bubbles.Also, since the electrode surface area is greatly expanded, the electrolytic voltage can be reduced. This results in a lowering effect. Therefore, the metal porous plate has an aperture ratio of 5 to 90.
% range of expanded metal, punched metal, wire mesh, sagging wire, etc., but metal fiber laminates, metal fiber cloth, wire rolls, metal felt, metal sintered porous bodies, etc. may also be used. It is possible. Further, the porous plate-like body may be formed by laminating a plurality of layers of these porous bodies in consideration of strength and amount of current flow. The metal plate and the porous plate must be joined electrically conductively, and bolting, welding, etc. can be applied, but since a large current flows at the joint, a welding method with low electrical resistance is preferable. By providing a sufficient number of welding points, it is possible to reduce the rise in electrolytic voltage and heat generation. In this way, an electrode base is formed by bonding the porous metal plate onto the metal plate, and then an electrode active material is coated, but the surface of the base is previously nitrided, borated or carbonized, It is possible to further improve corrosion resistance. In addition, Ti is added as an intermediate layer on the surface of the electrode base.
By providing a conductive oxide containing at least one metal oxide among Nb, Sn, Sb, and Ta, it is possible to prevent the electrode from becoming passivated and improve durability. The intermediate layer can be formed by various means similar to the coating with the electrode active material described below, but a solution of a salt of the intermediate layer metal component is applied onto the substrate and heated and baked to form a metal oxide. A thermal decomposition method is preferred. As the electrode active material coating, one containing a platinum group metal or its oxide is used as an insoluble electrode for electroplating because it has excellent electrochemical properties and chemical durability. Specifically, Ru, Rh,
One or more platinum group metals such as Pd, Ir, Pt, alloys, or oxides of these metals,
Alternatively, it may be a composite material containing one or more metals or metal oxides of base metal elements such as Ti, Zr, Nb, Ta, and Sn. In that case, the content of the platinum group metal component is desirably 10% or more based on the weight of the metal in order to improve electrode activity. Formation of the coating can be performed using various conventionally known methods for forming electrode coatings, such as those described in detail in Japanese Patent Publication No. 48-3954, and is not particularly limited.
The above-mentioned electrode active material component metal or its salt is dissolved in these soluble solvents to form a coating solution, and this is applied to the electrode substrate by coating, dipping, etc., and then the electrode active material component metal or its salt is dissolved in an oxidizing, neutral, reducing, etc. atmosphere. A pyrolysis method in which a coating layer is formed by heating and baking in a medium is suitable. Further, the coating layer can be made to have a desired thickness by repeating the above-mentioned coating forming means as necessary. When the electrode of the present invention thus obtained is used for continuous plating of steel plates, etc., it has excellent corrosion resistance and electrode activity than conventional insoluble electrodes even at high current densities, has much better durability, and is resistant to various types of corrosion. Since it can be used in a neutral electrolyte, the various effects described above by using an insoluble electrode can be fully achieved. In addition, since the electrode of the present invention has a composite structure in which a metal porous body is bonded to a metal plate, it is possible to flow a larger current than a smooth plate-shaped electrode, and it is possible to eliminate air bubbles generated on the electrode. Even if it stays in a good condition, its thickness is small, so voltage increases due to bubble resistance are prevented, and productivity and economic efficiency are dramatically improved by increasing the line speed of galvanized steel sheets and saving power. Although the electrode of the present invention has been described above mainly for plating steel sheets, the electrode of the present invention can also be used for other applications such as organic or inorganic electrolysis, metal surface treatment, metal extraction, etc. [Examples] Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. Example 1 Three commercially available pure titanium plates measuring 100 mm in length, 100 mm in width, and 5 mm in thickness were made with perforated plates of 0.1 mm, 0.3 mm in thickness, respectively.
Three types of substrates were fabricated by welding expanded metal made of pure titanium with a diameter of 0.5 mm and an aperture ratio of 50%. The substrate was degreased with acetone, washed with a pure oxalic acid solution, further washed with pure water, and dried to obtain an electrode substrate. As a comparative example, the above-mentioned commercially available pure titanium plate to which no expanded metal made of pure titanium was bonded was used, and it was similarly degreased with acetone, washed with hot oxalic acid and pure water, dried, and then used as an electrode base. A solution of iridium chloride and tantalum chloride dissolved in butanol at a molar ratio of 6:4 was applied to the above electrode substrate with a brush, and after drying, the mixture was heated to 550°C in air.
It was fired at. This operation was repeated until the amount of iridium in the coating was 0.3 mg/cm 2 . These obtained electrodes were used as an anode and a mild steel plate was used as a cathode to conduct electrolysis in a static state in a galvanizing simulated bath shown below, and the electrolytic voltage (tank voltage) at that time was measured. Na 2 SO 4 100g/ (NH 4 ) 2 SO 4 100g/ PH 1.2 Temperature 60℃ Current density 200A/dm 2Furthermore , using these electrodes as an anode and a platinum plate as a cathode, 2A/cm in a 1M sulfuric acid aqueous solution. Electrolysis was performed at a current density of 2 , and an electrode life test was performed. The life span was defined as the time required for the electrolytic cell voltage to reach 10V. The results of the electrolytic voltage and life tests obtained are summarized in Table 1.

【表】 表−1の結果から、本発明のチタン板にチタン
エキスパンドメタル多孔体を接合した電極基体を
用いた電極は、明らかに電解電圧を低下させ、且
つその寿命が大幅に延びていることが分かる。 実施例 2 厚さ0.5mm、孔径2mmφ、開口率50%のチタン
製パンチングメタルをチタン板、Ti−3Ta合金
板に接合したもの及びパンチングメタルを接合し
たTi板の表面を3μmの厚さに窒化処理を行つた
もの、及び各種酸化物中間層被覆を施したものを
電極基体とし、これに各種電極活性物質被覆を施
して電極を作製し、実施例1と同様の電極寿命試
験を実施した。又、比較例としてパンチングメタ
ルを接合しなかつた以外は上記と同じ電極を作製
し、同様に寿命試験を行つた。 尚、酸化物中間被覆層は、厚さ3μm、電極活
性物質被覆中の白金族金属の量は0.3mg/cm2とし
た。 得られた結果を併せて表−2に示す。
[Table] From the results in Table 1, it is clear that the electrode using the electrode base of the present invention in which a titanium expanded metal porous body is bonded to a titanium plate clearly lowers the electrolytic voltage and significantly extends its life. I understand. Example 2 A titanium punching metal with a thickness of 0.5 mm, a hole diameter of 2 mmφ, and an aperture ratio of 50% was bonded to a titanium plate, a Ti-3Ta alloy plate, and the surface of the Ti plate to which the punching metal was bonded was nitrided to a thickness of 3 μm. The treated substrates and those coated with various oxide intermediate layers were used as electrode substrates, and electrodes were prepared by coating them with various electrode active materials, and the same electrode life test as in Example 1 was conducted. Further, as a comparative example, the same electrode as above was prepared except that no punching metal was bonded, and the life test was conducted in the same manner. The oxide intermediate coating layer had a thickness of 3 μm, and the amount of platinum group metal in the electrode active material coating was 0.3 mg/cm 2 . The obtained results are also shown in Table-2.

〔発明の効果〕〔Effect of the invention〕

本発明は、耐食性金沿よりなる複合した板状電
極基体に、白金族金属又はその酸化物を含む電極
活性物質を被覆するので、耐食性、耐久性に優れ
た、低電解電圧をもたらす優れた電気メツキ用等
の不溶性電極が得られる。又、金属多孔板状体を
基体金属板に接合した電極構造を有するので高電
流密度で操業出来、発生ガスによる電圧上昇を防
ぐことができ、生産性及び省電力を大幅に向上さ
せることが可能である。 更に、電極基体表面を窒化、硼化又は炭化処理
し、或いは該表面に導電性酸化物よりなる中間層
を設けることにより電極の耐久性をより向上させ
ることが出来る。
In the present invention, a composite plate-shaped electrode substrate made of a corrosion-resistant metal coating is coated with an electrode active material containing a platinum group metal or its oxide. An insoluble electrode for plating etc. can be obtained. In addition, since it has an electrode structure in which a porous metal plate is bonded to a base metal plate, it can operate at high current density and prevent voltage increases due to generated gas, making it possible to significantly improve productivity and power saving. It is. Furthermore, the durability of the electrode can be further improved by subjecting the surface of the electrode substrate to nitriding, boriding, or carbonizing treatment, or by providing an intermediate layer made of a conductive oxide on the surface.

Claims (1)

【特許請求の範囲】 1 耐食性金属板上に耐食性金属多孔板状体を接
合した電極基体と、該基体の表面に被覆した白金
族金属又はその酸化物を含む電極活性物質とから
なることを特徴とする電気メツキ用不溶性電極。 2 耐食性金属がTi、Ta、Nb、Zr又はこれら
の合金である請求項1に記載の電極。 3 電極基体が表面を窒化、硼化又は炭化処理さ
れたものである請求項1に記載の電極。 4 電極基体と電極活性物質との間に、Ti、
Nb、Sn、Sb、Taの内の少なくとも1種の金属
の酸化物を含む導電性中間層を有する請求項1に
記載の電極。 5 耐食性金属多孔板状体の開口率が5〜90%で
ある請求項1に記載の電極。 6 耐食性金属板上に、耐食性金属多孔板状体を
導電的に接合して電極基体とし、該基体の表面
に、白金族金属又はその酸化物を含む電極活性物
質を被覆することを特徴とする電気メツキ用不溶
性電極の製造方法。 7 電極基体の表面に金属の酸化物を含む導電性
中間層を形成した後、電極活性物質を被覆する請
求項6に記載の電極の製造方法。
[Scope of Claims] 1. An electrode base comprising a corrosion-resistant metal porous plate bonded to a corrosion-resistant metal plate, and an electrode active material containing a platinum group metal or its oxide coated on the surface of the base. Insoluble electrode for electroplating. 2. The electrode according to claim 1, wherein the corrosion-resistant metal is Ti, Ta, Nb, Zr, or an alloy thereof. 3. The electrode according to claim 1, wherein the electrode substrate has a surface treated with nitridation, boronization, or carbonization. 4 Between the electrode base and the electrode active material, Ti,
The electrode according to claim 1, further comprising a conductive intermediate layer containing an oxide of at least one metal selected from Nb, Sn, Sb, and Ta. 5. The electrode according to claim 1, wherein the corrosion-resistant metal porous plate has an aperture ratio of 5 to 90%. 6. A corrosion-resistant metal porous plate is conductively bonded to a corrosion-resistant metal plate to serve as an electrode base, and the surface of the base is coated with an electrode active material containing a platinum group metal or its oxide. A method for manufacturing an insoluble electrode for electroplating. 7. The method for manufacturing an electrode according to claim 6, wherein the electrode active material is coated after forming a conductive intermediate layer containing a metal oxide on the surface of the electrode base.
JP14298089A 1989-06-07 1989-06-07 Insoluble electrode for electroplating and production thereof Granted JPH0310099A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14298089A JPH0310099A (en) 1989-06-07 1989-06-07 Insoluble electrode for electroplating and production thereof
EP90830250A EP0407355A1 (en) 1989-06-07 1990-06-01 Insoluble electrode for electroplating and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14298089A JPH0310099A (en) 1989-06-07 1989-06-07 Insoluble electrode for electroplating and production thereof

Publications (2)

Publication Number Publication Date
JPH0310099A JPH0310099A (en) 1991-01-17
JPH0575840B2 true JPH0575840B2 (en) 1993-10-21

Family

ID=15328132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14298089A Granted JPH0310099A (en) 1989-06-07 1989-06-07 Insoluble electrode for electroplating and production thereof

Country Status (2)

Country Link
EP (1) EP0407355A1 (en)
JP (1) JPH0310099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073163A1 (en) 2005-01-07 2006-07-13 Daiso Co., Ltd Insoluble electrode

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510807Y2 (en) * 1989-09-26 1996-09-18 ダイソー株式会社 Anode for electroplating
JP3124847B2 (en) * 1992-11-06 2001-01-15 ペルメレック電極株式会社 Manufacturing method of metal foil by electrolysis
JP3124848B2 (en) * 1992-11-11 2001-01-15 ペルメレック電極株式会社 Manufacturing method of metal foil by electrolysis
JPH07316861A (en) * 1994-05-24 1995-12-05 Permelec Electrode Ltd Electrode structure
JPH0827598A (en) * 1994-07-14 1996-01-30 Permelec Electrode Ltd Electrode structural body and its production
EP1029954A4 (en) 1998-09-08 2006-07-12 Ebara Corp Substrate plating device
US6793794B2 (en) 2000-05-05 2004-09-21 Ebara Corporation Substrate plating apparatus and method
FR2909390B1 (en) * 2006-11-30 2009-12-11 Electro Rech ANODE FOR AN ELECTRODEPOSITION DEVICE FOR METAL ANTICORROSION OR COSMETIC METAL COATINGS ON A METAL PIECE
WO2010128641A1 (en) * 2009-05-07 2010-11-11 ダイソー株式会社 Anode for oxygen generation
CN102320683B (en) * 2011-06-03 2013-03-06 大连海事大学 Titanium-based tin-antimony-platinum oxide electrode material and preparation method thereof
KR101565844B1 (en) * 2014-05-07 2015-11-05 한국생산기술연구원 Insoluble anode and method of preparing insoluble anode
KR101577313B1 (en) * 2015-05-11 2015-12-15 한국생산기술연구원 insoluble anode having porous film layer containing electrode active material nanosphere and a method of manufacturing the insoluble anode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428141A (en) * 1977-08-04 1979-03-02 Ricoh Co Ltd Liquid developer for static latent image
JPS6021232A (en) * 1983-07-18 1985-02-02 Kaito Kagaku Kogyo Kk Manufacturing apparatus of plastic film
JPS62274087A (en) * 1986-05-22 1987-11-28 Permelec Electrode Ltd Durable electrode for electrolysis and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1213567B (en) * 1986-12-19 1989-12-20 Permelec Spa PERMANENT ANODE FOR HIGH DENSITY CURRENT GALVANIC PROCEDURES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428141A (en) * 1977-08-04 1979-03-02 Ricoh Co Ltd Liquid developer for static latent image
JPS6021232A (en) * 1983-07-18 1985-02-02 Kaito Kagaku Kogyo Kk Manufacturing apparatus of plastic film
JPS62274087A (en) * 1986-05-22 1987-11-28 Permelec Electrode Ltd Durable electrode for electrolysis and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073163A1 (en) 2005-01-07 2006-07-13 Daiso Co., Ltd Insoluble electrode
JP2006188742A (en) * 2005-01-07 2006-07-20 Daiso Co Ltd Insoluble anode
JP4585867B2 (en) * 2005-01-07 2010-11-24 ダイソー株式会社 Insoluble anode

Also Published As

Publication number Publication date
EP0407355A1 (en) 1991-01-09
JPH0310099A (en) 1991-01-17

Similar Documents

Publication Publication Date Title
FI69123C (en) ELEKTROD OCH ELEKTROLYTISK CELL
US4941953A (en) Durable electrodes having a plated tinor tin oxide intermediate layer for electrolysis and process for producing the same
US4415411A (en) Anode coated with β-lead dioxide and method of producing same
EP0046727A1 (en) Improved anode with lead base and method of making same
JPH036232B2 (en)
KR890003861B1 (en) Electrode for electrolysis and process for production thereof
JPH0575840B2 (en)
JPH0357198B2 (en)
CA1246008A (en) Electrode with nickel substrate and coating of nickel and platinum group metal compounds
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
GB2152534A (en) Electrolytic treatment of a metal by liquid power feeding
US5665218A (en) Method of producing an oxygen generating electrode
JPS6017086A (en) Cathode for aqueous solution electrolysis and manufacture
JP2885913B2 (en) Anode for chromium plating and method for producing the same
JPH0499294A (en) Oxygen generating anode and its production
US5004626A (en) Anodes and method of making
JP3621148B2 (en) Electrode for electrolysis and method for producing the same
JPH02179891A (en) Anode for generate oxygen and production thereof
JPH0355558B2 (en)
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
KR100770736B1 (en) Ceramic Electrode for Water Treatment And Making Method of The Same and Electrode Apparatus using The Same
US4108745A (en) Selenium-containing coating for valve metal electrodes and use
JPH02294494A (en) Anode for generating oxygen
JPH0987896A (en) Production of electrolytic electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees