JPH0827598A - Electrode structural body and its production - Google Patents

Electrode structural body and its production

Info

Publication number
JPH0827598A
JPH0827598A JP16194794A JP16194794A JPH0827598A JP H0827598 A JPH0827598 A JP H0827598A JP 16194794 A JP16194794 A JP 16194794A JP 16194794 A JP16194794 A JP 16194794A JP H0827598 A JPH0827598 A JP H0827598A
Authority
JP
Japan
Prior art keywords
electrode
metal
titanium
substrate
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16194794A
Other languages
Japanese (ja)
Inventor
Shigeharu Akatsuka
重治 赤塚
Akihiro Minazu
明宏 水津
Kenichi Ozaki
賢一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP16194794A priority Critical patent/JPH0827598A/en
Priority to GB9514006A priority patent/GB2291070A/en
Priority to FR9508514A priority patent/FR2722512B1/en
Publication of JPH0827598A publication Critical patent/JPH0827598A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To obtain an electrode structural body which is formed by freely attachably and detachably mounting an electrode at an electrode base body and has a low ohmic loss. CONSTITUTION:This electrode structural body is formed by mounting the electrode 2 coated with an electrode material 3 on the front surface of the conductive electrode base body 1. The electrode base body and the electrode are fixed by melting and joining the metals packed into plural holes 4 formed at the electrode placed on the electrode base body. Mounting and dismounting of the electrode on and from the electrode base body are easy and exchanging of the electrode in the state of mounting the electrode structural body at an electrolytic cell is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解用電極に関し、特
に高電流密度下での酸性水溶液の電解に使用する電極基
体に電極物質を被覆した電極を取り付けた不溶性金属電
極からなる電極構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolysis, and more particularly to an electrode structure comprising an insoluble metal electrode in which an electrode substrate coated with an electrode substance is attached to an electrode substrate used for electrolysis of an acidic aqueous solution under high current density. It is about.

【0002】[0002]

【従来の技術】金属の電解採取や電気めっき等の酸性水
溶液の電気分解では、陽極としては鉛電極が主として用
いられていたが、鉛電極に代わり白金族の金属を含む電
極物質溶液を、チタン等の耐食性の弁金属表面に塗付し
400℃〜600℃の酸化雰囲気中で熱分解して酸化物
被覆を形成した不溶性金属電極が用いられている。これ
らの不溶性金属電極は、その耐久性と寸法安定性、形状
加工の容易さから、最近では高速亜鉛めっき用や銅箔製
造用等の大型高電流密度での電解用電極として利用が拡
大しつつある。たとえば、高速亜鉛めっきにおいては、
1個の陽極の面積が約2m2 の大きな電極を使用してい
るものもあり、最大電流密度が20kA/m2 の場合に
は、1個の陽極に約40kAの電流が流れることにな
る。また、電解銅箔用の陽極でも陽極面積を大きくし、
高電流密度化が計られている。しかも、これらの電気め
っきでは、電流分布の不均一は製品の品質に大きな影響
を及ぼすので、電流分布はとくに均一にすることが求め
られている。そこで、大電流を通電するために、導電性
の良好なチタン等の金属を電極基材として使用した場合
でも、電極基材の厚さは、10mm以上を確保すること
が必要であり、40mm以上の厚さのものが用いられる
場合もある。
2. Description of the Related Art A lead electrode has been mainly used as an anode in electrolysis of an acidic aqueous solution such as electrowinning of metal or electroplating, but an electrode substance solution containing a platinum group metal is used instead of the lead electrode as a titanium electrode. There is used an insoluble metal electrode which is applied to the surface of a corrosion-resistant valve metal such as the above and thermally decomposed in an oxidizing atmosphere at 400 ° C. to 600 ° C. to form an oxide coating. Due to their durability, dimensional stability, and ease of shape processing, these insoluble metal electrodes have recently been used as electrodes for large-scale, high-current-density electrolysis for high-speed galvanizing, copper foil production, etc. is there. For example, in high speed galvanizing,
In some cases, a large electrode having an area of about 2 m 2 is used for one anode, and when the maximum current density is 20 kA / m 2 , a current of about 40 kA flows through one anode. Also, in the anode for electrolytic copper foil, increase the anode area,
High current density is being measured. Moreover, in these electroplatings, the non-uniform current distribution has a great influence on the quality of the product, so that the current distribution is required to be particularly uniform. Therefore, even when a metal having good conductivity such as titanium is used as the electrode base material to pass a large current, it is necessary to secure a thickness of the electrode base material of 10 mm or more, and 40 mm or more. In some cases, the one with the thickness of is used.

【0003】一方、電極基材への電極物質の被覆は、一
般には、塗布した電極物質含有液を熱分解することによ
って行われている。そして、大電流を通電するために厚
みの大きな電極基材の場合には、450℃〜600℃の
熱分解温度への昇温に30分〜1時間を要し、熱分解を
10〜15分間行った後に、保温と放冷をあわせて2時
間以上の時間を要している。そして、電極物質の被覆の
厚みを所望の厚みとするために、以上の操作を10〜数
十回繰り返し行っており、電極物質の被覆に1〜2週間
あるいはそれ以上を要することがあった。
On the other hand, the coating of the electrode base material with the electrode substance is generally carried out by thermally decomposing the applied electrode substance-containing liquid. Then, in the case of an electrode base material having a large thickness for passing a large current, it takes 30 minutes to 1 hour to raise the pyrolysis temperature to 450 ° C. to 600 ° C., and the thermal decomposition is performed for 10 to 15 minutes. After the operation, it takes more than 2 hours to keep warm and cool. The above operation is repeated 10 to several tens of times in order to obtain a desired thickness of the coating of the electrode material, and the coating of the electrode material may take 1 to 2 weeks or more.

【0004】こうした問題を解決するために、電極の給
電と電極を保持するための電極基体部と電極物質の被覆
層を形成した電極部を分離して作製し、電極をねじによ
って電極基体に取付けたり、スタッドボルトを電極に取
り付けた電極構造体が提案されている。しかし、この方
法でも電極にねじを形成したり、その他の結合手段を設
けなければならないので、電極の厚さは3〜10mm程
度の厚さを必要とする。このような電極のみを加熱する
方法は、従来のように電極構造体の全体の加熱処理を行
う方法に比してはるかに容易になるが、加熱、冷却時間
を短縮する点は不十分であった。また、電極板には、電
極基体に取り付けるための各種の取り付け手段が設けら
れているので取り付け手段の周囲の熱履歴が他の部分と
わずかながら異なるため、電極の特性が変わってしまう
という問題があった。さらに、従来の電極構造体では、
電極の電極基体への取付けは、電極の裏面において行わ
れているので、電極を電解装置に取り付けた状態で、電
極のみを交換することは困難であった。
In order to solve such a problem, an electrode base portion for supplying electric power to the electrode and holding the electrode and an electrode portion having a coating layer of an electrode material are separately manufactured, and the electrode is attached to the electrode base by screws. Alternatively, an electrode structure in which a stud bolt is attached to an electrode has been proposed. However, in this method as well, it is necessary to form a screw on the electrode or to provide other coupling means, so that the thickness of the electrode needs to be about 3 to 10 mm. Such a method of heating only the electrode is much easier than the conventional method of heat-treating the entire electrode structure, but the point of shortening the heating and cooling time is not sufficient. It was In addition, since the electrode plate is provided with various attachment means for attaching to the electrode base body, the thermal history around the attachment means is slightly different from that of the other portions, which causes a problem that the characteristics of the electrode are changed. there were. Furthermore, in the conventional electrode structure,
Since the attachment of the electrode to the electrode substrate is performed on the back surface of the electrode, it is difficult to replace only the electrode with the electrode attached to the electrolytic device.

【0005】そこで、本出願人らは、特開平5−171
486号公報、特開平5−202498号公報におい
て、薄い電極を電極体表面に溶接やねじにより取付ける
方法を提案している。この方法により、電極構造体を電
解槽に取付けた状態で電極の交換が可能となるととも
に、電極被覆の形成も極めて容易になり、電流密度10
0A/dm2 程度までは問題なく使用可能であるが、電
極基体から電極板への給電は主に取付ねじによって締め
付けられ、当たり面から行われるので、当たり面では接
触抵抗による電圧降下が発生する。接触抵抗は導体自体
の抵抗よりも数百倍大きいため通電量には限界があり、
大電流密度の通電に対処するためには、取り付け部を増
やしたり、電極の厚みを増大する等が必要であった。
Therefore, the applicants of the present invention have filed Japanese Patent Application Laid-Open No. 5-171.
Japanese Patent Laid-Open No. 486 and Japanese Patent Laid-Open No. 5-202498 propose a method of attaching a thin electrode to the surface of an electrode body by welding or screws. By this method, the electrodes can be exchanged while the electrode structure is attached to the electrolytic cell, and the electrode coating can be formed very easily.
It can be used up to 0 A / dm 2 without any problem, but the power supply from the electrode substrate to the electrode plate is mainly tightened by the mounting screws and is performed from the contact surface, so a voltage drop due to contact resistance occurs at the contact surface. . The contact resistance is several hundred times higher than the resistance of the conductor itself, so there is a limit to the amount of current that can be applied.
In order to cope with energization with a large current density, it is necessary to increase the number of attachment parts, increase the thickness of electrodes, and so on.

【0006】[0006]

【発明が解決しようとする課題】本発明は、大電流密度
での金属の採取やめっき用の陽極として用いられている
電極基体と電極とを分離して製造した不溶性金属電極に
おいて、電極の電極基体への取り付けを容易とするとと
もに給電部の電圧降下を低減して電極の全面に均一に給
電することができる電極構造体を得ることを課題とする
ものである。
DISCLOSURE OF THE INVENTION The present invention relates to an insoluble metal electrode manufactured by separating an electrode base used as an anode for metal sampling and plating at a large current density and an electrode, and An object of the present invention is to obtain an electrode structure that can be easily attached to a base body and that can reduce the voltage drop of a power feeding portion to uniformly feed power to the entire surface of an electrode.

【0007】[0007]

【課題を解決するための手段】本発明は、導電性の電極
基体の表面に電極物質を被覆した電極を取り付けた電極
構造体において、電極に設けた孔に充填した金属を溶融
接合した少なくとも1個の接合部によって電極と電極基
体とを固着した電極構造体である。また、導電性の電極
基体の表面に電極物質を被覆した電極を取り付けた電極
構造体の製造方法において、少なくとも1個の孔を設け
た電極を電極基体に載置し、該孔に金属を充填し、充填
した金属を溶融して電極と電極基体を溶融接合する電極
構造体の製造方法である。孔に充填する金属が球形を含
む粒状物である前記の電極構造体である。電極基体と同
種の金属の粒状物を充填して溶融接合した前記の電極構
造体である。電極がチタンまたはチタン合金の表面に酸
化イリジウムを含有する電極物質を被覆した酸性水溶液
中で陽極として使用可能な前記の電極構造体である。
DISCLOSURE OF THE INVENTION The present invention is directed to an electrode structure in which an electrode coated with an electrode material is attached to the surface of a conductive electrode substrate, and at least one of the electrodes and the metal filled in the holes is melt-bonded. This is an electrode structure in which an electrode and an electrode base are fixed to each other by individual joints. In the method of manufacturing an electrode structure in which an electrode coated with an electrode material is attached to the surface of a conductive electrode base, an electrode having at least one hole is placed on the electrode base, and the hole is filled with metal. Then, the electrode structure is manufactured by melting the filled metal and melting and joining the electrode and the electrode base. In the above electrode structure, the metal with which the holes are filled is a granular material including a spherical shape. It is the above-mentioned electrode structure which is filled with a granular material of the same metal as that of the electrode substrate and melt-bonded. The electrode structure is the electrode structure which can be used as an anode in an acidic aqueous solution in which the surface of titanium or titanium alloy is coated with an electrode material containing iridium oxide.

【0008】以下に図面を参照して本発明を詳細に説明
する。図1は、本発明の電極構造体の1実施例を説明す
る図であり、図1(A)は、平面図を示し、図1(B)
は、A−A線の断面図を示す。電極基体1は、少なくと
もその表面は、チタン、タンタルあるいはそれらの合金
からなる耐食性の金属から形成されている。電極基体の
表面は、導電性の耐食性被覆を形成したものであること
が好ましい。導電性の耐食性被覆は、500〜650℃
の空気中で1〜3時間加熱して表面に酸化物を形成した
り、チタンおよびタンタルを含む塩の溶液を塗布して、
400〜600℃の空気中で加熱して酸化分解すること
によって保護層を形成しても良く、さらに、チタンおよ
びタンタルに白金やルテニウム等の白金族金属の化合物
を添加して被覆を形成し導電性および耐食性を高めるこ
とができる。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram for explaining one embodiment of an electrode structure of the present invention, FIG. 1 (A) shows a plan view, and FIG.
Shows a sectional view taken along the line AA. At least the surface of the electrode substrate 1 is formed of a corrosion-resistant metal made of titanium, tantalum, or an alloy thereof. The surface of the electrode substrate is preferably formed with a conductive corrosion resistant coating. Conductive corrosion resistant coating is 500-650 ° C
By heating in air for 1 to 3 hours to form an oxide on the surface or applying a salt solution containing titanium and tantalum,
The protective layer may be formed by heating in air at 400 to 600 ° C. for oxidative decomposition, and further, a compound of a platinum group metal such as platinum or ruthenium may be added to titanium and tantalum to form a coating and conduct electricity. Resistance and corrosion resistance can be enhanced.

【0009】電極2は、チタン、タンタル等の薄膜形成
性金属およびそれらの合金等の耐食性金属からなる導電
性基材に、電極物質の被覆層3を形成したものである。
電極に形成する電極物質は、白金族の金属を含有する溶
液を塗布して空気中で熱分解して酸化物を形成すること
が好ましく、電気分解の対象となる物質あるいは電解液
の組成によって異なるが、酸化イリジウム:酸化タンタ
ル=70:30(モル%)となるように塩化イリジウム
と塩化タンタルをブチルアルコールに溶解した塗布液を
塗布して形成した被覆を有する電極は、酸性電解液中で
の酸素発生用の陽極として好ましい。電極基体1と電極
2は、電極に設けた複数の孔4に充填した金属の溶融接
合によって接合されている。
The electrode 2 is formed by forming a coating layer 3 of an electrode material on a conductive base material made of a thin film forming metal such as titanium or tantalum and a corrosion resistant metal such as an alloy thereof.
The electrode material to be formed on the electrode is preferably a solution containing a platinum group metal and thermally decomposed in air to form an oxide, which varies depending on the composition of the material to be electrolyzed or the electrolytic solution. However, an electrode having a coating formed by applying a coating solution in which iridium chloride and tantalum chloride are dissolved in butyl alcohol so that iridium oxide: tantalum oxide = 70: 30 (mol%) is formed in an acidic electrolytic solution. Preferred as an anode for oxygen generation. The electrode base 1 and the electrode 2 are joined by melt joining of the metal filled in the plurality of holes 4 provided in the electrode.

【0010】図2は、本発明の電極構造体を製造方法を
説明する断面図である。電極2の複数の溶融接合箇所に
孔4を設ける(A)。孔の形状は、円形でも多角形でも
いずれの形状でも良く、円形であれば孔をドリルによっ
て容易に形成することができる。また、孔の直径は0.
3〜5mmであることが好ましく、0.5〜3mmであ
ることがさらに好ましい。孔の数は、通電する電流量に
応じて適宜選択することができる。電流量が大きい場合
には孔の間隔を小さくし、孔の数を増やすことによっ
て、通電抵抗を低下することが好ましい。次いで、電極
基体1の溶融接合箇所5の耐食性被覆6を除去し、電極
基体の金属面が表面に表れるようにする(B)。
FIG. 2 is a sectional view for explaining a method of manufacturing the electrode structure of the present invention. The holes 4 are provided at a plurality of fusion-bonded portions of the electrode 2 (A). The shape of the hole may be circular, polygonal or any shape, and if the hole is circular, the hole can be easily formed by a drill. Also, the diameter of the hole is 0.
It is preferably 3 to 5 mm, more preferably 0.5 to 3 mm. The number of holes can be appropriately selected according to the amount of current to be applied. When the amount of current is large, it is preferable to reduce the conduction resistance by reducing the distance between the holes and increasing the number of holes. Then, the corrosion-resistant coating 6 on the fusion-bonded portion 5 of the electrode substrate 1 is removed so that the metal surface of the electrode substrate appears on the surface (B).

【0011】電極の孔と耐食性被覆の除去部分を合致さ
せて電極基体上に電極を載置し、電極の孔4に電極基体
と同種の金属の球状等の粒状物7を充填する(C)。充
填する粒状物は、球、角柱状、円柱状等の任意の形状の
ものを用いることができる。電極基体がチタンまたはチ
タン合金から形成されている場合には、孔と同等以上の
径の金属チタンの球を用いれば、1個の球を孔に圧入す
るのみで溶融によって充分な接合力を得ることができ
る。また、電極の孔すべてに前もって金属チタンの球を
圧入することにより作業時間の短縮を図ることができ
る。
The electrode is placed on the electrode base with the hole of the electrode and the removed portion of the corrosion-resistant coating aligned with each other, and the hole 4 of the electrode is filled with spherical particles 7 of the same kind of metal as the electrode base (C). . The granular material to be filled may be of any shape such as a sphere, a prism, or a column. If the electrode substrate is made of titanium or titanium alloy, if titanium spheres with a diameter equal to or larger than the diameter of the holes are used, a sufficient bonding force can be obtained by melting only by pressing one sphere into the hole. be able to. Further, the work time can be shortened by pressing the metallic titanium balls into all the holes of the electrode in advance.

【0012】次いで、溶接箇所の充填金属にスポット溶
接の電極チップ8を押し当てて、溶接電流を通電し、充
填金属を基体および電極の孔側面に溶融接合させる
(D)。また、他の方法として、溶接箇所に粒状物の圧
入や充填金属材(フィラー)を供給してTIG溶接によ
り溶融接合させても良い。
Next, the electrode tip 8 for spot welding is pressed against the filling metal at the welding location, a welding current is passed through, and the filling metal is melt-bonded to the side faces of the holes of the substrate and the electrode (D). As another method, the granular material may be press-fitted or a filler metal material (filler) may be supplied to the welded portion to perform melt bonding by TIG welding.

【0013】本発明の電極構造体は、金属の溶融接合に
より、接合部も金属と同等の抵抗となるため接合部の面
積を小さくすることができ、それぞれの箇所における金
属の溶融量も少ないので、溶融接合時に電極あるいは電
極基体の熱変形等の問題を生じることはなく、また各接
合箇所の面積は小さいので、個々の接合箇所を取り外す
には大きな力を必要としないので、電極物質の劣化によ
って電極を電極基体から取り外す必要が生じた場合に
は、接合箇所の数が多い場合であっても極めて容易に電
極を取り外すことができる。そして、電極を取り外した
電極基体の接合箇所の盛り上がった部分を研削等の方法
で取り除いた後に、再び電極基体に電極を取り付けるこ
とを容易に行うことができる。
In the electrode structure of the present invention, the fusion bonding of the metal causes the resistance of the bonding portion to be the same as that of the metal, so that the area of the bonding portion can be made small and the melting amount of the metal at each portion is small. No problems such as thermal deformation of the electrode or electrode base material occur at the time of fusion bonding, and since the area of each joint is small, a large force is not required to remove each joint. When it becomes necessary to remove the electrode from the electrode base by the method, the electrode can be removed very easily even when the number of joints is large. Then, it is possible to easily attach the electrode to the electrode base again after removing the raised portion of the bonded portion of the electrode base from which the electrode has been removed by a method such as grinding.

【0014】[0014]

【作用】本発明の電極構造体は、電極を電極の電解作用
面側から電極に設けた複数の孔に電極基体と同種の金属
の粒状物を充填してTIG溶接またはスポット溶接によ
る溶融接合により固着し、固着部分を切断する事により
容易に取り外しを行うことができ、電極構造体を電解槽
に取り付けた状態で電極を交換する事も可能となる。ま
た、大型の電極であっても電極を複数個に分割すること
によって容易に製造することが可能であり、寸法精度の
優れた電極構造体が得られる。さらに、接合部の数を増
加することにより、電気抵抗が小さく、電極全体にわた
り電流分布が均一で電極電圧が低く寿命が長い電極構造
体が得られる。
The electrode structure of the present invention is formed by filling a plurality of holes formed in the electrode from the electrolysis surface side of the electrode with a granular material of the same metal as that of the electrode substrate and performing melt welding by TIG welding or spot welding. It can be easily removed by fixing and cutting the fixed part, and the electrode can be replaced while the electrode structure is attached to the electrolytic cell. Further, even a large electrode can be easily manufactured by dividing the electrode into a plurality of parts, and an electrode structure having excellent dimensional accuracy can be obtained. Further, by increasing the number of joints, it is possible to obtain an electrode structure having a low electric resistance, a uniform current distribution over the entire electrode, a low electrode voltage and a long life.

【0015】[0015]

【実施例】以下に本発明の実施例を示し、本発明を説明
する。 実施例1 縦300mm、横300mm、厚さ1mmのチタンから
なる電極基材と、同寸法で、厚さ10mmのチタンを電
極基体材料として、それぞれ空気中で530℃で加熱し
て酸化物の被覆を形成後、酸化物中の酸化イリジウム:
酸化タンタル=70:30(モル%)となるように塩化
イリジウムと塩化タンタルをブチルアルコールに溶解し
た塗布液を、電極基材の両面に塗布し、530℃で10
分間空気中で加熱して熱分解した。電極基材の電極基体
側は1回のみ処理し、電解作用面側は、塗布から熱分解
までの処理を12回繰り返した。次に電極に50mm間
隔で、直径1.2mmの孔を設けるとともに、電極の孔
位置に合わせ、電極基体の表面から酸化物の被覆を除去
して金属チタン面を表面に出した。
EXAMPLES The present invention will be described below by showing Examples of the present invention. Example 1 An electrode base material made of titanium having a length of 300 mm, a width of 300 mm, and a thickness of 1 mm, and titanium having the same size and a thickness of 10 mm as an electrode base material were respectively heated at 530 ° C. in air to coat an oxide. After formation of iridium oxide in the oxide:
A coating solution prepared by dissolving iridium chloride and tantalum chloride in butyl alcohol so that tantalum oxide = 70: 30 (mol%) was applied to both surfaces of the electrode base material, and the mixture was applied at 530 ° C. for 10 minutes.
It was pyrolyzed by heating in air for a minute. The electrode base material side of the electrode base material was treated only once, and the electrolytic action surface side was subjected to treatment from coating to thermal decomposition 12 times. Next, holes having a diameter of 1.2 mm were formed in the electrode at intervals of 50 mm, the coating of oxide was removed from the surface of the electrode substrate in accordance with the hole position of the electrode, and the metal titanium surface was exposed on the surface.

【0016】電極と電極基体と合わせ、電極表面より直
径1.5mmのチタン球を圧入し、チタン球部分をスポ
ット溶接によって接合した。得られた電極構造体に、電
流密度を100A/dm2 通電した際の各固着部のオー
ム損は0.9mVであった。
The electrode and the electrode substrate were put together, a titanium ball having a diameter of 1.5 mm was press-fitted from the electrode surface, and the titanium ball portion was joined by spot welding. The obtained electrode structure had an ohmic loss of 0.9 mV at each fixed portion when a current density of 100 A / dm 2 was applied.

【0017】実施例2 実施例1と同様に製作した電極基体上の電極の孔に、同
様にチタン球を圧入し、チタン球部分をアルゴン不活性
雰囲気下でTIG溶接した。その結果、低い電流値で強
固な溶接をすることができた。
Example 2 Titanium balls were similarly press-fitted into the holes of the electrodes on the electrode substrate manufactured in the same manner as in Example 1, and the titanium ball portions were TIG welded in an argon inert atmosphere. As a result, strong welding could be performed at a low current value.

【0018】実施例3 電極に直径2.5mmの孔を設けた以外は実施例1と同
様に製作した電極と電極基体の位置あわせをし、電極表
面側から直径1mmの棒状のチタンからなるフィラーを
供給し、まずフィラーと電極基体とを溶融し、次いで電
極孔周囲の金属チタン面とフィラーを溶融し、孔の中に
フィラーを充填させるようにTIG溶接により溶融接合
した。これによってスポット溶接より強固な接合が得ら
れた。
Example 3 An electrode manufactured in the same manner as in Example 1 except that a hole having a diameter of 2.5 mm was formed in the electrode, and the electrode substrate was aligned, and a rod-shaped titanium filler having a diameter of 1 mm from the electrode surface side. Was first supplied, the filler and the electrode substrate were melted, then the metal titanium surface around the electrode hole was melted, and the filler was melt-bonded by TIG welding so that the hole was filled with the filler. This resulted in a stronger joint than spot welding.

【0019】比較例1 電極基体と電極を50mmの間隔で頭部直径が18mm
のビスで固着した場合、電流密度100A/dm2 で通
電時、ネジ部に電流が集中するため、固着部のオーム損
は平均2.5mVであった。
Comparative Example 1 The head diameter was 18 mm at an interval of 50 mm between the electrode substrate and the electrode.
In the case of fixing with a screw of No. 2 , when the current density was 100 A / dm 2 , the current was concentrated on the screw portion, so the ohmic loss of the fixing portion was 2.5 mV on average.

【0020】[0020]

【発明の効果】本発明の電極構造体は、連続鉄鋼表面処
理装置や銅箔製造装置の大型化、あるいは高電流密度化
に対応した大型の不溶性金属電極であっても、電極基体
と電極との接合および取り外しを容易に行うことを可能
とし、電極構造体を電解槽に取り付けた状態での電極の
交換も可能であり、大電流の通電に際しても電圧損失が
小さく、また面積の小さな電極を多数用いることによっ
て大面積の電極構造体を得ることが可能である。
EFFECTS OF THE INVENTION The electrode structure of the present invention can be used as an electrode substrate and an electrode even if it is a large insoluble metal electrode corresponding to a large-scale continuous steel surface treatment apparatus or a copper foil manufacturing apparatus or a high current density. Can be easily joined and removed, and the electrodes can be replaced while the electrode structure is attached to the electrolytic cell. A large-area electrode structure can be obtained by using a large number.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極構造体の1実施例を説明する図で
ある。
FIG. 1 is a diagram illustrating one example of an electrode structure of the present invention.

【図2】本発明の電極構造体を製造方法を説明する断面
図である。
FIG. 2 is a cross-sectional view illustrating a method for manufacturing an electrode structure of the present invention.

【符号の説明】[Explanation of symbols]

1…電極基体、2…電極、3…電極物質の被覆層、4…
孔、5…溶融接合箇所、6…耐食性被覆、7…粒状物、
8…電極チップ
DESCRIPTION OF SYMBOLS 1 ... Electrode substrate, 2 ... Electrode, 3 ... Coating layer of electrode material, 4 ...
Holes, 5 ... Melt joints, 6 ... Corrosion resistant coating, 7 ... Granular material,
8 ... Electrode tip

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性の電極基体の表面に電極物質を被
覆した電極を取り付けた電極構造体において、電極に設
けた孔に充填した金属を溶融接合した少なくとも1個の
接合部によって電極と電極基体とを固着したことを特徴
とする電極構造体。
1. An electrode structure in which an electrode coated with an electrode material is attached to the surface of a conductive electrode substrate, and at least one joint portion obtained by melting and joining a metal filled in a hole provided in the electrode An electrode structure characterized by being fixed to a substrate.
【請求項2】 導電性の電極基体の表面に電極物質を被
覆した電極を取り付けた電極構造体の製造方法におい
て、少なくとも1個の孔を設けた電極を電極基体に載置
し、該孔に金属を充填し、充填した金属を溶融して電極
と電極基体を溶融接合することを特徴とする電極構造体
の製造方法。
2. A method of manufacturing an electrode structure in which an electrode coated with an electrode material is attached to a surface of a conductive electrode base, an electrode having at least one hole is placed on the electrode base, and the hole is placed in the hole. A method for manufacturing an electrode structure, comprising filling a metal and melting the filled metal to melt-bond an electrode and an electrode substrate.
JP16194794A 1994-07-14 1994-07-14 Electrode structural body and its production Pending JPH0827598A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16194794A JPH0827598A (en) 1994-07-14 1994-07-14 Electrode structural body and its production
GB9514006A GB2291070A (en) 1994-07-14 1995-07-10 Fixing electrode to electrode substrate by welding metal filled in a plurality of holes in the electrode to the electrode and the substrate
FR9508514A FR2722512B1 (en) 1994-07-14 1995-07-13 ELECTRODE STRUCTURE AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16194794A JPH0827598A (en) 1994-07-14 1994-07-14 Electrode structural body and its production

Publications (1)

Publication Number Publication Date
JPH0827598A true JPH0827598A (en) 1996-01-30

Family

ID=15745075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16194794A Pending JPH0827598A (en) 1994-07-14 1994-07-14 Electrode structural body and its production

Country Status (3)

Country Link
JP (1) JPH0827598A (en)
FR (1) FR2722512B1 (en)
GB (1) GB2291070A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642120B2 (en) * 2009-04-01 2011-03-02 三井金属鉱業株式会社 Electrolytic metal foil manufacturing apparatus, method for manufacturing thin plate insoluble metal electrode used in electrolytic metal foil manufacturing apparatus, and electrolytic metal foil obtained using the electrolytic metal foil manufacturing apparatus
CN104827228A (en) * 2015-05-25 2015-08-12 中国十九冶集团有限公司 Electrolytic tank construction mould

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH205155A (en) * 1937-08-07 1939-06-15 Bamag Meguin Aktiengesellschaf Electrode for filter press electrolysers.
GB581549A (en) * 1944-09-13 1946-10-16 Mond Nickel Co Ltd Improvements relating to anodes for the electrodeposition of nickel
CH302143A (en) * 1951-07-28 1954-10-15 Bamag Meguin Aktiengesellschaf Pre-electrode for electrolytic cells and method for producing such an electrode.
GB889147A (en) * 1959-02-09 1962-02-07 Ici Ltd Improvements relating to electrode structures
US4370215A (en) * 1981-01-29 1983-01-25 The Dow Chemical Company Renewable electrode assembly
DE3304672C3 (en) * 1983-02-11 1993-12-02 Ant Nachrichtentech Body contacting method and its application
GB2175149B (en) * 1985-05-17 1988-09-01 Crystalate Electronics Flexible printed circuit board
JPS646385A (en) * 1987-06-26 1989-01-10 Canon Kk Electrical connection structure of circuit substrates
JPH0310099A (en) * 1989-06-07 1991-01-17 Permelec Electrode Ltd Insoluble electrode for electroplating and production thereof

Also Published As

Publication number Publication date
FR2722512B1 (en) 1997-04-25
GB2291070A (en) 1996-01-17
FR2722512A1 (en) 1996-01-19
GB9514006D0 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
CN109154090B (en) Anode assembly, contact strip, electrochemical cell, and methods of use and manufacture thereof
DE69107705T2 (en) Electrode for use in the plasma arc torch.
KR20200132172A (en) The method Cathode drum and Cathode drum for electrolytic deposition
JP2963266B2 (en) Insoluble electrode structure
EP0713537B1 (en) A consumable electrode method for forming micro-alloyed products
US7003868B2 (en) Coated stainless-steel/copper weld for electroplating cathode
JPH0827598A (en) Electrode structural body and its production
ZA200502206B (en) Method for obtaining a good contact surface on an electrolysis cell busbar and busbar.
KR101076633B1 (en) Method for the formation of a good contact surface on an aluminium support bar and a support bar
JPH07316861A (en) Electrode structure
JPS60221591A (en) Manufacture of fluorine
US3956098A (en) Apparatus containing silicon metal joints
NO20180882A1 (en) Anode hanger, and method of production thereof
TW201510284A (en) Anode and method for manufacturing same
KR101029222B1 (en) Method for the formation of a good contact surface on a cathode support bar and support bar
JPS6312150B2 (en)
JP2002038291A (en) Anode for manufacturing metallic foil
JP5888732B2 (en) Electroplating method and plating apparatus
US20020179694A1 (en) Method and metals to produce an electrode anode to electrolyze liquid wastes
JPH05171486A (en) Method for reactivating anode for apparatus continuously producing metallic foil
JP2008095161A (en) Anode for producing electrolytic metal foil
JPH0830211B2 (en) Method for manufacturing resistance welding nozzle
JPH108286A (en) Electrodeposition drum
JPH01152294A (en) Production of material for insoluble anode
KR20220016197A (en) Electrode assembly for electrochemical treatment and method for restoring the same