JPH0533177A - Production of anode for generating oxygen - Google Patents

Production of anode for generating oxygen

Info

Publication number
JPH0533177A
JPH0533177A JP3013242A JP1324291A JPH0533177A JP H0533177 A JPH0533177 A JP H0533177A JP 3013242 A JP3013242 A JP 3013242A JP 1324291 A JP1324291 A JP 1324291A JP H0533177 A JPH0533177 A JP H0533177A
Authority
JP
Japan
Prior art keywords
tantalum
metal
anode
alloy
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3013242A
Other languages
Japanese (ja)
Other versions
JP3044797B2 (en
Inventor
Toshiyuki Ikeda
俊幸 池田
Shinji Yamauchi
信次 山内
Toshio Muranaga
外志雄 村永
Ryuichi Otogawa
隆一 音川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP3013242A priority Critical patent/JP3044797B2/en
Publication of JPH0533177A publication Critical patent/JPH0533177A/en
Application granted granted Critical
Publication of JP3044797B2 publication Critical patent/JP3044797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To prevent the generation of the passivation of an insoluble anode for metal plating by thermally spraying an intermediate layer of a Ta metal on a Ti substrate, then forming a Ta2O5 layer contg. IrO2, thereon at the time of producing this insoluble anode. CONSTITUTION:The surface of an anode base body consisting of metal Ti, Ti-Ta-Nb alloy or the like is roughened by sand blasting, etc., and thereafter Ta or Ta alloy is thermally sprayed thereto as the insoluble anode for generating oxygen to be used at the time of electroplating Sn, Zn, Cr, etc., onto the surfaces of a steel sheet. An aq. soln. of a compsn. contg. 20mol% IrO2 and consisting of the balance Ta2O5 is applied on the surface of the thermally sprayed layer of the Ta metal and is heated to 360 to 550 deg.C in an oxidation atmosphere to form an electrode active layer consisting of the IrO2-contg. Ta2O5. The insoluble anode having the excellent durability is obtd. without passivation of the anode during the electrolysis or plating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素発生用陽極の製法に
関する。特にスズ、亜鉛、クロム又はこれらの合金等の
電気メッキに使用される酸素発生用陽極に関するもので
ある。
FIELD OF THE INVENTION The present invention relates to a method for producing an oxygen generating anode. In particular, it relates to an oxygen generating anode used for electroplating tin, zinc, chromium or alloys thereof.

【0002】[0002]

【従来の技術】スズ、亜鉛、クロム等の鋼板メッキ用陽
極としては現在、鉛又は鉛合金が使用されているが、鉛
は比較的消耗が速く、溶出した鉛によるメッキ液の汚
染、メッキ皮膜の劣化等の問題点がある。これに代る陽
極として白金メッキ陽極や白金箔クラッド陽極が検討さ
れているが、白金もかなり消耗が大きいという難点があ
り、そのために消耗の少ない貴金属及びその酸化物を電
極活性物質とした酸素発生用陽極が種々提案されてい
る。
2. Description of the Related Art Lead or lead alloys are currently used as anodes for plating steel sheets of tin, zinc, chromium, etc. However, lead is consumed relatively quickly, and the plating solution is contaminated by the eluted lead and the plating film. There is a problem such as deterioration of. Platinum-plated anodes and platinum foil clad anodes have been studied as alternative anodes, but platinum also has the drawback of being considerably consumed, and therefore oxygen generation using noble metals and their oxides, which consume less, as electrode active substances. Various anodes for use have been proposed.

【0003】しかしながら、経済性、加工性の面から広
く用いられるチタン及びその合金を基体として、単純に
電極活性物質を被覆しただけの電極では、使用中に陽極
に発生する酸素により電極被覆層と基体間に導電性の無
い酸化物層が形成され、残存する電極活性物質の量が十
分であっても電極としての機能が無くなってしまい、つ
いには電極被覆層の剥離を来し使用不能になるという不
都合を生じる(大田健一郎等、電気化学、57、No
1、P.71〜75(1989))。
However, in the case of an electrode in which titanium and its alloy, which are widely used from the viewpoint of economy and workability, are simply coated with an electrode active substance, the electrode coating layer is formed by oxygen generated in the anode during use. A non-conductive oxide layer is formed between the substrates, and even if the amount of remaining electrode active substance is sufficient, the function as an electrode is lost, and eventually the electrode coating layer peels off and becomes unusable. (Kenichiro Ota et al., Electrochemistry, 57, No
1, P.I. 71-75 (1989)).

【0004】このために電極活性物質の被着量を多くす
る傾向にあるが、高価な貴金属を使用することを考える
とその利用効率は決して良いものであると言えない。こ
の問題点を解決するために、特開昭59−38394号
公報には基体上に4価の原子価を有するチタン及びスズ
から選ばれた少なくとも1種の金属の酸化物と、5価の
原子価を有するタンタル及びニオブから選ばれた少くと
も1種の金属の酸化物との混合酸化物からなる中間層を
設け、その上に電極活性物質で被覆した電極が提案され
ている。この場合には中間層は酸素発生活性能は無く、
電気伝導性は一般に知られている4価と5価金属による
原子価制御理論に基づき得られるものと考えられるが、
その導電性は十分なものではない。
For this reason, the amount of the electrode active substance deposited tends to be increased, but it cannot be said that the utilization efficiency is high in view of using an expensive noble metal. In order to solve this problem, Japanese Patent Laid-Open No. 59-38394 discloses an oxide of at least one metal selected from titanium and tin having a valence of 4 on the substrate and a pentavalent atom. There has been proposed an electrode in which an intermediate layer made of a mixed oxide with an oxide of at least one metal selected from valent tantalum and niobium having a valency is provided, and the intermediate layer is coated with an electrode active substance. In this case, the intermediate layer has no oxygen generation activity,
The electrical conductivity is considered to be obtained based on the valence control theory based on the generally known tetravalent and pentavalent metals.
Its conductivity is not sufficient.

【0005】特開昭59−150091号公報では、更
に導電性を与える目的で白金をこの中間層に分散させた
ものが提案されているが、白金自身が電解液、特に硫酸
酸性溶液では消耗が大きいので中間層の耐久性に限界が
ある。またこの場合は中間層自体にも酸素発生活性能が
あるためにやがては不働態化が起る。
JP-A-59-150091 proposes that platinum is dispersed in this intermediate layer for the purpose of imparting conductivity, but platinum itself is consumed in an electrolytic solution, especially in a sulfuric acid acidic solution. Since it is large, the durability of the intermediate layer is limited. Further, in this case, since the intermediate layer itself has an oxygen generating activity, passivation eventually occurs.

【0006】特開昭62−174394号公報では電気
メッキによる多孔性白金層が中間層として述べられてい
るが、この場合も前記と同様な理由で根本的な解決には
至っていない。
In Japanese Patent Laid-Open No. 62-174394, a porous platinum layer formed by electroplating is described as an intermediate layer, but even in this case, the fundamental solution has not been reached for the same reason as above.

【0007】また特開昭57−192281号公報には
チタン又はチタン合金を基材とし、金属酸化物よりなる
電極被覆を有する電極において、その中間層としてタン
タル及び/又はニオブの導電性酸化物層を設けた酸素発
生を伴う電解用電極が提案されているが、タンタル又は
ニオブの酸化物層は酸素による不働態化現象を防止する
のに十分なものとは言えない。
Further, JP-A-57-192281 discloses an electrode having titanium or a titanium alloy as a base material and an electrode coating made of a metal oxide, and a conductive oxide layer of tantalum and / or niobium as an intermediate layer thereof. Although an electrode for electrolysis involving the generation of oxygen is proposed, the oxide layer of tantalum or niobium cannot be said to be sufficient to prevent the passivation phenomenon due to oxygen.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的はスズ、
亜鉛、クロム等の電気メッキ用陽極として検討されてい
る酸素発生用不溶性陽極において問題とされている基体
の不働態化を経済的に有利な方法で防ぎ、長寿命の電極
を提供することにある。
The object of the present invention is to provide tin,
An object of the present invention is to provide an electrode having a long life by preventing passivation of a substrate, which is a problem in an insoluble anode for oxygen generation, which is being studied as an anode for electroplating of zinc, chromium, etc., in an economically advantageous manner. .

【0009】[0009]

【課題を解決するための手段】本発明者らは、酸素発生
用不溶性陽極において、基体上に金属タンタル及び/又
はタンタル合金の線材を溶射して酸素含有量の少ない、
かつ微細孔質の中間層を形成させることにより、電極活
性物質上で発生する酸素による不働態化に対し、十分な
抵抗力を有し長寿命の陽極が得られることを見出し本発
明を完成したものである。すなわち本発明はチタン又は
その合金よりなる導電性金属基体上に、金属タンタル及
び/又はその合金の線材を溶射して金属タンタル及び/
又はその合金を主成分とする中間層を設け、該中間層上
にタンタル化合物及びイリジウム化合物を含む溶液を塗
布し、酸化性雰囲気中で360〜550℃に加熱するこ
とにより酸化イリジウムを20重量%以上含み残部が酸
化タンタルよりなる電極活性層を設けることを特徴とす
る酸素発生用陽極の製法である。
DISCLOSURE OF THE INVENTION The inventors of the present invention have sprayed a metal tantalum and / or tantalum alloy wire on a substrate in an insoluble anode for oxygen generation, and have a low oxygen content.
The present invention has been completed by discovering that by forming a microporous intermediate layer, it is possible to obtain an anode having sufficient resistance to the passivation by oxygen generated on the electrode active material and having a long life. It is a thing. That is, the present invention is to spray metal tantalum and / or its alloy wire onto a conductive metal substrate made of titanium or its alloy to spray metal tantalum and / or metal tantalum.
Alternatively, an intermediate layer containing the alloy as a main component is provided, and a solution containing a tantalum compound and an iridium compound is applied to the intermediate layer, and heated to 360 to 550 ° C. in an oxidizing atmosphere to obtain 20% by weight of iridium oxide. A method for producing an oxygen generating anode is characterized in that an electrode active layer having the above-mentioned balance and made of tantalum oxide is provided.

【0010】タンタル金属の被膜を金属基体上に溶射す
る方法は、これまでに提案されている。例えば、特開昭
48−40676号公報、及び特開昭56−11245
8号公報には耐食性金属粉末例えばタンタルをプラズマ
溶射によって金属基体に溶射し、その上に電極活性物質
を被覆している。しかしながらこの方法は溶射材料は金
属粉体であり、その粒径は一般に10〜100μm程度
であることが知られている。したがって溶射された被膜
は溶けた状態の粉末が寄せ集められた状態であり、微視
的には数10μmの粒径が保持されているものと考えら
れる。このようなタンタル粉末をプラズマ溶射した被膜
上に貴金属酸化物を360〜550℃の温度で熱分解被
覆すると、タンタル被覆の酸化が激しく、酸化したタン
タル被膜は脆く、金属基体より剥離しやすい。これはタ
ンタル被膜が数10μm粒径の微細孔質で激しい酸化を
受けるものと考えられる。上記公報では真空中での加熱
処理や、電子ビームやプラズマアークの照射により基体
と合金化することで寿命増大を図っているが、未だ十分
な成果は得られていない。
Methods for spraying a coating of tantalum metal onto a metal substrate have been previously proposed. For example, JP-A-48-40676 and JP-A-56-11245.
No. 8 discloses that a corrosion resistant metal powder such as tantalum is sprayed on a metal substrate by plasma spraying, and an electrode active material is coated on the metal substrate. However, in this method, the thermal spray material is a metal powder, and it is known that its particle size is generally about 10 to 100 μm. Therefore, the sprayed coating is in a state in which powders in a molten state are gathered together, and microscopically, it is considered that the particle diameter of several tens of μm is retained. When a noble metal oxide is pyrolytically coated on a coating of such tantalum powder plasma-sprayed at a temperature of 360 to 550 ° C., the tantalum coating is strongly oxidized and the oxidized tantalum coating is brittle and easily peels off from the metal substrate. It is considered that this is because the tantalum film has a microporosity with a particle diameter of several tens of μm and undergoes severe oxidation. In the above publication, the life is increased by alloying with the substrate by heat treatment in a vacuum or irradiation with an electron beam or plasma arc, but sufficient results have not yet been obtained.

【0011】本発明者らは金属タンタル及び/又はその
合金の溶射に粉末を使用せず、線材でアーク溶射又はプ
ラズマ溶射し、その被膜上に貴金属酸化物を熱分解法で
被覆すると、意外にもタンタル被膜の酸化が少なく、貴
金属酸化物被膜と良好な密着性を得ることができ、長寿
命の電極となることを見出した。
When the present inventors did not use powder for thermal spraying of metal tantalum and / or its alloy, but performed arc spraying or plasma spraying with a wire, and coated a noble metal oxide on the coating by a thermal decomposition method, it was unexpectedly surprising. It was also found that the tantalum coating has little oxidation, can obtain good adhesion to the noble metal oxide coating, and can be a long-life electrode.

【0012】タンタル線及び/又はその合金線を溶射し
た場合、どの程度の粒径で線材が溶けているかは明瞭で
ないが、プラズマ溶射の際に使用される粉末材と比べて
数十〜数百倍大きいものと考えられ、そのために表面被
覆層形成時の熱分解工程でタンタル中間層の酸化による
脆化が少ないものと思われる。
When tantalum wire and / or its alloy wire is sprayed, it is not clear to what extent the wire material is melted, but it is several tens to several hundreds compared to the powder material used in plasma spraying. It is considered to be twice as large, and for that reason, it is considered that embrittlement due to oxidation of the tantalum intermediate layer is small in the thermal decomposition step when forming the surface coating layer.

【0013】本発明の金属基体に使用されるチタン又は
その合金は、金属チタンやチタン−タンタル−ニオブ、
チタン−パラジウム等のチタン基合金であり、その形状
は板状、棒状、エキスパンド状、多孔板状等種々の形状
をとり得る。
Titanium or its alloy used in the metal substrate of the present invention includes titanium metal, titanium-tantalum-niobium,
It is a titanium-based alloy such as titanium-palladium, and can have various shapes such as a plate shape, a rod shape, an expanded shape, and a perforated plate shape.

【0014】金属基体表面に形成される中間層は溶射中
に若干の酸素を取りこみ、金属タンタルとその酸化物及
び/又はタンタル合金とその酸化物の溶射層となる。溶
射方法には火炎溶射、プラズマ溶射、アーク溶射、爆裂
溶射等があるが、特にアーク溶射、プラズマ溶射で行う
と安定な被膜が得られる。基体表面は溶射の前処理とし
て、グリッドブラスト、ショットブラスト又はサンドブ
ラスト処理が施される。これらのブラスト材としてはア
ルミナ、炭化ケイ素、サンド等が利用され粒子径は20
0〜1000μm程度が適当である。
The intermediate layer formed on the surface of the metal substrate takes in some oxygen during thermal spraying and becomes a thermal sprayed layer of metal tantalum and its oxide and / or tantalum alloy and its oxide. The thermal spraying methods include flame spraying, plasma spraying, arc spraying, explosive spraying and the like, and particularly stable coating can be obtained by performing arc spraying or plasma spraying. The surface of the substrate is subjected to grid blasting, shot blasting or sand blasting as a pretreatment for thermal spraying. Alumina, silicon carbide, sand or the like is used as the blast material, and the particle size is 20
About 0 to 1000 μm is suitable.

【0015】本発明に用いられるアーク溶射とは2本の
金属線間に電圧をかけ、溶射ガン先端部の金属線間に電
気アークを発生させ、このアークにより金属線が溶融さ
れる。溶融した金属を高速圧縮ガスにて金属基体上に被
着させるものである。また金属線を使用したプラズマ溶
射とは窒素、アルゴンのような不活性ガスを電気アーク
で高温に加熱する時の電極に溶射用の金属線を使用し、
ガスが電気アーク中を通過する時にイオン化されて、プ
ラズマ流となる。この時、金属線が溶融されて金属基体
上に被着されるものである。
In the arc spraying used in the present invention, a voltage is applied between two metal wires to generate an electric arc between the metal wires at the tip of the spray gun, and the arc melts the metal wires. The molten metal is deposited on the metal substrate with a high-speed compressed gas. In addition, plasma spraying using a metal wire uses a metal wire for spraying as an electrode when heating an inert gas such as nitrogen or argon to a high temperature with an electric arc,
As the gas passes through the electric arc, it is ionized into a plasma stream. At this time, the metal wire is melted and deposited on the metal substrate.

【0016】これらの方法で溶射したタンタルとその酸
化物及び/又はタンタル合金とその酸化物の中間層の厚
みは5〜500μm程度である。この中間層は溶射によ
り形成されているため多くのピンホールを有し、気孔率
は0.5〜15%の範囲である。そのためチタン又はそ
の合金よりなる基体は、これを陽極として電気メッキを
行う際、メッキ液が中間層を通過浸透してメッキ液に曝
される。しかしその理由は不明であるが以上の様な状態
になっても基体金属のチタン又はチタン合金の酸化が進
行せず、電圧の上昇も生ぜずまたチタン基体の腐食も生
じない。この基体の酸化進行を防止するためには中間層
は10μm以上の厚みがあると効果が大きい。
The thickness of the intermediate layer of tantalum and its oxide and / or tantalum alloy and its oxide sprayed by these methods is about 5 to 500 μm. Since this intermediate layer is formed by thermal spraying, it has many pinholes and the porosity is in the range of 0.5 to 15%. Therefore, when performing electroplating on a substrate made of titanium or its alloy as an anode, the plating solution penetrates through the intermediate layer and is exposed to the plating solution. However, although the reason is not clear, even in the above-mentioned state, the titanium or titanium alloy of the base metal does not oxidize, the voltage does not rise, and the titanium base does not corrode. In order to prevent the oxidation of the substrate from progressing, it is effective that the intermediate layer has a thickness of 10 μm or more.

【0017】さらに上記のように気孔率が小さく、あま
りに多孔質であることは好ましくない。またタンタルは
チタンの約20倍も高価な金属であるため、経済的には
500μm以下の厚みとするのが好適である。溶射によ
って形成された中間層は金属タンタル及び/又はその合
金を主成分とするが、これらの酸化物を含みX線回折法
で測定した主強度の高さの比率による酸化率又はその酸
化物含有量は、1〜30重量%であり、火炎溶射の場合
は15〜30重量%、プラズマ溶射の場合は1〜7重量
%、爆裂溶射、アーク溶射はその中間程度である。この
タンタル酸化物及び/又はその合金の酸化物は、電気メ
ッキ中に基体の酸化が進行することを金属タンタル及び
/又はその合金と同様に防止しているものと思われる。
Further, as described above, it is not preferable that the porosity is small and the porosity is too porous. Further, since tantalum is a metal which is about 20 times more expensive than titanium, it is economically preferable to have a thickness of 500 μm or less. The intermediate layer formed by thermal spraying contains metal tantalum and / or its alloy as a main component, and contains these oxides and the oxidation rate or the oxide content depending on the ratio of the main strength measured by the X-ray diffraction method. The amount is 1 to 30% by weight, 15 to 30% by weight in the case of flame spraying, 1 to 7% by weight in the case of plasma spraying, and explosion spraying and arc spraying are in the middle thereof. It is believed that the oxides of this tantalum oxide and / or its alloys prevent the oxidation of the substrate during electroplating as well as the metal tantalum and / or its alloys.

【0018】中間層の表面に形成される電極活性層は酸
化イリジウム及び酸化タンタルの混合物よりなり、酸化
イリジウムは20モル%以上、好ましくは20〜95モ
ル%、酸化タンタルは80モル%以下、好ましくは80
〜5モル%である。特に好ましいのは酸化イリジウム3
0〜90モル%、酸化タンタル70〜10モル%であ
る。酸化イリジウムのみにすれば電気メッキ中における
剥離、脱落が多く、電極としての寿命が短かくなる。ま
た電極活性層中における酸化タンタルの存在は中間層と
の密着強度に良い効果を与えているものである。
The electrode active layer formed on the surface of the intermediate layer is composed of a mixture of iridium oxide and tantalum oxide, wherein iridium oxide is 20 mol% or more, preferably 20 to 95 mol% and tantalum oxide is 80 mol% or less, preferably Is 80
~ 5 mol%. Iridium oxide 3 is particularly preferable.
It is 0 to 90 mol% and tantalum oxide 70 to 10 mol%. If only iridium oxide is used, peeling and detachment during electroplating will occur frequently and the life of the electrode will be shortened. The presence of tantalum oxide in the electrode active layer has a good effect on the adhesion strength with the intermediate layer.

【0019】電極活性層は、塩化イリジウム酸、塩化イ
リジウム、塩化タンタル等の金属塩をエチルアルコー
ル、ブチルアルコール、プロピルアルコール等の溶媒に
溶かして所定組成の混合溶液を調整し、ハケ塗り、ロー
ル塗り、スプレー塗り又は浸漬等の方法により塗布し熱
分解処理を行うことにより形成される。塗布後、溶媒を
蒸発させるため100〜150℃で約10〜20分間乾
燥し、空気又は酸素雰囲気の電気炉中で360〜550
℃、好ましくは380〜500℃で10〜30分間熱分
解処理を行う。熱処理温度が上記範囲未満では熱分解が
完全に起らず、上記範囲を超えると基体チタンと中間層
をなすタンタル又はタンタル合金の酸化が進行して損傷
を受ける。この様にして被覆した電極活性層は5g/m
2 以上あると酸素発生に対して触媒能、寿命ともに良好
となる。
The electrode active layer is prepared by dissolving a metal salt of iridium chloride, iridium chloride, tantalum chloride or the like in a solvent such as ethyl alcohol, butyl alcohol or propyl alcohol to prepare a mixed solution having a predetermined composition, and brushing or rolling. It is formed by applying it by a method such as spray coating or dipping and performing a thermal decomposition treatment. After coating, it is dried at 100 to 150 ° C. for about 10 to 20 minutes in order to evaporate the solvent, and 360 to 550 in an electric furnace in an air or oxygen atmosphere.
C., preferably 380 to 500.degree. C. for 10 to 30 minutes for thermal decomposition treatment. If the heat treatment temperature is less than the above range, thermal decomposition does not completely occur, and if the heat treatment temperature exceeds the above range, oxidation of tantalum or a tantalum alloy forming an intermediate layer with the titanium substrate is promoted and damaged. The electrode active layer coated in this way is 5 g / m
When it is 2 or more, both catalytic ability and life for oxygen generation are improved.

【0020】本発明による陽極は電気メッキ時の電流密
度が10A/dm2 以上で使用することが好ましく、最
大で300A/dm2 まで使用可能である。
The anode according to the present invention is preferably used with a current density of 10 A / dm 2 or more during electroplating, and can be used up to 300 A / dm 2 .

【0021】[0021]

【作用】本発明による陽極は、基本的には中間層が金属
タンタルを主成分とするので導電性が良好である。また
この中間層は、金属線材の溶射により形成されるため適
度に多孔質であることが電極活性層との密着力を大にし
ているとともに、十分な金属基体の保護をなしているも
のと考えられる。
In the anode according to the present invention, basically, the intermediate layer contains metal tantalum as a main component, so that the anode has good conductivity. Since this intermediate layer is formed by thermal spraying of a metal wire rod, it is considered that its moderate porosity enhances the adhesion to the electrode active layer and protects the metal substrate sufficiently. To be

【0022】[0022]

【実施例】以下、実施例、比較例により本発明を詳述す
る。 実施例1 市販チタン板(1×10×0.1cm)をトリクロルエ
チレンにて脱脂後、アルミナグリッド(4)を使用して
圧力4Kg/cm2 でブラスト処理を行った。次に線径
1.2mmのタンタル線を用いてアーク溶射機で溶射を
行い、厚み50μmの溶射層(中間層)を得た。X線回
折より皮膜の化学構造を調べたところ、TaとTa2
5 が形成されており酸化率は11%であった。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. Example 1 A commercially available titanium plate (1 × 10 × 0.1 cm) was degreased with trichlorethylene and then blasted at a pressure of 4 kg / cm 2 using an alumina grid (4). Next, a tantalum wire having a wire diameter of 1.2 mm was used to perform thermal spraying with an arc sprayer to obtain a thermal sprayed layer (intermediate layer) having a thickness of 50 μm. Examination of the chemical structure of the film by X-ray diffraction revealed that Ta and Ta 2 O
5 was formed and the oxidation rate was 11%.

【0023】その表面に下記組成の溶液を塗布した。 五塩化タンタル 0.47g 塩化イリジウム酸 1.0g 塩酸 1.0ml ブチルアルコール 15ml これを120℃で20分間乾燥し、次いで450℃の電
気炉中で20分間乾燥し、次いで450℃の電気炉中で
20分間熱分解することによりTa2 5 (40モル
%)とIrO2 (60モル%)との混合酸化物よりなる
皮膜を有する電極を得た。この操作を数回くり返し酸化
イリジウムとして10g/m2 含有する電極活性層を得
た。電極活性層と溶射層との密着性は非常に良好であっ
た。
A solution having the following composition was applied to the surface thereof. Tantalum pentachloride 0.47 g Iridium chloride 1.0 g Hydrochloric acid 1.0 ml Butyl alcohol 15 ml This was dried at 120 ° C. for 20 minutes, then in an electric furnace at 450 ° C. for 20 minutes, then in an electric furnace at 450 ° C. By pyrolyzing for 20 minutes, an electrode having a film made of a mixed oxide of Ta 2 O 5 (40 mol%) and IrO 2 (60 mol%) was obtained. This operation was repeated several times to obtain an electrode active layer containing 10 g / m 2 of iridium oxide. The adhesion between the electrode active layer and the thermal spray layer was very good.

【0024】この電極を50℃、100g/lの硫酸ナ
トリウム水溶液(pH1.2)中で陽極として用い、白
金線を陰極として電流密度200A/dm2 で試験を行
い、槽電圧が2V上昇するまでの時間を電極寿命として
判定した。これにより使用可能時間は5150時間であ
った。ケイ光X線分析の結果、残存の酸化イリジウムは
0.8g/m2 であり、92%の利用率であった。
This electrode was used as an anode in a 100 g / l sodium sulfate aqueous solution (pH 1.2) at 50 ° C., a platinum wire was used as a cathode, and a test was conducted at a current density of 200 A / dm 2 until the cell voltage increased by 2V. Was determined as the life of the electrode. As a result, the usable time was 5150 hours. As a result of a fluorescent X-ray analysis, the residual iridium oxide was 0.8 g / m 2 , and the utilization rate was 92%.

【0025】実施例2〜5、比較例1、2 溶射層の被覆は実施例1と同様に行い、電極活性層の組
成を表1のように変化させて酸化イリジウムとして10
g/m2 含有する陽極を作製し、同様の電解試験を行い
表1の結果を得た。
Examples 2 to 5, Comparative Examples 1 and 2 Coating of the thermal sprayed layer was performed in the same manner as in Example 1, and the composition of the electrode active layer was changed as shown in Table 1 to obtain 10 iridium oxide.
An anode containing g / m 2 was prepared, and the same electrolytic test was carried out to obtain the results shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】比較例3 ブラスト処理を行った市販チタン板(1×10×0.1
cm)にタンタル粉末(粒径20〜50μm)を、アル
ゴンガスをプラズマガスに使用してプラズマ溶射を行
い、厚み50μmの溶射層を得た。この上に実施例1と
同様の方法で酸化イリジウムとして10g/cm2 (I
rO2 :Ta25 =70:30モル比)の電極活性層
を得たが、タンタル溶射層の酸化が激しく、タンタル溶
射層と電極触媒層の密着性は頗る悪く、実施例1と同様
の試験を行ったところ、陽極の寿命は830時間であっ
た。
Comparative Example 3 A commercially available titanium plate (1 × 10 × 0.1) that has been blasted
cm) with tantalum powder (particle size: 20 to 50 μm) and plasma spraying using argon gas as the plasma gas to obtain a sprayed layer having a thickness of 50 μm. Then, iridium oxide was added thereto in the same manner as in Example 1 to obtain 10 g / cm 2 (I
Although an electrode active layer of rO 2 : Ta 2 O 5 = 70: 30 molar ratio) was obtained, the tantalum sprayed layer was strongly oxidized, and the adhesion between the tantalum sprayed layer and the electrode catalyst layer was extremely poor. The test showed that the anode had a life of 830 hours.

【0028】実施例6 市販チタン材(1×10×0.1cm)をアルミナグリ
ット(#30)でブラスト処理を行った後、タンタル線
(線径1.2mm)を、アルゴンガスをプラズマガスに
使用してワイヤプラズマ溶射機でプラズマ溶射を行い、
厚み100μmの溶射層を得た。X線回折により皮膜を
調べたところ、TaとTa2 5 が形成されておりX線
回折による酸化率は5%であった。この上に実施例1と
同様の方法でTa2 5 (40モル%)とIrO2 (6
0モル%)との混合酸化物よりなる電極活性層を得た。
電極活性層とタンタル溶射層との密着性は良好であっ
た。実施例1と同様の試験を行ったところ、陽極の寿命
は5100時間であり、残存の酸化イリジウムは0.5
g/m2 となり、酸化イリジウムの利用率は95%であ
った。
Example 6 A commercially available titanium material (1 × 10 × 0.1 cm) was blasted with alumina grit (# 30), a tantalum wire (wire diameter 1.2 mm) was used, and argon gas was used as a plasma gas. Performs plasma spraying with a wire plasma sprayer using
A sprayed layer having a thickness of 100 μm was obtained. When the film was examined by X-ray diffraction, Ta and Ta 2 O 5 were formed, and the oxidation rate by X-ray diffraction was 5%. Then, Ta 2 O 5 (40 mol%) and IrO 2 (6) were added in the same manner as in Example 1.
An electrode active layer composed of a mixed oxide with 0 mol%) was obtained.
The adhesion between the electrode active layer and the tantalum sprayed layer was good. When the same test as in Example 1 was conducted, the life of the anode was 5100 hours, and the residual iridium oxide was 0.5.
It was g / m 2 , and the utilization rate of iridium oxide was 95%.

【0029】比較例4 市販チタン板(1×10×0.1cm)を実施例1と同
様の方法でブラスト処理を行った。その上に高周波スパ
ッタリング装置(〜10-2Torr、アルゴンガス、印
加電圧2KVの条件)を用いてタンタルを1μmの厚さ
にスパッタリングした。その表面に実施例1と同様の塗
布液を塗布し、同様の方法でTa2 5 (40モル%)
とIrO2 (60モル%)との混合酸化物よりなる皮膜
(10g/m2 )を有する電極を得た。この電極を用い
実施例1と同様の条件で試験を行ったところ陽極の寿命
は680時間であり、残存の酸化イリジウムは7.0g
/m2 となり,その利用率は30%であった。
Comparative Example 4 A commercially available titanium plate (1 × 10 × 0.1 cm) was blasted in the same manner as in Example 1. Tantalum was sputtered thereon to a thickness of 1 μm using a high-frequency sputtering device (10 −2 Torr, argon gas, applied voltage: 2 KV). The same coating solution as in Example 1 was applied to the surface, and Ta 2 O 5 (40 mol%) was applied in the same manner.
An electrode having a film (10 g / m 2 ) made of a mixed oxide of bismuth and IrO 2 (60 mol%) was obtained. When a test was performed using this electrode under the same conditions as in Example 1, the life of the anode was 680 hours, and the residual iridium oxide was 7.0 g.
/ M 2 , and the utilization rate was 30%.

【0030】[0030]

【発明の効果】本発明による酸素発生用陽極において、
金属タンタル及び/又はタンタル合金の線材を使用して
溶射することにより形成された中間層は、チタン又はチ
タン合金基材の電解酸化を防ぐとともに、金属タンタル
及び/又はタンタル合金自体の持つ強い耐食性と耐電解
酸化性及び良好な導電性を有する。また中間層上に熱分
解被覆した電極活性層は中間層と良好な密着性を保ち、
酸素発生に対する触媒活性が大であり、かつ中間層と同
様に硫酸系溶液に対する耐食性に優れている。
In the oxygen generating anode according to the present invention,
The intermediate layer formed by thermal spraying using a metal tantalum and / or tantalum alloy wire rod prevents electrolytic oxidation of the titanium or titanium alloy base material and has a strong corrosion resistance of the metal tantalum and / or tantalum alloy itself. It has resistance to electrolytic oxidation and good conductivity. In addition, the electrode active layer that is pyrolytically coated on the intermediate layer maintains good adhesion with the intermediate layer,
It has a large catalytic activity for oxygen generation and, like the intermediate layer, has excellent corrosion resistance to a sulfuric acid solution.

【0031】以上の効果は中間層をタンタル線及び/又
はタンタル合金線の溶射以外の方法により形成させた陽
極に比べ特に顕著なことは上記実施例、比較例によって
も明らかである。このようにして本発明によれば、硫酸
系溶液中における電解に際して溶解や脱落が少なく酸化
イリジウム触媒の大部分を利用できる長寿命の酸素発生
用陽極が比較的簡易な製法によって得られる。
It is apparent from the above-mentioned Examples and Comparative Examples that the above effects are particularly remarkable as compared with the anode in which the intermediate layer is formed by a method other than the thermal spraying of the tantalum wire and / or the tantalum alloy wire. As described above, according to the present invention, a long-life oxygen generating anode that is less likely to be dissolved or dropped during electrolysis in a sulfuric acid-based solution and can use most of the iridium oxide catalyst is obtained by a relatively simple manufacturing method.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年4月8日[Submission date] April 8, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【課題を解決するための手段】本発明者らは、酸素発生
用不溶性陽極において、基体上に金属タンタル及び/又
はタンタル合金の線材を溶射して酸素含有量の少ない、
かつ微細孔質の中間層を形成させることにより、電極活
性物質上で発生する酸素による不働態化に対し、十分な
抵抗力を有し長寿命の陽極が得られることを見出し本発
明を完成したものである。すなわち本発明はチタン又は
その合金よりなる導電性金属基体上に、金属タンタル及
び/又はその合金の線材を溶射して金属タンタル及び/
又はその合金を主成分とする中間層を設け、該中間層上
にタンタル化合物及びイリジウム化合物を含む溶液を塗
布し、酸化性雰囲気中で360〜550℃に加熱するこ
とにより酸化イリジウムを20モル%以上含み残部が酸
化タンタルよりなる電極活性層を設けることを特徴とす
る酸素発生用陽極の製法である。
DISCLOSURE OF THE INVENTION The inventors of the present invention have sprayed a metal tantalum and / or tantalum alloy wire on a substrate in an insoluble anode for oxygen generation, and have a low oxygen content.
The present invention has been completed by discovering that by forming a microporous intermediate layer, it is possible to obtain an anode having sufficient resistance to the passivation by oxygen generated on the electrode active material and having a long life. It is a thing. That is, the present invention is to spray metal tantalum and / or its alloy wire onto a conductive metal substrate made of titanium or its alloy to spray metal tantalum and / or metal tantalum.
Alternatively, an intermediate layer containing the alloy as a main component is provided, and a solution containing a tantalum compound and an iridium compound is applied on the intermediate layer, and heated to 360 to 550 ° C. in an oxidizing atmosphere to obtain 20 mol % of iridium oxide. A method for producing an oxygen generating anode is characterized in that an electrode active layer having the above-mentioned balance and made of tantalum oxide is provided.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】 タンタル金属の膜を金属基体上に溶射
する方法は、これまでに提案されている。例えば、特開
昭48−40676号公報、及び特開昭56−1124
58号公報には耐食性金属粉末例えばタンタルをプラズ
マ溶射によって金属基体に溶射し、その上に電極活性物
質を被覆している。しかしながらこの方法溶射材料は
金属粉体であり、その粒径は一般に10〜100μm程
度であることが知られている。したがって溶射された
膜は溶けた状態の粉末が寄せ集められた状態であり、微
視的には数10μmの粒径が保持されているものと考え
られる。このようなタンタル粉末をプラズマ溶射した
膜上に貴金属酸化物を360〜550℃の温度で熱分解
被覆すると、タンタル被覆の酸化が激しく、酸化したタ
ンタル膜は脆く、金属基体より剥離しやすい。これは
タンタル膜が数10μm粒径の微細孔質で激しい酸化
を受けるものと考えられる。上記公報では真空中での加
熱処理や、電子ビームやプラズマアークの照射により基
体と合金化することで寿命増大を図っているが、未だ十
分な成果は得られていない。
[0010] The method of the skin film of tantalum metal sprayed on the metal substrate, have been proposed so far. For example, JP-A-48-40676 and JP-A-56-1124.
In JP 58, a corrosion resistant metal powder such as tantalum is sprayed on a metal substrate by plasma spraying, and an electrode active substance is coated on the metal substrate. However, the thermal spray material of this method is a metal powder, and it is known that its particle size is generally about 10 to 100 μm. Therefore, the sprayed skin is a state in which melted powder is gathered together, and microscopically, it is considered that the particle size is maintained at several tens of μm. When such a noble metal oxide on tantalum powder plasma spray rinds <br/> film pyrolyzed coating at a temperature of three hundred sixty to five hundred and fifty ° C., severe oxidation of the tantalum-coated tantalum skin film oxidized brittle, metal substrate Easier to peel off. It is believed that the tantalum skin layer is subjected to severe oxidation at microporous number 10μm particle size. In the above publication, the life is increased by alloying with the substrate by heat treatment in a vacuum or irradiation with an electron beam or plasma arc, but sufficient results have not yet been obtained.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】 本発明者らは金属タンタル及び/又はそ
の合金の溶射に粉末を使用せず、線材でアーク溶射又は
プラズマ溶射し、その膜上に貴金属酸化物を熱分解法
で被覆すると、意外にもタンタル膜の酸化が少なく、
貴金属酸化物膜と良好な密着性を得ることができ、長
寿命の電極となることを見出した。
The present inventors have without the use of powder spraying metal tantalum and / or alloys thereof, and arc spraying or plasma spraying at a wire, when a noble metal oxide coated pyrogenically on its skin layer, surprisingly to less oxidation of tantalum skin film is also,
It is possible to obtain a noble metal oxide skin film and good adhesion was found that an electrode of the long life.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】 さらに上記のように気孔率が小さい方が
く、あまりに多孔質であることは好ましくない。また
タンタルはチタンの約20倍も高価な金属であるため、
経済的には500μm以下の厚みとするのが好適であ
る。溶射によって形成された中間層は金属タンタル及び
/又はその合金を主成分とするが、これらの酸化物を含
みX線回折法で測定した主強度の高さの比率による酸化
率又はその酸化物含有量は、1〜30重量%であり、火
炎溶射の場合は15〜30重量%、プラズマ溶射の場合
は1〜7重量%、爆裂溶射、アーク溶射はその中間程度
である。このタンタル酸化物及び/又はその合金の酸化
物は、電気メッキ中に基体の酸化が進行することを金属
タンタル及び/又はその合金と同様に防止しているもの
と思われる。
[0017] A further towards the porosity is less as described above
Good rather, it is not desirable is too porous. Also, tantalum is a metal that is about 20 times more expensive than titanium,
Economically, the thickness is preferably 500 μm or less. The intermediate layer formed by thermal spraying contains metal tantalum and / or its alloy as a main component, and contains these oxides and the oxidation rate or the oxide content depending on the ratio of the main strength measured by the X-ray diffraction method. The amount is 1 to 30% by weight, 15 to 30% by weight in the case of flame spraying, 1 to 7% by weight in the case of plasma spraying, and explosion spraying and arc spraying are in the middle thereof. It is believed that the oxides of this tantalum oxide and / or its alloys prevent the oxidation of the substrate during electroplating as well as the metal tantalum and / or its alloys.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】[0026]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン又はその合金よりなる導電性金属
基体上に、金属タンタル及び/又はその合金の線材を溶
射して金属タンタル及び/又はその合金を主成分とする
中間層を設け、該中間層上にタンタル化合物及びイリジ
ウム化合物を含む溶液を塗布し、酸化性雰囲気中で36
0〜550℃に加熱することにより酸化イリジウムを2
0重量%以上含み残部が酸化タンタルよりなる電極活性
層を設けることを特徴とする酸素発生用陽極の製法。
1. An intermediate layer containing metal tantalum and / or its alloy as a main component is formed by spraying a wire of metal tantalum and / or its alloy on a conductive metal substrate made of titanium or its alloy. A solution containing a tantalum compound and an iridium compound is applied onto the layer, and the solution is applied in an oxidizing atmosphere.
The iridium oxide is heated to 0 to 550 ° C.
A method for producing an oxygen generating anode, which comprises providing an electrode active layer containing 0% by weight or more and the remainder being tantalum oxide.
【請求項2】 溶射がアーク溶射又はプラズマ溶射であ
る請求項1に記載の酸素発生用陽極の製法。
2. The method for producing an oxygen generating anode according to claim 1, wherein the thermal spraying is arc spraying or plasma spraying.
JP3013242A 1991-02-04 1991-02-04 Manufacturing method of anode for oxygen generation Expired - Lifetime JP3044797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3013242A JP3044797B2 (en) 1991-02-04 1991-02-04 Manufacturing method of anode for oxygen generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3013242A JP3044797B2 (en) 1991-02-04 1991-02-04 Manufacturing method of anode for oxygen generation

Publications (2)

Publication Number Publication Date
JPH0533177A true JPH0533177A (en) 1993-02-09
JP3044797B2 JP3044797B2 (en) 2000-05-22

Family

ID=11827735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3013242A Expired - Lifetime JP3044797B2 (en) 1991-02-04 1991-02-04 Manufacturing method of anode for oxygen generation

Country Status (1)

Country Link
JP (1) JP3044797B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748495A1 (en) * 1996-05-13 1997-11-14 Electricite De France IMPROVED LONGEVITY ANODE AND ITS MANUFACTURING PROCESS
EP2107137A1 (en) * 2008-03-31 2009-10-07 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
KR100943801B1 (en) * 2008-03-31 2010-02-23 페르메렉덴꾜꾸가부시끼가이샤 Manufacturing process of electrodes for electrolysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO324550B1 (en) * 2001-10-10 2007-11-19 Lasse Kroknes Apparatus by electrode, method of manufacture thereof and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748495A1 (en) * 1996-05-13 1997-11-14 Electricite De France IMPROVED LONGEVITY ANODE AND ITS MANUFACTURING PROCESS
WO1997043465A1 (en) * 1996-05-13 1997-11-20 Electricite De France Service National Anode with enhanced durability and method for making same
EP2107137A1 (en) * 2008-03-31 2009-10-07 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
KR100943801B1 (en) * 2008-03-31 2010-02-23 페르메렉덴꾜꾸가부시끼가이샤 Manufacturing process of electrodes for electrolysis
US7842353B2 (en) 2008-03-31 2010-11-30 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis

Also Published As

Publication number Publication date
JP3044797B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US5578176A (en) Method of preparing electrodes of improved service life
EP0040092B1 (en) Method for forming an anticorrosive coating on a metal substrate
EP0034408B2 (en) A method of forming an anticorrosive coating on a metal electrode substrate
JP4834103B2 (en) Method for forming an electrocatalytic surface on an electrode and the electrode
GB2309230A (en) Conductive coating of titanium suboxide
WO2001000905A1 (en) Method of producing copper foil
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
JPH04231491A (en) Electric catalyzer cathode and its manufacture
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JP3259869B2 (en) Electrode substrate for electrolysis and method for producing the same
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH0533177A (en) Production of anode for generating oxygen
JP3430479B2 (en) Anode for oxygen generation
JP3422885B2 (en) Electrode substrate
US4212725A (en) Electrodes for electrolysis purposes
JPH062194A (en) Electroplating method
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
JPH06146047A (en) Anode for generating oxygen and its production
JPS6324083A (en) Production of insoluble anode
JP2003293196A (en) Electrode for electrolysis and production method therefor
JPH09125290A (en) Electrolyzing electrode
JPS6324086A (en) Production of insoluble anode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

EXPY Cancellation because of completion of term