JPH062194A - Electroplating method - Google Patents

Electroplating method

Info

Publication number
JPH062194A
JPH062194A JP15631692A JP15631692A JPH062194A JP H062194 A JPH062194 A JP H062194A JP 15631692 A JP15631692 A JP 15631692A JP 15631692 A JP15631692 A JP 15631692A JP H062194 A JPH062194 A JP H062194A
Authority
JP
Japan
Prior art keywords
electrode
layer
electroplating
metal
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15631692A
Other languages
Japanese (ja)
Inventor
Toshio Muranaga
外志雄 村永
Shinji Yamauchi
信次 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP15631692A priority Critical patent/JPH062194A/en
Publication of JPH062194A publication Critical patent/JPH062194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To restrain the dissolution and wear of an anode to lengthen its useful life when giving electroplating to a metal in a plating bath contg. organic substances by using an oxygen generating anode which a Ti thermally sprayed layer and an electrode catalytic layer consisting of IrO2-Ta2O5 are laminated on a Ti substrate to form. CONSTITUTION:A plating bath (acidic water electrolyte in which tin or zinc is dissolved) contg. organic substances (sodium acetate, etc.) is used to give electroplating to a metal (particularly ferrous metal). In this case, as an oxygen generating anode, an electrode is used which is constituted by providing a Ti thermally sprayed layer (5-500mu thick, 05-15% porosity) on a Ti substrate by arc melt-spraying, etc., and providing an electrode catalytic layer (converted to about 10g/m<2> IrO2) contg. >=30mol% (preferably 40-90mol%) IrO2 and having Ta2O5 as the balance on the former layer. As a result, an electrode which excels in durability and is industrially useful is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機物を含有するメッキ
浴を使用して金属、殊に鉄系金属の電気メッキを行う方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electroplating a metal, particularly an iron-based metal, using a plating bath containing an organic substance.

【0002】[0002]

【従来の技術】スズ,亜鉛等の鋼板メッキは通常水性酸
性電解液を用いて50〜60℃あるいはそれ以上の高温
で行われ、非常に大きな電流密度、例えば100A/d
2 程度の陽極電流密度で行われる。このように鋼板メ
ッキは極めて苛酷な条件で行われ、これに使用される陽
極としても上記のような高い陽極電流密度で望まれる長
い寿命を有する材料を経済的に見出すのは困難であると
されている。
2. Description of the Related Art Steel sheet plating of tin, zinc or the like is usually carried out at a high temperature of 50 to 60 ° C. or higher using an aqueous acidic electrolytic solution, and a very large current density, for example, 100 A / d.
The anode current density is about m 2 . As described above, the steel plate plating is performed under extremely severe conditions, and it is considered difficult to economically find a material having a long life desired at the high anode current density as the anode used for the plating. ing.

【0003】現在、上記の鋼板メッキ用陽極としては、
鉛又は鉛合金が使用されているが、鉛は比較的消耗が速
く、溶出した鉛によるメッキ浴の汚染,メッキ皮膜の劣
化等の問題点がある。これに代る陽極として白金メッキ
陽極や白金箔クラッド陽極が検討されているが、白金も
かなり消耗が大きいという難点があり、そのため消耗の
少ない貴金属及びその酸化物を電極触媒とした酸素発生
用陽極が種々提案されている。
At present, as the above-mentioned anode for plating a steel plate,
Lead or lead alloys are used, but lead is relatively rapidly consumed, and there are problems such as contamination of the plating bath by the eluted lead and deterioration of the plating film. Platinum-plated anodes and platinum foil clad anodes have been studied as alternative anodes, but platinum also has the drawback of being considerably worn out, and as a result, there is little consumption of precious metals and their oxides as the electrode catalyst for oxygen generation. Have been proposed.

【0004】しかしながら、経済性,加工性の面から広
く用いられるチタン又はその合金を基体として、単純に
電極活性物質を被覆しただけの電極では、使用中に陽極
に発生する酸素により電極被覆層と基体との間に導電性
の無い酸化物が形成され、残存する電極触媒の量が十分
であっても電極としての機能が無くなり、ついには電極
被覆層の剥離を来し、使用不能になるという不都合を生
じる(太田健一郎等,電気科学57,No1,P71〜
75)。そのため基体と電極被覆との間に種々の物質の
中間層を設けて基体を保護し電極の耐久性を向上させる
多くの改良手段が提案されている。
However, in an electrode in which titanium or its alloy, which is widely used from the viewpoint of economy and workability, is simply coated with an electrode active substance, an electrode coating layer is formed by oxygen generated in the anode during use. An oxide having no conductivity is formed between the substrate and the electrode catalyst, even if the remaining amount of the electrode catalyst is sufficient, loses its function as an electrode, and eventually the electrode coating layer peels off, rendering it unusable. Inconvenience (Kenichiro Ota et al., Electrical Science 57, No1, P71-
75). Therefore, many improvement means have been proposed for providing an intermediate layer of various substances between the substrate and the electrode coating to protect the substrate and improve the durability of the electrode.

【0005】このような酸素発生用陽極としては、近来
タンタル又はニオブ金属又はそれらの酸化物を中間層と
し、主としてイリジウム又はその合金の酸化物を電極触
媒として被覆させた電極が耐久性,経済性の面で注目さ
れている。一方電気メッキ浴としてはメッキ皮膜の均一
性等の目的で浴中に有機物を含ませる技術が工業的に実
施されている。このような有機化合物としては酢酸ナト
リウム,フェノールスルホン酸等が代表的なものであ
る。しかしながら有機物が添加されたメッキ浴では酸素
発生の電極電位が上昇し、電極触媒の溶解損失が増大す
る(高橋正雄,「ソーダと塩素」39,P531〜54
0(1988))。このように有機物を含むメッキ浴に
おいては、有機物を含まない場合よりも一層電気メッキ
条件が苛酷となり、酸化イリジウム又はその合金を電極
触媒層とする電極は出現していないのが現況である。
As such an oxygen generating anode, an electrode in which tantalum or niobium metal or an oxide thereof is used as an intermediate layer, and an oxide of mainly iridium or its alloy is coated as an electrode catalyst is durable and economical. Has been attracting attention. On the other hand, as the electroplating bath, a technique of incorporating an organic substance in the bath is industrially carried out for the purpose of uniformity of the plating film. Typical of such organic compounds are sodium acetate and phenol sulfonic acid. However, the electrode potential for oxygen generation increases in the plating bath to which organic substances are added, and the dissolution loss of the electrode catalyst increases (Masao Takahashi, “Soda and Chlorine” 39, P531-54).
0 (1988)). As described above, in the plating bath containing an organic substance, the electroplating conditions are more severe than in the case where an organic substance is not contained, and no electrode using iridium oxide or its alloy as an electrode catalyst layer has been developed.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、有機
物を含むメッキ浴中において電極活性能の高い酸化イリ
ジウムを触媒層の主体とした耐久性に優れ工業的に有用
な電極を陽極として用いる電気メッキ方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to use, as an anode, an electrode having a highly durable and industrially useful electrode mainly composed of iridium oxide having a high electrode activity in a plating bath containing an organic substance. An object is to provide an electroplating method.

【0007】[0007]

【課題を解決するための手段】本発明者らは有機物を含
むメッキ浴において、電極触媒層が損失する原因の1つ
は、中間層と触媒層との被着が不十分であるという観点
から中間層を多孔質にすることによりこれらの被着を強
固ならしめ、かつ電極表面積を増大させるという点につ
いて検討を行った。このような多孔質の中間層を形成さ
せるためには溶射法によるのが適当であるが、タンタル
やニオブの金属溶射層は甚だ熱に弱く、その上に触媒金
属化合物の加熱分解により触媒層を形成する際に酸化さ
れて極めて脆弱になり目的を達成し得ないことが判明し
た。
The present inventors have found that one of the causes of loss of the electrode catalyst layer in a plating bath containing an organic substance is that the adhesion between the intermediate layer and the catalyst layer is insufficient. It was examined that the intermediate layer is made porous to make these deposits firm and increase the electrode surface area. A thermal spraying method is suitable for forming such a porous intermediate layer, but a metal sprayed layer of tantalum or niobium is extremely weak to heat, and a catalyst layer is formed thereon by thermal decomposition of the catalytic metal compound. It was found that when it was formed, it was oxidized and became extremely fragile, failing to achieve its purpose.

【0008】本発明は以上の検討に基づいてなされたも
のであって、すなわち有機物を含むメッキ浴を用いて金
属の電気メッキを行うにあたり、酸素発生用陽極として
チタン基体上にチタンの溶射層を設け、該溶射層上に酸
化イリジウムを30モル%以上含み残部が酸化タンタル
よりなる電極触媒層を設けてなる電極を使用することを
特徴とする電気メッキ方法である。
The present invention has been made on the basis of the above-mentioned investigations, that is, in electroplating a metal using a plating bath containing an organic substance, a titanium sprayed layer is formed on a titanium substrate as an oxygen generating anode. The electroplating method is characterized by using an electrode provided with an electrode catalyst layer comprising iridium oxide in an amount of 30 mol% or more and the rest being tantalum oxide on the sprayed layer.

【0009】本発明に使用されるチタン基体の形状は板
状,棒状,エキスパンド状,多孔板状等種々の形状をと
り得る。チタン基体上に形成される溶射層は若干の酸素
をとりこみ、金属チタンとその酸化物の溶射層となる。
溶射方法は火炎溶射,プラズマ溶射,アーク溶射,爆裂
溶射等があるが、特にアーク溶射,プラズマ溶射を行う
と安定な皮膜が得られる。
The titanium substrate used in the present invention may have various shapes such as a plate shape, a rod shape, an expanded shape and a perforated plate shape. The sprayed layer formed on the titanium substrate takes in some oxygen and becomes a sprayed layer of titanium metal and its oxide.
The thermal spraying methods include flame spraying, plasma spraying, arc spraying, explosive spraying, and the like, and stable coating can be obtained especially by performing arc spraying or plasma spraying.

【0010】基体表面は溶射の前処理としてグリットブ
ラスト,ショットブラスト又はサンドブラスト処理が施
される。ブラスト材としてはアルミナ,炭化ケイ素,サ
ンド等が利用され粒子径は200〜1000μm程度が
適当である。
The substrate surface is subjected to grit blasting, shot blasting or sand blasting as a pretreatment for thermal spraying. Alumina, silicon carbide, sand or the like is used as the blasting material, and the particle size is preferably about 200 to 1000 μm.

【0011】本発明に用いられるアーク溶射とは2本の
金属線の間に電圧をかけ、溶射ガン先端部の金属線間に
電気アークを発生させ、このアークにより金属線が溶融
される。そして溶融した金属を高速圧縮ガスにて金属基
体上に被着させるものである。またプラズマ溶射とは窒
素,アルゴンのような不活性ガスを電気アークで高温に
加熱し、電気アーク中を通過する時にイオン化されてプ
ラズマジェット流となってノズルから噴射される。そこ
に溶射粉末を供給し、溶射粉末はプラズマジェットによ
って加熱溶融され、かつ加速されて基材表面に衝突し皮
膜となるものである。
In the arc spraying used in the present invention, a voltage is applied between two metal wires to generate an electric arc between the metal wires at the tip of the spray gun, and the arc melts the metal wires. Then, the molten metal is deposited on the metal substrate with a high-speed compressed gas. In plasma spraying, an inert gas such as nitrogen or argon is heated to a high temperature by an electric arc, and when passing through the electric arc, it is ionized to form a plasma jet stream and is ejected from a nozzle. The thermal spraying powder is supplied thereto, and the thermal spraying powder is heated and melted by the plasma jet, and is accelerated and collides with the surface of the base material to form a film.

【0012】これらの方法で溶射したチタン皮膜の厚み
は5〜500μm程度が良い。この皮膜は溶射により形
成されているため多くのピンホールを有し、気孔率0.
5〜15%の範囲である。
The thickness of the titanium coating sprayed by these methods is preferably about 5 to 500 μm. Since this coating is formed by thermal spraying, it has many pinholes and a porosity of 0.
It is in the range of 5 to 15%.

【0013】溶射層の表面に形成される電極触媒層は酸
化イリジウムと酸化タンタルとの混合物よりなり、酸化
イリジウムは30モル%以上、好ましくは40〜90モ
ル%の範囲である。酸化イリジウムのみにすれば電気メ
ッキ中における溶解,脱落が多く、電極としての寿命が
短かくなる。
The electrode catalyst layer formed on the surface of the sprayed layer is composed of a mixture of iridium oxide and tantalum oxide, and the iridium oxide content is 30 mol% or more, preferably 40 to 90 mol%. If only iridium oxide is used, it tends to dissolve and drop during electroplating, resulting in a shorter electrode life.

【0014】電極触媒層は塩化イリジウム酸,三塩化イ
リジウム,五塩化タンタルのようなアルコール可溶性の
金属塩をエチルアルコール,ブチルアルコール,プロピ
ルアルコール等の溶媒に溶かして所定組成の混合溶液を
調整し、ハケ塗り,ロール塗り,スプレー塗り又は浸漬
等の方法により塗布する。塗布後溶媒を蒸発させるため
に100〜150℃で約10〜20分間乾燥し、空気又
は酸素雰囲気の電気炉中で360〜600℃、好ましく
は380〜550℃で10〜30分間熱分解処理を行
う。熱処理温度が上記範囲未満では熱分解が完全に起ら
ず、上記範囲を超えるとチタン基体とチタン溶射層の酸
化が進行して損傷を受ける。この様にして被覆した電極
触媒層は10g/m2 (酸化イリジウム換算)以上ある
と酸素発生に際して触媒能,寿命とも良好となる。
For the electrode catalyst layer, an alcohol-soluble metal salt such as iridium chloride, iridium trichloride or tantalum pentachloride is dissolved in a solvent such as ethyl alcohol, butyl alcohol or propyl alcohol to prepare a mixed solution having a predetermined composition, Apply by brushing, roll coating, spray coating or dipping. After application, the solvent is dried at 100 to 150 ° C. for about 10 to 20 minutes to evaporate the solvent, and subjected to thermal decomposition treatment at 360 to 600 ° C., preferably 380 to 550 ° C. for 10 to 30 minutes in an electric furnace in an air or oxygen atmosphere. To do. If the heat treatment temperature is less than the above range, thermal decomposition does not occur completely, and if it exceeds the above range, the titanium substrate and the titanium sprayed layer are oxidized and damaged. When the amount of the electrode catalyst layer coated in this manner is 10 g / m 2 (calculated as iridium oxide) or more, both the catalytic ability and the life are improved when oxygen is generated.

【0015】本発明に使用される陽極は電気メッキ時の
電流密度が10A/dm2 以上で使用することが好まし
く、最大で300A/dm2 まで使用可能である。
The anode used in the present invention preferably has a current density of 10 A / dm 2 or more during electroplating, and can be used up to 300 A / dm 2 .

【0016】[0016]

【作用】本発明におけるチタン溶射層上に形成させた上
記の電極触媒層からなる電極は有機物を含む電気メッキ
浴の陽極として使用した場合、長寿命である理由につい
ては明らかではないが次のような要因が考えられる。す
なわち熱分解法で設けられる電極触媒は多孔質なチタン
溶射層にかなり含浸され、また電極触媒層の形状もチタ
ン溶射層の形状に影響される。電極触媒層の相対表面積
をボルタメトリー法で求めると溶射層の無い場合に比べ
て又は溶射法以外の方法で中間層を形成させた場合に比
べて数倍〜数10倍大きくなっている。これは酸素発生
の電極電位を低下させる効果があり、電極寿命の増加に
つながるものと思われる。そして酢酸ナトリウムやフェ
ノールスルホン酸のような有機物を含む電気メッキ浴中
においても電極電位を低下させる。この事は有機物中で
の酸化イリジウムの異常消耗を可成り防ぐことを可能と
し電極の長寿命化に寄与するものと思われる。また溶射
層が基体と同質の金属であり適度に多孔質であることも
基体及び電極触媒層との密着力を大にしているものと考
えられる。
The function of the electrode composed of the above electrode catalyst layer formed on the titanium sprayed layer in the present invention is long when used as an anode of an electroplating bath containing an organic substance, but it is not clear as follows. There are many possible factors. That is, the electrode catalyst provided by the thermal decomposition method is considerably impregnated in the porous titanium sprayed layer, and the shape of the electrode catalyst layer is also influenced by the shape of the titanium sprayed layer. When the relative surface area of the electrode catalyst layer is determined by the voltammetry method, it is several times to several tens of times larger than in the case where the thermal spray layer is not provided or in the case where the intermediate layer is formed by a method other than the thermal spray method. This has the effect of lowering the electrode potential for oxygen generation, and is believed to lead to an increase in electrode life. Then, the electrode potential is lowered even in an electroplating bath containing an organic substance such as sodium acetate or phenolsulfonic acid. This is considered to make it possible to prevent the abnormal consumption of iridium oxide in organic substances to a considerable extent and to contribute to the extension of the life of the electrode. It is considered that the fact that the sprayed layer is the same metal as the substrate and is appropriately porous also increases the adhesion between the substrate and the electrode catalyst layer.

【0017】[0017]

【実施例】以下、実施例,比較例により本発明を詳述す
る。
The present invention will be described in detail below with reference to Examples and Comparative Examples.

【0018】実施例1,比較例1 市販チタン板(1×10×0.1cm)をアセトンにて
脱脂後、アルミナグリット(#30)を使用して、圧力
4kg/cm2 でブラスト処理を行った。次に線径1.
6mmのチタン線を用いてアーク溶射機で溶射を行い、
厚さ50μmの溶射層を得た。その表面に下記組成の溶
液を塗布した。 五塩化タンタル 0.32g 塩化イリジウム酸 1.00g 塩酸 0.5ml ブチルアルコール 10ml これを120℃で20分間乾燥し、次いで450℃の電
気炉中で20分間熱分解することにより、Ta2
5 (30モル%)及びIrO2 (70モル%)の混合酸
化物よりなる皮膜を有する電極を得た。この操作をくり
返して、酸化イリジウムとして12g/m2 含有する電
極触媒層を得た。電極触媒層と溶射層との密着性は非常
に良好であった。
Example 1, Comparative Example 1 A commercially available titanium plate (1 × 10 × 0.1 cm) was degreased with acetone and then blasted with alumina grit (# 30) at a pressure of 4 kg / cm 2. It was Next, wire diameter 1.
Perform spraying with an arc sprayer using a 6 mm titanium wire,
A sprayed layer having a thickness of 50 μm was obtained. A solution having the following composition was applied to the surface. Tantalum pentachloride 0.32 g Iridium chloride 1.00 g Hydrochloric acid 0.5 ml Butyl alcohol 10 ml This was dried at 120 ° C. for 20 minutes and then pyrolyzed in an electric furnace at 450 ° C. for 20 minutes to produce Ta 2 O.
An electrode having a film made of a mixed oxide of 5 (30 mol%) and IrO 2 (70 mol%) was obtained. This operation was repeated to obtain an electrode catalyst layer containing 12 g / m 2 of iridium oxide. The adhesion between the electrode catalyst layer and the sprayed layer was very good.

【0019】この電極を電気メッキ槽内に鋼板の陰極よ
り2cm離れた位置に陽極として取付けた。300g/
l硫酸亜鉛(ZnSO4 ・7H2 O),100g/l硫
酸ナトリウム(pH=1.2),20g/l酢酸ナトリ
ウムを含有する合成水性亜鉛メッキ液を電槽に入れ、陽
極電流密度200A/dm2 ,50℃で電気メッキを行
った。7日毎にメッキ液を取出し、新しいメッキ液を電
槽に入れた。槽電圧が5V上昇するまでの時間を電極寿
命として判定した。これにより使用可能な時間は720
時間であった。一方比較として溶射層を省き、基体上に
上記と同様にして電極触媒層を形成させ、同様の電気メ
ッキ試験を行ったところ、陽極の寿命は350時間であ
った。
This electrode was mounted in the electroplating tank as an anode at a position 2 cm away from the cathode of the steel plate. 300 g /
1 Synthetic aqueous zinc plating solution containing zinc sulfate (ZnSO 4 .7H 2 O), 100 g / l sodium sulfate (pH = 1.2), and 20 g / l sodium acetate was placed in a battery case and the anode current density was 200 A / dm. 2. Electroplated at 50 ° C. The plating solution was taken out every 7 days and a new plating solution was placed in the battery case. The time until the cell voltage increased by 5 V was determined as the electrode life. With this, the available time is 720
It was time. On the other hand, as a comparison, the sprayed layer was omitted, an electrode catalyst layer was formed on the substrate in the same manner as above, and the same electroplating test was performed. The life of the anode was 350 hours.

【0020】実施例2〜5,比較例2,3 実施例1と同様のチタン基体上に同様にして溶射層の形
成を行い、電極触媒層の組成を表1のように変化させて
酸化イリジウムとして12g/cm2 含有する電極を作
製し、実施例1と同様の電気メッキ試験を行ったところ
表1の結果を得た。
Examples 2-5, Comparative Examples 2 and 3 Iridium oxide was formed by forming a thermal sprayed layer on the same titanium substrate as in Example 1 and changing the composition of the electrode catalyst layer as shown in Table 1. As a result, an electrode containing 12 g / cm 2 was prepared and the same electroplating test as in Example 1 was conducted. The results shown in Table 1 were obtained.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例6 市販チタン板(1×10×0.1cm)に実施例1と同
様のブラスト処理を行い、これにチタン粉末(粒径20
〜50μm)を、アルゴンガスをプラズマガスに使用し
てプラズマ溶射を行い、厚さ25μmの溶射層を得た。
この上に実施例1と同様の方法で酸化イリジウムとして
12g/m2 (IrO2 :Ta2 5 =70:30モル
比)の電極触媒層を得た。実施例1と同様の電気メッキ
試験を行ったところ、陽極の寿命は740時間であっ
た。
Example 6 A commercially available titanium plate (1 × 10 × 0.1 cm) was blasted in the same manner as in Example 1, and titanium powder (particle size 20) was used.
˜50 μm) was plasma sprayed using argon gas as the plasma gas to obtain a sprayed layer having a thickness of 25 μm.
An electrode catalyst layer of 12 g / m 2 (IrO 2 : Ta 2 O 5 = 70: 30 molar ratio) as iridium oxide was obtained thereon by the same method as in Example 1. When the same electroplating test as in Example 1 was performed, the life of the anode was 740 hours.

【0023】[0023]

【発明の効果】本発明法に使用される酸素発生用陽極に
おいて、チタンを溶射して形成した溶射層上に熱分解被
覆した電極触媒層は溶射層と良好な密着性を保ち、有機
物を含む電気メッキ浴中で優れた耐久性を示す。したが
ってこの電極を使用して有機物を含むメッキ浴を使用し
て金属の電気メッキを行えば電極の溶解や脱落による損
耗が少なくなり長寿命化が図られるという優れた効果が
得られる。
In the oxygen generating anode used in the method of the present invention, the electrocatalyst layer, which is formed by thermal spraying titanium and is thermally decomposed and coated, has good adhesion to the thermal spray layer and contains an organic substance. Shows excellent durability in electroplating baths. Therefore, when this electrode is used for electroplating a metal using a plating bath containing an organic substance, the excellent effect that the wear due to the dissolution or dropping of the electrode is reduced and the life is prolonged can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機物を含むメッキ浴を用いて金属の電
気メッキを行うにあたり、酸素発生用陽極としてチタン
基体上にチタンの溶射層を設け、該溶射層上に酸化イリ
ジウムを30モル%以上含み残部が酸化タンタルよりな
る電極触媒層を設けてなる電極を使用することを特徴と
する電気メッキ方法。
1. When electroplating a metal using a plating bath containing an organic substance, a titanium sprayed layer is provided on a titanium substrate as an oxygen generating anode, and the sprayed layer contains 30 mol% or more of iridium oxide. An electroplating method comprising using an electrode provided with an electrode catalyst layer, the balance of which is made of tantalum oxide.
【請求項2】 有機物が酢酸ナトリウム又はフェノール
スルホン酸である請求項1に記載の電気メッキ方法。
2. The electroplating method according to claim 1, wherein the organic substance is sodium acetate or phenolsulfonic acid.
【請求項3】 メッキ浴がスズ又は亜鉛を溶解して含有
する酸性水性電解液である請求項1又は2に記載の電気
メッキ方法。
3. The electroplating method according to claim 1, wherein the plating bath is an acidic aqueous electrolytic solution containing tin or zinc dissolved therein.
【請求項4】 電極触媒層が触媒金属となる化合物の熱
分解により形成される請求項1に記載の電気メッキ方
法。
4. The electroplating method according to claim 1, wherein the electrode catalyst layer is formed by thermal decomposition of a compound that becomes a catalyst metal.
JP15631692A 1992-06-16 1992-06-16 Electroplating method Pending JPH062194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15631692A JPH062194A (en) 1992-06-16 1992-06-16 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15631692A JPH062194A (en) 1992-06-16 1992-06-16 Electroplating method

Publications (1)

Publication Number Publication Date
JPH062194A true JPH062194A (en) 1994-01-11

Family

ID=15625140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15631692A Pending JPH062194A (en) 1992-06-16 1992-06-16 Electroplating method

Country Status (1)

Country Link
JP (1) JPH062194A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146051A (en) * 1992-11-06 1994-05-27 Permelec Electrode Ltd Production of metallic foil by electrolysis
JPH0813199A (en) * 1994-06-27 1996-01-16 Permelec Electrode Ltd Chromium plating method
WO2006073163A1 (en) * 2005-01-07 2006-07-13 Daiso Co., Ltd Insoluble electrode
JPWO2013058151A1 (en) * 2011-10-18 2015-04-02 株式会社シンク・ラボラトリー Remote control method for plate making consumables
CN111088493A (en) * 2019-12-26 2020-05-01 西安泰金工业电化学技术有限公司 Preparation method of titanium anode with titanium-based coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146051A (en) * 1992-11-06 1994-05-27 Permelec Electrode Ltd Production of metallic foil by electrolysis
JPH0813199A (en) * 1994-06-27 1996-01-16 Permelec Electrode Ltd Chromium plating method
WO2006073163A1 (en) * 2005-01-07 2006-07-13 Daiso Co., Ltd Insoluble electrode
JP2006188742A (en) * 2005-01-07 2006-07-20 Daiso Co Ltd Insoluble anode
JP4585867B2 (en) * 2005-01-07 2010-11-24 ダイソー株式会社 Insoluble anode
US7943019B2 (en) 2005-01-07 2011-05-17 Daiso Co., Ltd. Insoluble electrode
JPWO2013058151A1 (en) * 2011-10-18 2015-04-02 株式会社シンク・ラボラトリー Remote control method for plate making consumables
CN111088493A (en) * 2019-12-26 2020-05-01 西安泰金工业电化学技术有限公司 Preparation method of titanium anode with titanium-based coating

Similar Documents

Publication Publication Date Title
US5435896A (en) Cell having electrodes of improved service life
US7871504B2 (en) Method for forming an electrocatalytic surface on an electrode and the electrode
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
KR100554588B1 (en) Electrode for Generation of Hydrogen
US6527939B1 (en) Method of producing copper foil with an anode having multiple coating layers
JP2011017084A (en) Electrocatalytic coating with platinum group metals and electrode made therefrom
TW200417634A (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
JP2003507580A (en) Cathode usable for electrolysis of aqueous solution
JPS5944392B2 (en) Electrolytic cathode with cobalt/zirconium dioxide fused spray coating
JPH02200790A (en) Electrode for electrolysis
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
USRE28820E (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
US5324407A (en) Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
JPH062194A (en) Electroplating method
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
CA1311443C (en) Method for extending service life of a hydrogen-evolution electrode
JP3044797B2 (en) Manufacturing method of anode for oxygen generation
JP3430479B2 (en) Anode for oxygen generation
JP3422885B2 (en) Electrode substrate
JPH06146047A (en) Anode for generating oxygen and its production
JPS6324083A (en) Production of insoluble anode
JPS6364518B2 (en)
JPH09125292A (en) Electrode substrate