JPS61116883A - Transparent electrode with metal wiring - Google Patents

Transparent electrode with metal wiring

Info

Publication number
JPS61116883A
JPS61116883A JP59238848A JP23884884A JPS61116883A JP S61116883 A JPS61116883 A JP S61116883A JP 59238848 A JP59238848 A JP 59238848A JP 23884884 A JP23884884 A JP 23884884A JP S61116883 A JPS61116883 A JP S61116883A
Authority
JP
Japan
Prior art keywords
transparent
metal
transparent electrode
metal wiring
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59238848A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshida
利彦 吉田
Osamu Nakamura
修 中村
Keitaro Fukui
福井 慶太郎
Hisashi Kakigi
柿木 寿
Mitsuo Matsumura
松村 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP59238848A priority Critical patent/JPS61116883A/en
Publication of JPS61116883A publication Critical patent/JPS61116883A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain a battery of large area which has less power loss and does not decrease conversion efficiency by coating a thin transparent conductive film on a transparent insulating substrate when forming the transparent electrode with metal wirings for forming a solar battery, and forming the metal wirings of the prescribed pattern. CONSTITUTION:A thin transparent conductive film 11 made of tin oxide, indium oxide, titanium oxide or zinc oxide is coated on a transparent insulating substrate 13 made of glass, or plastic, and formed in the state that metal wirings 12 of the prescribed pattern are contacted thereon. At this time the wirings 12 may be formed on the film 11, or formed between the film 11 and the substrate 13. Or, only the wirings 12 of the film 11 is reduced electrolytically or thermally depositing in hydrogen gas stream, and the portion may be used as wirings 12. Thereafter, an amorphous silicon having a pin junction is accumulated on the substrate 13, and a back surface electrode is formed on the upper surface. Thus, a solar battery of large area is obtained with good workability.

Description

【発明の詳細な説明】 産−の利 ! 未発明は、一般には透明電極に関するものであり、時計
の液晶ディスプレー及び車の曇止めガラス窓用としても
使用することができ、特にアモルファス太陽電池用とし
て好適に利用し得る金属配線付き透明電極に関するもの
である。更に詳しくごえば1本発明は透明絶縁基板上に
成膜される透明4電性薄膜に金属配線を施した太陽電池
用の透明電極として有効であり、本明細書では太陽電池
用透明電極についてのみ説明する。又1本明細書におい
て、アモルファス半導体とは微結晶化半導体をも含むも
のとする。
[Detailed description of the invention] Benefits of production! The invention generally relates to transparent electrodes, which can be used for liquid crystal displays of watches and anti-fog glass windows of cars, and particularly relates to transparent electrodes with metal wiring that can be suitably used for amorphous solar cells. It is something. More specifically, 1. The present invention is effective as a transparent electrode for solar cells in which metal wiring is applied to a transparent four-electrode thin film formed on a transparent insulating substrate, and in this specification, only the transparent electrode for solar cells will be described. explain. Furthermore, in this specification, an amorphous semiconductor includes a microcrystalline semiconductor.

え釆立韮遺 近年、アモルファス半導体、例えばアモスファ)   
   オッ9.7人陽706よ(1)□膜アあ、ユよ、
っまり結晶化シリコンに比べ可視光域での吸収係数が大
きく、結晶シリコンと同程度の変換効率を得るには約1
けた薄い膜厚でよいこと、(2)アモルファスシリコン
太陽電池の製造に要した電力は結晶シリコン太陽電池よ
りも極めて少なく、エネルギ回収率が少ないこと、(3
)基板加熱が少なく且つアモルファスシリコノが基板と
反応することがなく、ステンレス板、ガラス板等のよう
に種々の基板を使用し得ること、(4)シラン(SiH
4)からグロー放電分解にて直接基板上に膜を形成し得
るため連続生産が容易であること、等々   −の理由
によつで光起電力装置の構TO&!素として注目を浴び
ている。このようにアモルファスシリコン半導体を使用
した太陽電池は、特に製造が比較的容易であり、また低
コスト化が可能であるため現在電卓や時計などの小電力
発生用の電源として広く使用されている。
In recent years, amorphous semiconductors (e.g. amorphous semiconductors)
Oh 9.7 people 706 (1) □ Membrane Ah, Yu.
The absorption coefficient in the visible light range is larger than that of crystalline silicon, and it takes approximately 1 to obtain the same conversion efficiency as crystalline silicon.
(2) The power required to manufacture amorphous silicon solar cells is significantly lower than that of crystalline silicon solar cells, and the energy recovery rate is low; (3)
) There is little substrate heating and amorphous silicon does not react with the substrate, and various substrates such as stainless steel plates and glass plates can be used; (4) Silane (SiH)
4) It is possible to form a film directly on the substrate by glow discharge decomposition, so continuous production is easy, and so on. It is attracting attention as a matter of fact. As described above, solar cells using amorphous silicon semiconductors are relatively easy to manufacture and can be manufactured at low cost, so they are currently widely used as power sources for small power generation devices such as calculators and watches.

。 占     る゛ための− しかしながら、アモルファスシリコン太陽電池の単位面
積当りの出力は極めて小さく、従って実用に供し得る大
電力を発生するには、太陽電池の表面積を大とすること
が不可欠であある。
. However, the output per unit area of an amorphous silicon solar cell is extremely small, and therefore, in order to generate a large amount of power that can be put to practical use, it is essential to increase the surface area of the solar cell.

1折る欠点を解決するべく、一つの太陽電池素子の表面
積を大とすると、大面積化すればするほど素子の表面積
を構成する透明導電層(透明電極)のシート抵抗(a常
は50〜100Ω/口)が増大し、そのために電力損失
がますま大きくなり、変換効率がより一層低下してしま
うという難点があった。更に又、このような大きな太陽
電池を製造するのは技術的にはより困難となり1歩留ま
りが低下するという不利益がある。
In order to solve the drawback of folding, the surface area of one solar cell element is increased. /port) increases, resulting in an even greater power loss and a further decrease in conversion efficiency. Furthermore, it is technically more difficult to manufacture such a large solar cell, resulting in a disadvantage in that the yield rate decreases.

に記透明電極のシート抵抗による電力の損失をなくすた
めに種々の提案がなされている0例えば、一枚の絶縁基
板上に複数個のセルを形成し、各セルをパターニングに
よって透明電極及び裏面電極を通じて隣接するセルとそ
れぞれ直列に接続し、−・枚の絶I&基板から実用的な
高電圧を取り出すように構成した集積型アモルファス太
陽電池が開発されている(「日本の化学と挟術J’83
/アモルファスのfjS75頁参照、)シかル、一枚の
絶縁基板上に複数個のセルを形成するには、透明電極の
バターニング工程、アモルファスシリコンのpinの各
種の成膜工程及び裏面電極の法着り程にそれぞれマスキ
ングを行なうなど、工程が複雑となり、作業性が悪化す
る欠点がある。
Various proposals have been made to eliminate power loss due to the sheet resistance of transparent electrodes. For example, by forming multiple cells on a single insulating substrate and patterning each cell, transparent electrodes and back electrodes can be formed. An integrated amorphous solar cell has been developed that is constructed so that a practical high voltage can be extracted from a single insulator and substrate by connecting each adjacent cell in series through the ``Japanese Chemistry and Technology J' 83
/Amorphous fjS (see page 75), in order to form multiple cells on one insulating substrate, a transparent electrode patterning process, various film formation processes for amorphous silicon pins, and a back electrode formation process are required. The disadvantage is that the process becomes complicated, such as masking each step of the process, and workability deteriorates.

又、特公昭58−21827号公報に開示さ・れた発明
のように、アモルファスシリコンのpinの各層を複数
のセルに対して連続して成膜し、[程の複雑化を若干軽
減したものもあるが、上記公報の第8826行〜31行
に記載されているように、大面積化するとやはりシート
抵抗が増大し゛て電力損失が上昇し、変換効率が低下す
る欠点がある。
In addition, as in the invention disclosed in Japanese Patent Publication No. 58-21827, each layer of amorphous silicon pins is successively deposited on a plurality of cells, thereby reducing the complexity slightly. However, as described in lines 8826 to 31 of the above-mentioned publication, increasing the area also has the disadvantage that the sheet resistance increases, power loss increases, and conversion efficiency decreases.

上記各従来技術は、ガラス基板−透明電極−アモルファ
スシリコンのpin層−裏面電極の構造を有する太陽電
池であるが、金属基板−アモルファスシリコンのpin
層又はnip層−透明電極の構造を有する太陽電池も実
用化されている0例えば、特開昭59−55012号公
報、特開昭59−104182号公報、特開昭59−5
0576号公報には金属電極−アモルファスシリコノの
pin層−透明電極の構造を右する大FI!J電池が開
示されている。しかしながら、後者の構造、つまり金属
電極−アモルファスシリコンのpinF−透明電極の構
造を有する太陽電池の場合には透明電極が大気に触れる
のを防ILするために何等かのパツゾヘーショ/を行な
う必要があり、このためパッシベーションの工程が多く
なり、作業性を悪化し、かつコスト高となるので好まし
くない。
Each of the above conventional technologies is a solar cell having a structure of glass substrate-transparent electrode-amorphous silicon pin layer-back electrode, but metal substrate-amorphous silicon pin layer
Solar cells having a layer or nip layer-transparent electrode structure have also been put to practical use.
Publication No. 0576 describes the structure of a metal electrode, an amorphous silicon pin layer, and a transparent electrode. A J battery is disclosed. However, in the case of a solar cell having the latter structure, that is, a metal electrode-amorphous silicon pinF-transparent electrode structure, it is necessary to perform some kind of protection to prevent the transparent electrode from coming into contact with the atmosphere. , This increases the number of passivation steps, impairs workability, and increases costs, which is undesirable.

力、前者の構造、つまりガラス基板−透明電極一アモル
ファスシリコンのpin層−裏面電極の構造を有する太
陽電池の場合にはガラス基板(または他の透明絶縁基板
)が耐候性材料であるため、透明電極にパッシベーショ
ンを施したのど回じ役[1を果たすので、構造上は前者
の方が好ましいが、前記いずれの構造太陽電池にしても
大面積化して実用的な高い電圧を取り出すことは前記し
た理由により困難である。
In the case of solar cells with the former structure, that is, the structure of glass substrate - transparent electrode - pin layer of amorphous silicon - back electrode, the glass substrate (or other transparent insulating substrate) is a weather-resistant material, so it is transparent. The former is preferable from a structural point of view because the electrodes are passivated to serve as a throat-turning device [1], but as mentioned above, solar cells with either of the structures require a large area and a practical high voltage. Difficult for a number of reasons.

このように従来はアモルファスシリコ/半導体1   
  を使用した太陽電池を大面積化すると透明電極のシ
ート抵抗が増大して電力損失が大きくなり、変換効率が
著るしく低下するために実用に供し得ないという欠点が
あった。又、一枚の絶縁基板Fに複数個のセルを形成し
たのでは製造工程が複雑化し1作業性が悪くなり、更に
金属基板−アモルファスシリコンのpinまたはnip
層−透明電極の構造にすると透明電極のパッシベーショ
ン工程が必要となり、作業性が悪くなるといった欠点が
あった。
In this way, conventionally amorphous silicon/semiconductor 1
When a solar cell using the solar cell is made to have a large area, the sheet resistance of the transparent electrode increases, power loss increases, and the conversion efficiency significantly decreases, making it unsuitable for practical use. Furthermore, forming a plurality of cells on a single insulating substrate F complicates the manufacturing process and impairs workability.
The layer-transparent electrode structure requires a passivation process for the transparent electrode, which has the drawback of poor workability.

泣1の1L伯 従って、本発明の目的は、大面積化しても透明電極のシ
ート抵抗が殆んど増大しない5従ってアモルファス太陽
電池から実用的な高い電圧を取り出すことを可能にする
太陽電池用金属配線材!!透明電極を提供することであ
る。
Accordingly, the object of the present invention is to provide a solar cell that allows a practical high voltage to be extracted from an amorphous solar cell, in which the sheet resistance of the transparent electrode hardly increases even when the area is increased. Metal wiring material! ! The object of the present invention is to provide a transparent electrode.

本発明の他の目的は、太陽電池の製造工程を簡単化する
ことができる大FiAit池用金属配線付き透明電極を
提供することである。
Another object of the present invention is to provide a transparent electrode with metal wiring for large FiAit cells that can simplify the manufacturing process of solar cells.

本発明の更に他の目的は、時計の液晶ディスプレーとか
車の曇止めガラス窓用としても使用することができる金
属配線付き透明電極を提供することである・ U売    るため 二 と記目的は本発明によって達成される。要約すれば本発
明は、透明絶縁基板上に成膜される透明導電性薄膜に電
気的に接触した所定のパターンの金属配線を形成し1発
生した電流を透明4電性薄膜から近傍にある金属配線に
収集するようにした透明電極である。
Still another object of the present invention is to provide a transparent electrode with metal wiring that can be used for liquid crystal displays of watches and anti-fog glass windows of cars. Achieved by invention. In summary, the present invention involves forming a predetermined pattern of metal wiring in electrical contact with a transparent conductive thin film formed on a transparent insulating substrate, and transmitting the generated current from the transparent four-conducting thin film to the nearby metal. It is a transparent electrode that collects on the wiring.

以ド 本発明の好ましい実施例について添付図面を参照
して詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図〜第4図は本発明に係る透明電極10の実施例を
示す概略平面図及び断面図である。ガラス、プラスチッ
ク等の透明絶縁基板13上に酸化スズ、酸化インジウム
、酸化チタン、酸化亜鉛のような物質にて形成された透
明導電性薄IP211が成nr2され、隨つ該′1f1
明導電性薄膜11には後で詳しく説明するような態様で
所定パターンの金属配線12が’it気的に接触した状
態で施される。
1 to 4 are a schematic plan view and a cross-sectional view showing an embodiment of a transparent electrode 10 according to the present invention. A transparent conductive thin IP 211 made of a substance such as tin oxide, indium oxide, titanium oxide, or zinc oxide is formed on a transparent insulating substrate 13 such as glass or plastic.
A predetermined pattern of metal wiring 12 is applied to the bright conductive thin film 11 in a manner that will be described in detail later, in a state in which it is in close contact with the metal wiring 12 .

第2図に示す透明電極10の実施例では、ガラス、プラ
スチック等の透明絶縁基板13上に所定のパターンに金
属配線12を形成し、その上部に全面にわたって透明導
電性薄膜11を形成し 金属配線12と薄膜11とを電
気的に接触させた構成とされる。
In the embodiment of the transparent electrode 10 shown in FIG. 2, a metal wiring 12 is formed in a predetermined pattern on a transparent insulating substrate 13 made of glass, plastic, etc., and a transparent conductive thin film 11 is formed over the entire surface of the metal wiring. 12 and the thin film 11 are in electrical contact with each other.

又、第3図に示す透明Tt極10の実施例では。Also, in the embodiment of the transparent Tt pole 10 shown in FIG.

透明絶縁基板13上に全面にわたって透明導電性l膜1
1を形成し、その上部に所定のパターンに金属配線12
を形成し、薄IFJ11と配線12とを電気的に接触さ
せた構成とされる。
A transparent conductive l film 1 is formed over the entire surface on a transparent insulating substrate 13.
1, and metal wiring 12 is formed on top of it in a predetermined pattern.
The thin IFJ 11 and the wiring 12 are electrically connected to each other.

更に、第4図に示す透明電極10の゛実施例では、透明
絶縁基板13上に全面にわたって酸化スズのような金属
酸化物よりなる透明導電性P1膜14七形成し、次に、
このPy膜11のうちの金属配線12を施こす所定のパ
ターンの部分のみを還元させ、金属とすることにより金
属配線12を形成し薄IP211と電気的に接触させた
構成とされる。
Furthermore, in the embodiment of the transparent electrode 10 shown in FIG. 4, a transparent conductive P1 film 14 made of a metal oxide such as tin oxide is formed over the entire surface of the transparent insulating substrate 13, and then,
Only a predetermined patterned portion of the Py film 11 on which the metal wiring 12 is to be applied is reduced and made into metal, thereby forming the metal wiring 12 and making electrical contact with the thin IP 211.

前記還元法としては、電#還元を用いる方法とか、水素
気流中、で熱分解還元を用いる方法が好ましい。
The reduction method is preferably a method using electrolyte reduction or a method using thermal decomposition reduction in a hydrogen stream.

この第4図に示す透明電極10の場合には電極表面に金
属配線を形成したことによる凹凸が殆んとなく、アモル
ファスシリコンのpinfiを成膜した際に表面の凹凸
に起因するアモルファスシリコンのピンホール等が発生
せず1歩留りが低下する恐れがないという前記他の2つ
の構造に勝る利点がある。なお、第4図の透明電極にお
いては。
In the case of the transparent electrode 10 shown in FIG. 4, there is almost no unevenness due to the formation of metal wiring on the electrode surface, and when amorphous silicon pinfi is formed, the amorphous silicon pin due to the unevenness on the surface is almost completely absent. This structure has an advantage over the other two structures in that no holes are generated and there is no risk of a decrease in yield. In addition, in the transparent electrode of FIG.

透明導電性薄H1lとしてI nz O3をした場合に
は金属配l112は当然にインジウムになる。インジウ
ムはグロー放電中1等プラズマ雰囲気ではシリコン等と
反応し、好ましくないために、In103を使用し金属
配線12を形成した場合には還元により形成されたイン
ジウムの金属配線12を別種の金属1例えばステンレス
、クロム又はニッケル等で被塑する。斯る別種の金属は
、蒸着又は電解メッキによって施すことができ、又所望
に応じて金属配、線部分を還元しながら電解メッキを施
すこともでさる。
If I nz O3 is used as the transparent conductive thin layer H11, the metal layer 112 will naturally be indium. Indium reacts with silicon, etc. in a primary plasma atmosphere during glow discharge, which is undesirable. Therefore, when In103 is used to form the metal wiring 12, the indium metal wiring 12 formed by reduction is replaced with another metal such as Plasticized with stainless steel, chromium, nickel, etc. Such different metals can be applied by vapor deposition or electrolytic plating, and if desired, electrolytic plating can be applied while reducing the metal wiring and wire portions.

&1立差] )」二記したように、本発明に゛おいては、透明絶縁ヰ 基板−ヒに1&校された透明導電性tII膜に金属配線
が所定のパターンに施されているので、この透明電極上
にアモルファスシリコンのpi n層を形成し、更にそ
の上に裏面電極を形成してアモルファス太陽電池を製造
した際に1発生電流は透明導電性薄膜を通って最も近傍
にある金属配線に収集される。このため、太陽電池を大
面植化しても透明電極のシート抵抗は殆んど増大せず、
従って電力損失の増大が殆んどなく、変換効率も殆んど
低下しないというすぐれた利点がある。又、透明電極上
に全面にわたってアモルファスシリコンの210層が形
成できるから、マスキング工程数を減らすことができ、
作業性が向上する利点もある。特に、第4図に示す構造
の透明電極にあっては、電極表面に凹凸が殆んどないた
め、その上部に成膜されるアモルファスシリコンのpt
nRにピンホール等の欠陥が発生せず、従って歩留りが
大巾に向上するという利点もある。
As mentioned above, in the present invention, metal wiring is provided in a predetermined pattern on a transparent conductive TII film coated on a transparent insulating substrate. When an amorphous solar cell is manufactured by forming an amorphous silicon PIN layer on this transparent electrode and further forming a back electrode on top of it, the generated current flows through the transparent conductive thin film to the nearest metal wiring. will be collected in For this reason, even if solar cells are planted over a large area, the sheet resistance of the transparent electrode will hardly increase.
Therefore, there is an excellent advantage that there is almost no increase in power loss and almost no decrease in conversion efficiency. Furthermore, since 210 layers of amorphous silicon can be formed over the entire surface of the transparent electrode, the number of masking steps can be reduced.
There is also the advantage of improved workability. In particular, in the case of the transparent electrode having the structure shown in FIG.
There is also the advantage that defects such as pinholes do not occur in nR, and therefore the yield is greatly improved.

1崖j 実施例1 縦5cm、横5cm、厚さ1.1mmの正方形のガラス
よりなる透明絶縁基板ヒに全面にわたってS n OZ
をX、着し、厚さ2000スの透明導電性fi!膜を形
成した。この薄膜上に、第5図に示すように1cmの間
隔の格子状にステンレスを10’Oス1次にアルミニウ
ムをIgm、さらにステンレスを500大の厚さに順次
に蒸着し。
Example 1 S n OZ was applied over the entire surface of a transparent insulating substrate made of square glass measuring 5 cm long, 5 cm wide, and 1.1 mm thick.
X, transparent conductive fi! with a thickness of 2000 mm. A film was formed. On this thin film, as shown in FIG. 5, stainless steel was sequentially deposited to a thickness of 10'O, first aluminum to Igm, and then stainless steel to a thickness of 500.

1cmの間隔の格子状の金属配線12を形成し。A lattice-shaped metal wiring 12 with an interval of 1 cm is formed.

第3図に示す構成の透明電極10を形成した。金属配線
の幅は0.5mmであった。この透明電極h ニ’k 
BにわたってアモルファスシリコンのPI3層を順次に
厚さ100ス、5000ス、200^にそれぞれ成膜し
、n層上にアルミニウムをlルmのJγさに薄着して裏
面電極を形成し、太陽電池を製造した。この本発明の透
明電極を使用した太陽電池と同じ大きさ、仕様のただし
金属配線のない従来の太陽電池とを照射強度 100m
W/crn’のAM−1光で照射してその電流−電圧特
性を測定したところ、第6図に示す結果が得られた、第
6因においてAは本発明によるもの、Bは従来のものの
特性を示し、これより明らかに本発明の透明′rrL極
を使用した太陽電池は電流−電圧特性が一段と向ヒして
いることが分る。
A transparent electrode 10 having the configuration shown in FIG. 3 was formed. The width of the metal wiring was 0.5 mm. This transparent electrode h ni'k
Three PI layers of amorphous silicon are sequentially formed over B to a thickness of 100, 5000, and 200, respectively, and aluminum is thinly deposited on the n layer to a Jγ of 1 lum to form a back electrode. was manufactured. A solar cell using the transparent electrode of the present invention and a conventional solar cell having the same size and specifications but without metal wiring had an irradiation intensity of 100 m.
When irradiated with AM-1 light of W/crn' and measured its current-voltage characteristics, the results shown in Figure 6 were obtained. It can be clearly seen that the solar cell using the transparent 'rrL electrode of the present invention has much improved current-voltage characteristics.

実施例2 実施例1と同じ条件及び材料で、ただしガラス絶縁基板
上にまず1cmf11隔の格子状に金属配線を形成し、
次に全面にS n Ozの透明導電性薄膜を形成した第
2図に示す構成の透明型第10を形成し、この透明電極
を使用して実施例1と同じ太陽電池を製造し、AM−1
光の照射下で電流−電圧特性を測定したところ、実施例
1と同様の特性が得られた。
Example 2 The same conditions and materials as in Example 1 were used, except that metal wiring was first formed in a lattice shape with 1 cm f 11 intervals on a glass insulating substrate,
Next, a transparent conductive thin film of SnOz was formed on the entire surface of a transparent type 10 having the structure shown in FIG. 2, and this transparent electrode was used to manufacture the same solar cell as in Example 1. 1
When the current-voltage characteristics were measured under light irradiation, the same characteristics as in Example 1 were obtained.

実施例3 実施例1と同じ条件及び材料で、ただしガラス基板上に
7に看したS n Oz P+のうち金属配線となる格
子状の部分を残して他の部分をマスキングし電解;元法
によりマスキングを行なわない部分を還元してSnとし
、格子状の金属配線を形成した第4図に示す構成の透明
電極を形成し、この透明1!極を使用して実施例1と同
じ大FJS電池を作製した。この太陽電池も実施例1と
同様の電流−電正特性を示した。
Example 3 Electrolysis was carried out under the same conditions and materials as in Example 1, except that the lattice-shaped portion of the S n Oz P+ shown in 7 was left on the glass substrate and the other portions were masked and electrolyzed according to the original method. The portions that are not masked are reduced to Sn to form a transparent electrode having the structure shown in FIG. 4, in which a lattice-shaped metal wiring is formed, and this transparent 1! A large FJS battery similar to Example 1 was made using the electrodes. This solar cell also showed the same current-voltage characteristics as Example 1.

実施例4 実施例3と同じく電解還元法により金属配線を形成しさ
らに金属配線のSnに電解クロムメッキを行なった透明
電極を形成し、この透明電極を使用して実施例1と同じ
太陽電池を作製した。この太陽電池も実施例1と同様の
電流−電圧特性を示した。
Example 4 Metal wiring was formed using the electrolytic reduction method as in Example 3, and a transparent electrode was formed by electrolytic chromium plating on the Sn of the metal wiring, and the same solar cell as in Example 1 was produced using this transparent electrode. Created. This solar cell also showed the same current-voltage characteristics as Example 1.

尚、金属配線の輻及びパターン(配線形状)は大WAT
L池の動作時の電流値及び透明導電性薄膜のシート抵抗
によって最適な輻及びパターンが選定され、限定される
ものではない、従って、必要に応じて種々の変形及び変
更がなし得る。
In addition, the convergence and pattern (wiring shape) of the metal wiring are large WAT.
The optimum radius and pattern are selected depending on the current value during operation of the L cell and the sheet resistance of the transparent conductive thin film, and are not limited to this. Therefore, various modifications and changes can be made as necessary.

上述のように1本発明による金属配線付き透明電極を使
用した太陽電池は大面積化しても電力損失の増大は殆ん
どなく、従って実用的な高い電圧を取り出すことができ
る太陽電池を可能にし、またマスキング工程数が減少す
るので作業性が向上ベ    する等の顕著な利点があ
る。
As mentioned above, the solar cell using the transparent electrode with metal wiring according to the present invention has almost no increase in power loss even when the area is increased, and therefore it enables a solar cell that can extract a practical high voltage. In addition, there are significant advantages such as improved workability due to the reduction in the number of masking steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明による金属配線付き透明電極の一実施
例を示す概略平面図である。 第2図から第4図は、第1図の透明電極の3つの製造方
法をそれぞれ例示する概略断面図である第5図は、本発
明による金属配線付き透明電極の他の実施例を示す概略
平面図である。 第6図は、本発明の透明電極を使用した太陽電池と従来
の太陽電池の電流−電圧特性図である。 lO:透明電極 11:透明導電性薄膜 12=金属配線 13:透明絶縁基板 (VLLI)¥4
FIG. 1 is a schematic plan view showing an embodiment of a transparent electrode with metal wiring according to the present invention. 2 to 4 are schematic cross-sectional views illustrating three methods of manufacturing the transparent electrode shown in FIG. 1. FIG. 5 is a schematic sectional view showing another embodiment of the transparent electrode with metal wiring according to the present invention. FIG. FIG. 6 is a current-voltage characteristic diagram of a solar cell using the transparent electrode of the present invention and a conventional solar cell. lO: Transparent electrode 11: Transparent conductive thin film 12 = Metal wiring 13: Transparent insulating substrate (VLLI) ¥4

Claims (1)

【特許請求の範囲】 1)透明絶縁基板上に成膜された透明導電性薄膜に電気
的に接触した所定のパターンの金属配線を形成したこと
を特徴とする金属配線付き透明電極。 2)透明絶縁基板はガラス又はプラスチックであり、透
明導電性薄膜は酸化スズ、酸化インジウム、酸化チタン
又は酸化亜鉛である特許請求の範囲第1項記載の透明電
極。 3)金属配線は透明導電性薄膜上に形成される特許請求
の範囲第1項又は第2項記載の透明電極。 4)金属配線は透明絶縁基板上に形成され、その上部に
透明導電性薄膜が成膜される特許請求の範囲第1項又は
第2項記載の透明電極。 5)金属配線は、透明絶縁基板上に成膜された金属酸化
物よりなる透明導電性薄膜の一部分を還元することによ
つて形成される特許請求の範囲第1項又は第2項記載の
透明電極。 6)金属配線は、金属酸化物よりなる透明導電性薄膜の
一部分を還元して金属とし、該金属上に別種の金属を蒸
着することによつて形成される特許請求の範囲第5項記
載の透明電極。 7)金属酸化物よりなる透明導電性薄膜の還元は電解還
元法によつて行なわれる特許請求の範囲第5項又は第6
項記載の透明電極。 8)金属酸化物よりなる透明導電性薄膜の還元は水素気
流中での熱分解還元法によつて行なわれる特許請求の範
囲第5項又は第6項記載の透明電極。 9)金属配線が金属酸化物よりなる透明導電性薄膜の一
部分を還元して金属とし、該金属に電解メッキにより別
種の金属を被着することによつて形成される特許請求の
範囲第5項記載の透明電極。 10)金属配線が金属酸化物よりなる透明導電性薄膜の
一部分を還元しながら同時に電解メッキを施すことによ
つて形成される特許請求の範囲第5項記載の透明電極。
[Scope of Claims] 1) A transparent electrode with metal wiring, characterized in that metal wiring in a predetermined pattern is formed in electrical contact with a transparent conductive thin film formed on a transparent insulating substrate. 2) The transparent electrode according to claim 1, wherein the transparent insulating substrate is glass or plastic, and the transparent conductive thin film is tin oxide, indium oxide, titanium oxide, or zinc oxide. 3) The transparent electrode according to claim 1 or 2, wherein the metal wiring is formed on a transparent conductive thin film. 4) The transparent electrode according to claim 1 or 2, wherein the metal wiring is formed on a transparent insulating substrate, and a transparent conductive thin film is formed on the metal wiring. 5) The metal wiring is formed by reducing a portion of a transparent conductive thin film made of a metal oxide formed on a transparent insulating substrate. electrode. 6) The metal wiring is formed by reducing a portion of a transparent conductive thin film made of a metal oxide to a metal, and depositing another type of metal on the metal. Transparent electrode. 7) The reduction of the transparent conductive thin film made of metal oxide is carried out by an electrolytic reduction method.
Transparent electrode as described in section. 8) The transparent electrode according to claim 5 or 6, wherein the reduction of the transparent conductive thin film made of a metal oxide is carried out by a thermal decomposition reduction method in a hydrogen stream. 9) Claim 5, wherein the metal wiring is formed by reducing a portion of a transparent conductive thin film made of a metal oxide to a metal, and depositing a different type of metal on the metal by electrolytic plating. The transparent electrode described. 10) The transparent electrode according to claim 5, wherein the metal wiring is formed by electrolytically plating a portion of a transparent conductive thin film made of a metal oxide while simultaneously reducing it.
JP59238848A 1984-11-13 1984-11-13 Transparent electrode with metal wiring Pending JPS61116883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238848A JPS61116883A (en) 1984-11-13 1984-11-13 Transparent electrode with metal wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238848A JPS61116883A (en) 1984-11-13 1984-11-13 Transparent electrode with metal wiring

Publications (1)

Publication Number Publication Date
JPS61116883A true JPS61116883A (en) 1986-06-04

Family

ID=17036163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238848A Pending JPS61116883A (en) 1984-11-13 1984-11-13 Transparent electrode with metal wiring

Country Status (1)

Country Link
JP (1) JPS61116883A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140676A (en) * 1987-11-26 1989-06-01 Nippon Denso Co Ltd Semi-transparent solar cell
WO2003081609A1 (en) * 2002-03-26 2003-10-02 Fujikura Ltd. Conductive glass and photoelectric conversion device using same
JP2005044544A (en) * 2003-07-23 2005-02-17 Fujikura Ltd Substrate for transparent electrode, photoelectric conversion device, and dye-sensitized solar cell
AU2001249204B2 (en) * 2000-11-17 2006-10-12 3M Innovative Properties Company Color tailorable pigmented optical bodies with surface metalization
JP2008117782A (en) * 2002-03-26 2008-05-22 Fujikura Ltd Conductive glass and photoelectric conversion element using this
JP2009117742A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Electrode film for solar cell, method for manufacturing solar cell using same, and solar cell
JP2009117731A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Method for manufacturing solar cell
KR101001548B1 (en) 2004-06-29 2010-12-17 삼성에스디아이 주식회사 Dye-sensitive solar cell using photoelectric transformation electrode
US8629346B2 (en) 2002-10-03 2014-01-14 Fujikura Ltd. Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
CN111129189A (en) * 2019-12-11 2020-05-08 中国电子科技集团公司第十八研究所 ITO glass cover plate for space and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173982A (en) * 1981-04-21 1982-10-26 Fuji Electric Corp Res & Dev Ltd Solar battery module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173982A (en) * 1981-04-21 1982-10-26 Fuji Electric Corp Res & Dev Ltd Solar battery module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140676A (en) * 1987-11-26 1989-06-01 Nippon Denso Co Ltd Semi-transparent solar cell
AU2001249204B2 (en) * 2000-11-17 2006-10-12 3M Innovative Properties Company Color tailorable pigmented optical bodies with surface metalization
JP2008117782A (en) * 2002-03-26 2008-05-22 Fujikura Ltd Conductive glass and photoelectric conversion element using this
AU2003236063B2 (en) * 2002-03-26 2006-04-06 Fujikura Ltd. Conductive glass and photoelectric conversion device using same
CN1326158C (en) * 2002-03-26 2007-07-11 株式会社藤仓 Electrically conductive glass and photoelectric conversion element using the same
WO2003081609A1 (en) * 2002-03-26 2003-10-02 Fujikura Ltd. Conductive glass and photoelectric conversion device using same
US8546683B2 (en) 2002-03-26 2013-10-01 Fujikura Ltd. Electrically conductive glass and photoelectric conversion element using the same
US8629346B2 (en) 2002-10-03 2014-01-14 Fujikura Ltd. Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
JP2005044544A (en) * 2003-07-23 2005-02-17 Fujikura Ltd Substrate for transparent electrode, photoelectric conversion device, and dye-sensitized solar cell
JP4578786B2 (en) * 2003-07-23 2010-11-10 株式会社フジクラ Method for producing dye-sensitized solar cell
KR101001548B1 (en) 2004-06-29 2010-12-17 삼성에스디아이 주식회사 Dye-sensitive solar cell using photoelectric transformation electrode
JP2009117742A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Electrode film for solar cell, method for manufacturing solar cell using same, and solar cell
JP2009117731A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Method for manufacturing solar cell
CN111129189A (en) * 2019-12-11 2020-05-08 中国电子科技集团公司第十八研究所 ITO glass cover plate for space and preparation method
CN111129189B (en) * 2019-12-11 2022-04-12 中国电子科技集团公司第十八研究所 ITO glass cover plate for space and preparation method

Similar Documents

Publication Publication Date Title
KR100334595B1 (en) Manufacturing method of photovoltaic device
JP2001345460A (en) Solar cell device
CN110176506B (en) Thin-film photovoltaic cell series structure and preparation process of thin-film photovoltaic cell series
JPS61116883A (en) Transparent electrode with metal wiring
JP2000058888A (en) Solar battery and manufacture thereof
JP3078936B2 (en) Solar cell
US4954181A (en) Solar cell module and method of manufacture
JP2000150929A (en) Photovoltaic element and manufacture thereof
JP2000133828A (en) Thin-film solar cell and manufacture thereof
JPH0864850A (en) Thin film solar battery and fabrication thereof
JPS639755B2 (en)
JPS63276278A (en) Transparent electrode with buried interconnection
US5458695A (en) Solar cell and process for fabricating the same
GB2117971A (en) Amorphous silicon photovoltaic device
JPH04118975A (en) Photovoltaic device and manufacture thereof
JP3762013B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JPH10200143A (en) Amorphous silicon solar battery
JP3078938B2 (en) Solar cell
JP2001068709A (en) Thin-film solar battery
JPS6191971A (en) Manufacture of solar battery device
CN116581169A (en) Heterojunction solar cell and preparation method thereof
JPS6324677A (en) Solar cell
JP2000208787A (en) Solar battery
JPH0597413A (en) Amorphous multicomponent semiconductor and device using the same
JPS60107872A (en) Photoelectromotive force device