JP3078938B2 - Solar cell - Google Patents

Solar cell

Info

Publication number
JP3078938B2
JP3078938B2 JP04361500A JP36150092A JP3078938B2 JP 3078938 B2 JP3078938 B2 JP 3078938B2 JP 04361500 A JP04361500 A JP 04361500A JP 36150092 A JP36150092 A JP 36150092A JP 3078938 B2 JP3078938 B2 JP 3078938B2
Authority
JP
Japan
Prior art keywords
solar cell
current collecting
collecting electrode
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04361500A
Other languages
Japanese (ja)
Other versions
JPH06204524A (en
Inventor
総一郎 川上
勉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP04361500A priority Critical patent/JP3078938B2/en
Publication of JPH06204524A publication Critical patent/JPH06204524A/en
Application granted granted Critical
Publication of JP3078938B2 publication Critical patent/JP3078938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、屋外設置に好適である
太陽電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell suitable for outdoor installation.

【0002】[0002]

【従来の技術】(反射防止膜及び集電電極の関係につい
て) 従来、太陽電池の一般的な構成は、例えば結晶系太陽電
池の場合、半導体pn接合の光入射側に反射防止層と集
電電極とをその順序で積層して設け、前記半導体接合の
裏面側に下部電極を設ける構成となっている。ここで、
前記反射防止膜は太陽光を有効に取り入れるべく可及的
に反射成分を無くし入射成分を多くするように光学的に
設計されている。また、反射防止膜は、屈折率から好適
な膜厚が計算され所望の膜厚に形成される。
2. Description of the Related Art (Relationship between antireflection film and current collecting electrode) Conventionally, a general structure of a solar cell is, for example, in the case of a crystalline solar cell, an antireflection layer and a current collector are provided on the light incident side of a semiconductor pn junction. The electrodes are stacked in that order, and a lower electrode is provided on the back side of the semiconductor junction. here,
The antireflection film is optically designed so as to eliminate the reflection component as much as possible and to increase the incident component in order to effectively take in sunlight. Further, the antireflection film is formed to have a desired film thickness by calculating a suitable film thickness from the refractive index.

【0003】一方、前記集電電極は、電流を有効に取り
出す為に反射防止層の上に格子状に設けられる。該電極
の材料としては、銀、アルミニウムや銅のように比抵抗
の低い材料が選ばれる。
On the other hand, the current collecting electrodes are provided in a grid on the antireflection layer in order to extract current effectively. As a material for the electrode, a material having a low specific resistance such as silver, aluminum or copper is selected.

【0004】(集電電極の外観問題) 上記従来例において、前記太陽電池素子を構成する反射
防止層は特定の波長において反射の極小値を持つため、
外観上一般的に青系統の干渉色が観測され易い一方、前
記集電電極は金属であるため金属光沢を有するものであ
る。このため、青色の太陽電池素子上に格子状の金属が
配置された格好となり、当該太陽電池を建築物に設置す
るような場合、周囲との色彩調和が悪く美観を損ねると
いう問題があった。
(Appearance problem of current collecting electrode) In the above conventional example, the antireflection layer constituting the solar cell element has a minimum value of reflection at a specific wavelength.
Generally, a blue-based interference color is easily observed in appearance, while the current collecting electrode has a metallic luster because it is a metal. For this reason, the grid-like metal is arranged on the blue solar cell element, and when the solar cell is installed in a building, there is a problem that color harmony with surroundings is poor and aesthetic appearance is impaired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、屋根材や、
壁材などの建築物に調和良く適用可能な太陽電池を提供
することを目的とするものである。
SUMMARY OF THE INVENTION The present invention relates to a roofing material,
It is an object of the present invention to provide a solar cell which can be applied to buildings such as wall materials in harmony.

【0006】[0006]

【課題を解決するための手段】本発明の太陽電池は、反
射防止膜を有する太陽電池素子上に集電電極を設けて成
る太陽電池において、該集電電極は、前記太陽電池素子
の色彩と同系統の色彩である顔料を含む有機質又は無機
質から成る皮膜層にて被覆されていることを特徴とす
る。この場合、前記集電電極は選択的に被覆する必要か
らスクリーン印刷法又は電着法を用いて形成されること
が望ましい。
According to the present invention, there is provided a solar cell comprising a solar cell element having an antireflection film and a current collecting electrode provided on the solar cell element. It is characterized in that it is covered with a coating layer made of an organic or inorganic substance containing a pigment having a similar color. In this case, the current collecting electrode is desirably formed by a screen printing method or an electrodeposition method because it is necessary to selectively cover the current collecting electrode.

【0007】本発明の太陽電池素子としては、単一結晶
若しくは多結晶半導体又はアモルファス半導体のいずれ
も用いることができ、さらには、基板上に形成された多
結晶半導体薄膜であっても良い。具体的には結晶系の場
合、例えばシリコンやGaAs,CdS等が好適に用い
られ、また、アモルファス系の場合、シリコンやシリコ
ンゲルマニウムなどが好適に用いられる。
As the solar cell element of the present invention, any of a single crystal, a polycrystalline semiconductor, and an amorphous semiconductor can be used, and further, a polycrystalline semiconductor thin film formed on a substrate may be used. Specifically, in the case of a crystalline system, for example, silicon, GaAs, CdS, or the like is suitably used, and in the case of an amorphous system, silicon, silicon germanium, or the like is suitably used.

【0008】結晶系太陽電池の場合は一般的に基板を必
要としないが、アモルファス半導体や一部の多結晶半導
体の場合は薄膜であるため基板上に堆積される。例えば
アモルファス系太陽電池の場合は、基板上に薄膜のp
層、i層、n層から成る半導体接合を形成する。さら
に、分光感度や電圧の向上を目的としてpin接合を2
以上積層したいわゆるタンデム式であっても良い。前記
基板材料がガラスやセラミックスのように絶縁性である
場合には下部電極として導電性の層を設ける。
In general, a crystalline solar cell does not require a substrate, but an amorphous semiconductor or some polycrystalline semiconductors are thin films and are deposited on the substrate. For example, in the case of an amorphous solar cell, a thin film p
A semiconductor junction consisting of a layer, an i layer, and an n layer is formed. Furthermore, a pin junction is used to improve spectral sensitivity and voltage.
A so-called tandem type laminated as described above may be used. When the substrate material is insulating like glass or ceramics, a conductive layer is provided as a lower electrode.

【0009】また、前記基板材料が導電性である場合、
下部電極を設ける必要はない。導電性の基板材料として
はFe,Ni,Cr,Al,Mo,Au,Nb,Ta,
V,Ti,Pt,Pb等の金属若しくはこれらの合金、
例えば真鍮、ステンレス鋼等の薄板又はその複合体が挙
げられる。
Also, when the substrate material is conductive,
There is no need to provide a lower electrode. Examples of conductive substrate materials include Fe, Ni, Cr, Al, Mo, Au, Nb, Ta,
Metals such as V, Ti, Pt, Pb or alloys thereof;
For example, a thin plate of brass, stainless steel, or the like or a composite thereof may be used.

【0010】前記半導体層の光入射側には反射防止層が
形成される。該反射防止層は太陽光を有効に取入れるた
め反射を無くし入射を多くするように光学的に設計され
るものであるがこの様な材料としては、結晶系の太陽電
池では、SiO2,SiO,Ta25等の絶縁性材料が
用いられ、各々の屈折率から好適な膜厚が計算され所望
の膜厚の反射防止層が形成される。
An antireflection layer is formed on the light incident side of the semiconductor layer. The antireflection layer is optically designed to eliminate reflection and increase incidence in order to effectively take in sunlight. Such a material is, for example, SiO 2 or SiO 2 in a crystalline solar cell. , Ta 2 O 5 or the like of an insulating material is used, desired film thickness antireflection layer is calculated suitable thickness from each refractive index is formed.

【0011】一方、アモルファスシリコン太陽電池の場
合には、結晶系太陽電池と異なり表面のシート抵抗が高
いため光で発生した電流は半導体接合に対して横方向に
流すことができない。このためシート抵抗を下げるため
の透明な上部電極が必要である。
On the other hand, in the case of an amorphous silicon solar cell, unlike a crystalline solar cell, the current generated by light cannot flow in the lateral direction with respect to the semiconductor junction because of the high sheet resistance of the surface. Therefore, a transparent upper electrode for lowering the sheet resistance is required.

【0012】該上部電極のシート抵抗としては100Ω
/□以下であることが望ましい。該上部電極の機能と前
記反射防止層の機能を兼ねるような材料が用いられる。
このような特性を備えた材料としてSnO2,In
23,ZnO,CdO,CdSnO4,ITO(In2
2+SnO2)などの金属酸化物が挙げられる。これらの
作製方法としては、抵抗加熱蒸着法、電子ビーム加熱蒸
着法、スパッタリング法、スプレー法等を用いることが
できる。
The sheet resistance of the upper electrode is 100Ω.
/ □ or less is desirable. A material having both the function of the upper electrode and the function of the antireflection layer is used.
Materials having such properties include SnO 2 , In
2 O 3 , ZnO, CdO, CdSnO 4 , ITO (In 2 O
2 + SnO 2 ). As a manufacturing method thereof, a resistance heating evaporation method, an electron beam heating evaporation method, a sputtering method, a spray method, or the like can be used.

【0013】[0013]

【作用】本発明の構成では、集電電極は薄膜により被覆
されるが、該薄膜は、太陽電池の色調と合わせるべく顔
料を含んだ高分子樹脂や無機材料が用いられる。高分子
樹脂の材料は一般的に用いられるポリエステル、エチレ
ン−酢酸ビニル共重合体、アクリル樹脂、エポキシ樹
脂、ウレタン等が好適に用いられる。このような高分子
樹脂を被覆する方法としては、通常行われている方法が
用いられるが、例えば溶剤に溶かしてディッピングする
方法やスクリーン印刷する方法、電着で塗装する方法、
等が用いられるが、集電電極部分のみに塗装する必要が
あることからスクリーン印刷法や電着法が好適である。
なお、スクリーン印刷の場合、集電電極のパターンに合
わせた版を用い、顔料を含んだインクを集電電極上に印
刷すれば良い。
In the structure of the present invention, the current collecting electrode is covered with a thin film. The thin film is made of a polymer resin or an inorganic material containing a pigment so as to match the color tone of the solar cell. As the material of the polymer resin, generally used polyester, ethylene-vinyl acetate copolymer, acrylic resin, epoxy resin, urethane and the like are preferably used. As a method of coating such a polymer resin, a commonly used method is used, for example, a method of dipping by dissolving in a solvent or a method of screen printing, a method of coating by electrodeposition,
However, a screen printing method or an electrodeposition method is preferable since it is necessary to paint only on the current collecting electrode portion.
In the case of screen printing, an ink containing a pigment may be printed on the current collecting electrode using a plate matching the pattern of the current collecting electrode.

【0014】また、電着法による場合には、カルボン酸
基やアミノ基などの電離した官能基をもつ比較的低分子
量のアニオン系電着塗料や、カチオン系電着塗料溶液に
対向電極と太陽電池とを浸漬し、集電電極をカソード電
極あるいはアノード電極として電着すれば、集電電極上
のみに電着皮膜が形成できるためアライメントの問題を
回避できる。さらに、集電電極の表面だけでなく端面に
も被覆が可能であるため集電電極を完全に被覆できる有
利な方法である。また、電着法にあっては、着色をする
場合、所望の色の顔料を電着液に混合しておけば良い。
In the case of the electrodeposition method, a relatively low molecular weight anionic electrodeposition coating material having an ionized functional group such as a carboxylic acid group or an amino group or a cationic electrodeposition coating solution is applied to a counter electrode and a solar cell. If the battery is immersed and the current collecting electrode is electrodeposited as a cathode electrode or an anode electrode, an electrodeposition film can be formed only on the current collecting electrode, so that the alignment problem can be avoided. Further, since it is possible to cover not only the surface of the current collecting electrode but also the end face, this is an advantageous method that can completely cover the current collecting electrode. Further, in the electrodeposition method, when coloring, a pigment of a desired color may be mixed in the electrodeposition liquid.

【0015】本発明における集電電極は、反射防止層の
上部に形成されるものであるが、形状としては、光入射
を妨げないようにするべく可能な限り細いこと、さらに
は、格子状であることが望ましい。また、集電電極によ
って集められた電流を更にバスバーで集めるように構成
されたものでも良い。
The current collecting electrode in the present invention is formed on the antireflection layer. The shape of the current collecting electrode is as thin as possible so as not to hinder the light incidence, and furthermore, it is formed in a grid shape. Desirably. Further, a configuration may be employed in which the current collected by the current collecting electrode is further collected by a bus bar.

【0016】[0016]

【実施例】(実施例1) 図1は、本発明の第1の実施例を示すものである。本実
施例に係る太陽電池100は以下のようにして作製し
た。まず、鏡面研磨を施し充分に脱脂、洗浄を行ったS
US430BA製基板(幅10cm、長さ5cm、厚み
0.1mm)101上に下部電極102、n層103、
i層104、p層105の順で堆積を行い、その後反射
防止層106を堆積した。次いで、不図示のスクリーン
印刷機を用いて幅200μm、長さ4cmの集電電極1
07を間隔1cmで印刷し加熱炉でキュア(硬化)し
た。続いて、不図示のスズメッキした銅箔のバスバーを
張りつけた。同様の手順を用いて試料としての太陽電池
を10枚作製した。
(Embodiment 1) FIG. 1 shows a first embodiment of the present invention. The solar cell 100 according to this example was manufactured as follows. First, S which has been subjected to mirror polishing and sufficiently degreased and washed
A lower electrode 102, an n-layer 103, and a substrate 430 made of US430BA (width 10 cm, length 5 cm, thickness 0.1 mm) 101
Deposition was performed in the order of the i-layer 104 and the p-layer 105, and then the antireflection layer 106 was deposited. Then, using a screen printing machine (not shown), a current collecting electrode 1 having a width of 200 μm and a length of 4 cm
07 was printed at an interval of 1 cm and cured (cured) in a heating furnace. Subsequently, a tin-plated copper foil bus bar (not shown) was attached. Using the same procedure, ten solar cells were manufactured as samples.

【0017】その後、図4に示すように、電着槽401
内に脱イオン水を10リットル入れ500rpmの速度
で攪拌しながら青い顔料を混ぜたアクリル系アニオン電
着塗料を2リットル投入した。1時間攪拌を継続した後
エージングのため2日間静置し電着液402を作製し
た。
Thereafter, as shown in FIG.
10 liters of deionized water was put therein, and 2 liters of an anionic acrylic electrodeposition paint mixed with a blue pigment was added while stirring at a speed of 500 rpm. After stirring for 1 hour, the solution was left standing for 2 days for aging to prepare an electrodeposition solution 402.

【0018】次に、基板101を電着槽401内に投入
し、対向電極403とバスバー405を導線407で接
続した。バスバー405がマイナスとなるように30V
の電圧を印加し、2分間保持した。集電電極407及び
バスバー405上のみに被覆層108を堆積させた後、
基板101を電着槽から取り出し脱イオン水で洗浄し恒
温器に入れて150℃で5分間保持しで被覆層108を
乾燥させた。これにより、集電電極107及び不図示の
バスバーには、青色の被覆層108が積層できた。該皮
膜層108は、その膜厚を触針式膜厚計で測定したとこ
ろ5μmであった。
Next, the substrate 101 was put into the electrodeposition bath 401, and the counter electrode 403 and the bus bar 405 were connected by the conducting wire 407. 30V so that the bus bar 405 becomes negative
, And maintained for 2 minutes. After depositing the coating layer 108 only on the collecting electrode 407 and the bus bar 405,
The substrate 101 was taken out of the electrodeposition bath, washed with deionized water, placed in a thermostat and kept at 150 ° C. for 5 minutes to dry the coating layer 108. As a result, the blue covering layer 108 was able to be laminated on the current collecting electrode 107 and the bus bar (not shown). The film thickness of the coating layer 108 was 5 μm when measured by a stylus-type film thickness meter.

【0019】次に、これらの直列化太陽電池のエンカプ
シュレーションを以下のような手順で行った。まず、太
陽電池100の上下にEVA(エチレン酢酸ビニル)を
積層し、さらに、そのフッ素樹脂フィルムETFE(エ
チレンテトラフルオロエチレン)を積層した後、真空ラ
ミネーターに投入して150℃で60分間保持し、真空
ラミネーションを行い、太陽電池モジュールを10個作
製した。作製された試料たる各太陽電池モジュールはN
o.1からNo.10と番号付けされた。得られた太陽
電池モジュールは、集電電極107が太陽電池本体と同
じ色調であるため美観が向上した。
Next, encapsulation of these serialized solar cells was performed in the following procedure. First, EVA (ethylene vinyl acetate) is laminated on the upper and lower sides of the solar cell 100, and further, the fluororesin film ETFE (ethylene tetrafluoroethylene) is laminated, and then charged into a vacuum laminator and held at 150 ° C. for 60 minutes. Vacuum lamination was performed to produce ten solar cell modules. Each of the manufactured sample solar cell modules is N
o. No. 1 to No. Numbered ten. In the obtained solar cell module, the appearance was improved because the current collecting electrode 107 had the same color tone as the solar cell main body.

【0020】また、作製された太陽電池モジュールは以
下の手順で初期特性を測定した。まず、キセノンランプ
による疑似太陽光源(以下シミュレータという)を用い
てAM1.5の太陽光スペクトルを100mW/cm2
の強度で照射し、太陽電池の電流電圧特性を測定した。
この特性結果を太陽電池の開口面積で規格化して6.5
%の平均初期変換効率を得た。
The initial characteristics of the manufactured solar cell module were measured in the following procedure. First, the sunlight spectrum of AM1.5 was measured at 100 mW / cm 2 using a pseudo solar light source (hereinafter referred to as a simulator) using a xenon lamp.
And the current-voltage characteristics of the solar cell were measured.
This characteristic result is normalized by the opening area of the solar cell to 6.5.
% Average initial conversion efficiency was obtained.

【0021】次に、これらの試料の耐久特性を、日本工
業規格C8917の結晶系太陽電池モジュールの環境試
験方法及び耐久試験方法に定められた温湿度サイクル試
験A−2に基づいて評価した。まず、試料を温湿度につ
いて制御できる恒温恒湿器に投入し、−40℃から+8
5℃(相対湿度85%)に変化させるサイクル試験を1
0回繰り返し行った。
Next, the durability characteristics of these samples were evaluated based on the temperature-humidity cycle test A-2 specified in the environmental test method and the durability test method of the crystalline solar cell module of Japanese Industrial Standard C8917. First, the sample is put into a thermo-hygrostat capable of controlling the temperature and humidity, and the temperature is changed from −40 ° C. to +8.
1 cycle test to change to 5 ° C (85% relative humidity)
Repeated 0 times.

【0022】そして、次に、これらの試料について初期
特性と同様にシミュレータを用い太陽電池特性を測定し
たところ、試験終了後の試料の変換効率は初期変換効率
の98%であり顕著な劣化は生じなかった。また、シャ
ント抵抗を測定したところ約10%の減少でありこれも
顕著な劣化は生じなかった。これは耐久特性が向上して
いることの現れと考えられるが、この理由として被覆層
108の形成により集電電極107の湿度に基づく劣化
を防ぐ作用が起こるためと考えられる。また、エンカプ
シュレーションの樹脂と基板との剥離は全く観測され
ず、パッシベーション層107が良好な接着効果を有す
ることがわかった。
Next, when the solar cell characteristics of these samples were measured using a simulator in the same manner as the initial characteristics, the conversion efficiency of the samples after the test was 98% of the initial conversion efficiency, and remarkable deterioration occurred. Did not. When the shunt resistance was measured, it was reduced by about 10%, and no remarkable deterioration occurred. This is considered to be due to an improvement in the durability characteristics, and it is considered that the reason for this is that the formation of the coating layer 108 prevents the current collecting electrode 107 from deteriorating due to humidity. Also, no peeling of the encapsulation resin from the substrate was observed at all, indicating that the passivation layer 107 has a good adhesive effect.

【0023】(比較例) 本実施例の特徴を比較するため、図3に示すような構成
で従来の太陽電池300を以下のように作製した。ま
ず、上記第1の実施例と同様にSUS430BA製基板
(幅10cm、長さ5cm、厚み0.1mm)301を
不図示のDCスパッタ装置に入れCrを2000Å堆積
し、下部電極302を形成した。基板301を取り出
し、不図示のRFプラズマCVD成膜装置に入れn層3
03、i層304、p層305の順序で堆積を行った。
その後、不図示の抵抗加熱の蒸着装置に入れて、Inと
Snの合金を抵抗加熱により蒸着し、反射防止層306
を700Å堆積した。
Comparative Example In order to compare the features of this example, a conventional solar cell 300 having the structure shown in FIG. 3 was manufactured as follows. First, a SUS430BA substrate (width: 10 cm, length: 5 cm, thickness: 0.1 mm) 301 was placed in a DC sputtering device (not shown), and Cr was deposited at 2000 ° to form a lower electrode 302 in the same manner as in the first embodiment. The substrate 301 is taken out, put into an RF plasma CVD film forming apparatus (not shown),
03, i-layer 304, and p-layer 305 in this order.
Thereafter, the film is put into a resistance heating vapor deposition device (not shown), and an alloy of In and Sn is vapor deposited by resistance heating.
Was deposited at 700 °.

【0024】次に、上記第1の実施例と同様に、基板3
01を不図示のスクリーン印刷機に設置し、幅200μ
m長さ4cmの集電電極307を間隔1cmで印刷し
た。このとき導電性ペーストは、Agペーストを用い
た。印刷後、基板301を加熱炉に入れて150℃で5
分間保持し導電性ペーストをキュアした。
Next, as in the first embodiment, the substrate 3
01 on a screen printing machine (not shown),
A current collecting electrode 307 having a length of 4 cm was printed at an interval of 1 cm. At this time, an Ag paste was used as the conductive paste. After printing, the substrate 301 is placed in a heating furnace at 150 ° C. for 5 minutes.
The conductive paste was cured by holding for a minute.

【0025】次に、この太陽電池のエンカプシュレーシ
ョンを上記実施例1と同様な手順で行い太陽電池モジュ
ールを10個作製した。
Next, encapsulation of this solar cell was performed in the same procedure as in Example 1 to produce ten solar cell modules.

【0026】以上のようにして作製された太陽電池モジ
ュールは、各試料についてNo.11からNo.20ま
での番号付けがなされ、各作製された太陽電池モジュー
ルの初期特性を測定した。まず、シミュレータを用いて
AM1.5の太陽光スペクトルを100mW/cm2
強度で照射し太陽電池の電流電圧特性を測定した。この
特性結果を太陽電池の開口面積で規格化して6.5%の
平均変換効率を得た。続いて、これらの試料の耐久特性
を、上記第5の実施例と同様に評価した。まず、試料を
温湿度が制御できる恒温恒湿器に投入し、−40℃から
+85℃(相対湿度85%)に変化させるサイクル試験
を10回繰り返し行った。次に、試験終了後の試料を初
期特性の場合と同様にシミュレータを用い太陽電池特性
を測定したところ、初期変換効率に対して平均で90%
であった。また、シャント抵抗を測定したところ約30
%の減少であり、電流のリークが認められた。
The solar cell module manufactured as described above has the following characteristics for each sample. 11 to No. Numbering was performed up to 20, and the initial characteristics of each manufactured solar cell module were measured. First, a solar spectrum of AM1.5 was irradiated at an intensity of 100 mW / cm 2 using a simulator, and the current-voltage characteristics of the solar cell were measured. This characteristic result was normalized by the opening area of the solar cell to obtain an average conversion efficiency of 6.5%. Subsequently, the durability characteristics of these samples were evaluated in the same manner as in the fifth embodiment. First, the sample was put into a thermo-hygrostat capable of controlling the temperature and humidity, and a cycle test in which the temperature was changed from −40 ° C. to + 85 ° C. (relative humidity 85%) was repeated 10 times. Next, the solar cell characteristics of the sample after the test were measured using a simulator in the same manner as in the case of the initial characteristics.
Met. When the shunt resistance was measured, it was about 30
%, And current leakage was observed.

【0027】従って、上記第1の実施例及び前記比較例
を対照検討すると、本発明の太陽電池は比較例のものに
比べて外観上の見栄えが向上し、耐久性も向上すること
がわかる。
Therefore, when the first embodiment and the comparative example are compared and examined, it can be seen that the solar cell of the present invention has improved appearance and durability as compared with the solar cell of the comparative example.

【0028】(実施例2) 図2は本発明の第2の実施例を示すものである。本実施
例の太陽電池200は以下のようにして作製した。金属
製シリコン基板201の裏面に下部電極202を形成し
た後基板201の上にn型のポリシリコン203を形成
し、実施例1と同様にp型のマイクロクリスタルシリコ
ンをプラズマCVD法で形成した。
Embodiment 2 FIG. 2 shows a second embodiment of the present invention. The solar cell 200 of this example was manufactured as follows. After a lower electrode 202 was formed on the back surface of the metal silicon substrate 201, an n-type polysilicon 203 was formed on the substrate 201, and a p-type microcrystalline silicon was formed by a plasma CVD method as in the first embodiment.

【0029】その後、実施例1と同様にしてITOから
なる反射防止層206の単結晶シリコン上部電極の形成
までは実施例1と同様に行った。次に、実施例1と同様
に不図示のスクリーン印刷機で集電電極207を印刷
し、キュアした。次に、不図示のスズメッキした銅箔の
バスバーを張りつけた。さらに、アクリル系アニオン電
着塗料を用いて被覆層208を堆積した。その後、太陽
電池200の裏面に接着した。同様の方法で太陽電池を
10枚作製した。これらを10枚直列に接続し、図2に
示すような直列化太腸電池を作製した。
Thereafter, in the same manner as in Example 1, the steps up to the formation of the single-crystal silicon upper electrode of the antireflection layer 206 made of ITO were performed in the same manner as in Example 1. Next, the current collecting electrode 207 was printed using a screen printer (not shown) and cured in the same manner as in Example 1. Next, a tin-plated copper foil bus bar (not shown) was attached. Further, a coating layer 208 was deposited using an acrylic anion electrodeposition paint. Then, it adhered to the back surface of the solar cell 200. Ten solar cells were produced in the same manner. Ten of these were connected in series to produce a serialized large intestine battery as shown in FIG.

【0030】次に、この直列化太陽電池のエンカプシュ
レーションを実施例1と同様に行い太陽電池モジュール
を10個作製して試料をNo.21からNo.30とし
た。得られた太陽電池モジュールの初期特性を実施例1
と同様に測定し、これらの試料の耐久特性を、比較例と
同様に評価した。試験終了後の試料の変換効率は初期変
換効率の96%であり顕著な劣化は生じなかった。ま
た、シャント抵抗を測定したところ約15%の減少で顕
著な劣化はなかった。
Next, encapsulation of this serialized solar cell was performed in the same manner as in Example 1, ten solar cell modules were manufactured, and the sample was designated as No. 1. 21 to No. 21. 30. Example 1 shows the initial characteristics of the obtained solar cell module.
, And the durability characteristics of these samples were evaluated in the same manner as in the comparative example. The conversion efficiency of the sample after the test was 96% of the initial conversion efficiency, and no significant deterioration occurred. Also, when the shunt resistance was measured, there was no significant deterioration with a decrease of about 15%.

【0031】このように本実施例についても、耐久性が
良いことがわかる。
Thus, it can be seen that this embodiment also has good durability.

【0032】(実施例3) 図5は、第3の実施例を示すものである。本実施例に係
る太陽電池500は以下のようにして作製した。n型シ
リコン基板503の裏面に下部電極1002を形成した
後基板503の上にp型シリコン層505を熱拡散法で
形成した。その後、SiO2からなる反射防止層506
をスパッタ法で形成した。さらに実施例1と同様に不図
示のスクリーン印刷機で集電電極507を印刷し、60
0℃でキュアした。この場合、集電電極507は反射防
止層506を貫通してp層505に直接にコンタクトし
た。次に、不図示のスズメッキした銅箔のバスバーを張
りつけた。さらに、アクリル系カチオン電着塗料を用い
て被覆層508を堆積した。
(Embodiment 3) FIG. 5 shows a third embodiment. The solar cell 500 according to this example was manufactured as follows. After forming the lower electrode 1002 on the back surface of the n-type silicon substrate 503, a p-type silicon layer 505 was formed on the substrate 503 by a thermal diffusion method. After that, the anti-reflection layer 506 made of SiO 2
Was formed by a sputtering method. Further, the current collecting electrode 507 is printed by a screen printer (not shown) in the same manner as in the first embodiment.
Cure at 0 ° C. In this case, the collecting electrode 507 penetrated the antireflection layer 506 and directly contacted the p layer 505. Next, a tin-plated copper foil bus bar (not shown) was attached. Further, a coating layer 508 was deposited using an acrylic cationic electrodeposition paint.

【0033】次に、この太陽電池のエンカプシュレーシ
ョンを実施例1と同様に行い太陽電池モジュールを10
個作製して試料をNo.31からNo.40とした。得
られた太陽電池モジュールは集電電極507と反射防止
層506の色調がほぼ同じで美観が向上した。
Next, encapsulation of this solar cell was performed in the same manner as in Example 1, and the solar cell module was
No. was prepared and the sample was No. 31 to No. 31 40. In the obtained solar cell module, the color tone of the current collecting electrode 507 and the antireflection layer 506 were almost the same, and the appearance was improved.

【0034】(実施例4) 本実施例に係る太陽電池は、図1に示す実施例1に係る
太陽電池100と同様な構成ではあるが以下のように異
なる方法で作製した。実施例1と同様にして集電電極1
07及び不図示のバスバー108を形成した。さらに、
アクリル系アニオン電着塗料を用いて被覆層108を堆
積した。その後、集電電極107及びバスバーと同様の
パターンのスクリーン印刷の版を用いて青い顔料の入っ
たエポキシ樹脂を太陽電池100上に印刷し被覆層10
8を形成した。
Example 4 The solar cell according to this example has the same configuration as the solar cell 100 according to Example 1 shown in FIG. 1, but was manufactured by a different method as described below. Current collecting electrode 1 in the same manner as in Example 1.
07 and a bus bar 108 (not shown) were formed. further,
The coating layer 108 was deposited using an acrylic anion electrodeposition paint. Thereafter, an epoxy resin containing a blue pigment is printed on the solar cell 100 using a screen printing plate having the same pattern as the current collecting electrode 107 and the bus bar, and the coating layer 10 is formed.
8 was formed.

【0035】次に、この直列化太陽電池のエンカプシュ
レーションを実施例1と同様に行い太陽電池モジュール
を10個作製して試料をNo.41からNo.50とし
た。得られた太陽電池モジュールについてはその初期特
性を実施例5と同様に測定した。そして、これらの試料
の耐久特性を、比較例と同様に評価した。試験終了後の
試料の変換効率は初期変換効率の97%であり顕著な劣
化は生じなかった。また、シャント抵抗を測定したとこ
ろ約12%の減少で顕著な劣化はなかった。
Next, encapsulation of this serialized solar cell was performed in the same manner as in Example 1, ten solar cell modules were manufactured, and the sample was designated as No. 1. No. 41 to No. 41. 50. The initial characteristics of the obtained solar cell module were measured in the same manner as in Example 5. Then, the durability characteristics of these samples were evaluated in the same manner as the comparative example. The conversion efficiency of the sample after the test was 97% of the initial conversion efficiency, and no remarkable deterioration occurred. When the shunt resistance was measured, there was no remarkable deterioration with a decrease of about 12%.

【0036】このように、本実施例の場合も太陽電池の
耐久性が向上することがわかる。
As described above, it can be seen that the durability of the solar cell is also improved in the case of this embodiment.

【0037】[0037]

【発明の効果】本発明によれば、集電電極を覆う皮覆層
を形成することにより、耐久性の高い太陽電池が得ら
れ、しかも、外観上の見栄えの向上した太陽電池が得ら
れる。
According to the present invention, a solar cell having high durability can be obtained by forming a skin covering layer covering a current collecting electrode, and a solar cell with improved appearance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る太陽電池の構成を
示す模式断面図である。
FIG. 1 is a schematic sectional view showing a configuration of a solar cell according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係る太陽電池の構成を
示す模式断面図である。
FIG. 2 is a schematic sectional view illustrating a configuration of a solar cell according to a second embodiment of the present invention.

【図3】従来の太陽電池の構成を示す模式断面図であ
る。
FIG. 3 is a schematic sectional view showing a configuration of a conventional solar cell.

【図4】電着法の装置を示す断面である。FIG. 4 is a cross-sectional view showing an apparatus of an electrodeposition method.

【図5】本発明の第3の実施例に係る太陽電池の構成を
示す模式断面図である。
FIG. 5 is a schematic sectional view showing a configuration of a solar cell according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100、200、300、500 太陽電池、101、
201、301 基板、102、202、302 下部
電極、103、203、303 n層、104、20
4、304 i層、105、205、305 p層、1
06、206、306 反射防止層、107、207、
307 集電電極、108、208、308 被覆層、
401 電着槽、402 電着液、403 対向電極、
404 基板、405 バスバー、406 電源、40
7 導線、502 下部電極、503 n型シリコン基
板、505 p型シリコン層、506 反射防止層、5
07 集電電極、508 被覆層。
100, 200, 300, 500 solar cells, 101,
201, 301 substrate, 102, 202, 302 lower electrode, 103, 203, 303 n-layer, 104, 20
4, 304 i-layer, 105, 205, 305 p-layer, 1
06, 206, 306 anti-reflection layer, 107, 207,
307 collecting electrode, 108, 208, 308 coating layer,
401 electrodeposition tank, 402 electrodeposition liquid, 403 counter electrode,
404 board, 405 bus bar, 406 power supply, 40
7 conductor, 502 lower electrode, 503 n-type silicon substrate, 505 p-type silicon layer, 506 anti-reflection layer, 5
07 current collecting electrode, 508 coating layer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 H01L 31/042 E04D 13/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 31/04 H01L 31/042 E04D 13/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反射防止膜を有する太陽電池素子上に集
電電極を設けて成る太陽電池において、該集電電極は、
前記太陽電池素子の色彩と同系統の色彩である顔料を含
有機質又は無機質から成る皮膜層にて被覆されている
ことを特徴とする太陽電池。
1. A solar cell comprising a current collecting electrode provided on a solar cell element having an antireflection film, wherein the current collecting electrode comprises:
Including pigments that are similar in color to the color of the solar cell element
Solar cell characterized by being covered with coating layer made of non-organic or inorganic.
【請求項2】 前記皮膜層は、電着法またはスクリーン
印刷法を用いて形成されていることを特徴とする請求項
に記載の太陽電池。
2. A method according to claim wherein the coating layer is characterized by Tei Rukoto formed using electrodeposition method or a screen printing method
2. The solar cell according to 1 .
JP04361500A 1992-12-28 1992-12-28 Solar cell Expired - Fee Related JP3078938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04361500A JP3078938B2 (en) 1992-12-28 1992-12-28 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04361500A JP3078938B2 (en) 1992-12-28 1992-12-28 Solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11205409A Division JP2000036610A (en) 1999-07-19 1999-07-19 Method for repairing damaged point in solar cell

Publications (2)

Publication Number Publication Date
JPH06204524A JPH06204524A (en) 1994-07-22
JP3078938B2 true JP3078938B2 (en) 2000-08-21

Family

ID=18473835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04361500A Expired - Fee Related JP3078938B2 (en) 1992-12-28 1992-12-28 Solar cell

Country Status (1)

Country Link
JP (1) JP3078938B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083474A2 (en) * 2010-12-23 2012-06-28 Von Roll Solar Ag Photovoltaic device and method for producing it
FR2995727B1 (en) * 2012-09-14 2014-10-24 Commissariat Energie Atomique DEVICE AND METHOD FOR RESTORING SILICON-BASED PHOTOVOLTAIC CELLS

Also Published As

Publication number Publication date
JPH06204524A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
JP2686022B2 (en) Method for manufacturing photovoltaic element
EP2428997B1 (en) Solar cell with electroplated metal grid
JP2974485B2 (en) Manufacturing method of photovoltaic device
US5512107A (en) Environmentally stable thin-film solar module
JP2939075B2 (en) Solar cell module
US5380371A (en) Photoelectric conversion element and fabrication method thereof
JP3222361B2 (en) Method of manufacturing solar cell module and solar cell module
US20140349441A1 (en) Solar cell with metal grid fabricated by electroplating
US5859397A (en) Process for the production of a photovoltaic element
EP3474333B1 (en) Solar cell and production method therefor, and solar cell module
JPH11135820A (en) Solar battery module and reinforcing member therefor
CN102206801B (en) The forming method of the conductive transparent oxide film layer used by film photovoltaic device based on cadmium telluride
JP3267738B2 (en) Solar cell module
JPH0563218A (en) Solar battery and manufacture thereof
JP3001785B2 (en) Solar cell module, roofing material, air distribution device, roofing material construction method, and roofing material manufacturing method
JP3078936B2 (en) Solar cell
Gress et al. Wire bonding as a cell interconnection technique for polycrystalline silicon thin‐film solar cells on glass
CN102208484B (en) The forming method of the conductive transparent oxide film layer used by film photovoltaic device based on cadmium telluride
JP3078938B2 (en) Solar cell
JP2000150929A (en) Photovoltaic element and manufacture thereof
JPS61116883A (en) Transparent electrode with metal wiring
JPH0864850A (en) Thin film solar battery and fabrication thereof
JP3293391B2 (en) Solar cell module
US20150207019A1 (en) Method for Fabricating Crystalline Silicon Solar Cell Having Passivation Layer and Local Rear Contacts
JP3072832B2 (en) Photoelectric converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees