JPS63222468A - Substrate for amorphous silicon solar cell - Google Patents

Substrate for amorphous silicon solar cell

Info

Publication number
JPS63222468A
JPS63222468A JP62056198A JP5619887A JPS63222468A JP S63222468 A JPS63222468 A JP S63222468A JP 62056198 A JP62056198 A JP 62056198A JP 5619887 A JP5619887 A JP 5619887A JP S63222468 A JPS63222468 A JP S63222468A
Authority
JP
Japan
Prior art keywords
film
solar cell
oxide film
substrate
anodic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62056198A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tada
清志 多田
Eizo Isoyama
礒山 永三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP62056198A priority Critical patent/JPS63222468A/en
Publication of JPS63222468A publication Critical patent/JPS63222468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To make a substrate inexpensive and to implement light weight, by forming an unfilled hole anode oxide film of a specified film pressure on at least one surface of an Al plate, and forming a ceramic film having a specified thickness on the surface of the anode oxide film. CONSTITUTION:An unfilled hole anode oxide film 3 is formed on one surface of an Al plate 2 in a substrate 1 for an a-Si solar cell to a thickness of 1-10mum. A ceramic film 4 is formed on the surface of the film 3 to a thickness of 1-10mum. Excellent electric insulation is insured between the Al plate 2 and the solar cell to be formed because of the two films of the anode oxide film 3 and the ceramic film 4. Namely, the excellent electric insulation is obtained since both films are overlapped and provided.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はアモルファスシリコン太陽電池用基板に関し
、さらに詳しくいえば高電圧を取出すのに好適な直列接
続型アモルファスシリコン太陽電池に用いられる基板に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a substrate for an amorphous silicon solar cell, and more particularly to a substrate used in a series-connected amorphous silicon solar cell suitable for extracting high voltage.

この明細書において、「アルミニウム」という語には、
純アルミニウムはもちろんのことすべてのアルミニウム
合金を含むものとする。また、この明細書においては、
「アモルファスシリコン」を以下ra−SiJと称する
ものとする。
In this specification, the term "aluminum" refers to
This includes not only pure aluminum but also all aluminum alloys. In addition, in this specification,
"Amorphous silicon" is hereinafter referred to as ra-SiJ.

従来技術とその問題点 1枚の基板上に複数個の太陽電池を形成し、これらを直
列に接続した直列接続型a−Si太陽電池としては、た
とえば基板上に、クロム等からなる下部電極を電子ビー
ム蒸着法等により複数形成し、各下部電極上にa−3L
層をたとえばCVD法により形成し、各a−Si層を透
明導電膜で被覆し、各電池を直列に接続したものがある
。このような太陽電池においては、当然のことながら下
部電極間が電気的に絶縁されていなければならず、下部
電極間の抵抗値を20MΩ以上とすることが必要となっ
てくる。
Prior art and its problems A series-connected a-Si solar cell in which a plurality of solar cells are formed on one substrate and connected in series is made by, for example, forming a lower electrode made of chromium or the like on the substrate. A-3L is formed on each lower electrode by electron beam evaporation, etc.
There is one in which the layers are formed by, for example, a CVD method, each a-Si layer is covered with a transparent conductive film, and each battery is connected in series. In such a solar cell, it is a matter of course that the lower electrodes must be electrically insulated, and the resistance value between the lower electrodes must be 20 MΩ or more.

従来、a−Si太陽電池用基板としては、ガラス製のも
の、ポリイミド樹脂等の高耐熱性樹脂製のものおよびス
テンレス鋼板の表面に電気絶縁層としてポリイミド樹脂
等の高耐熱性樹脂からなる皮膜が形成されたもの、など
が用いられていた。しかしながら、上記第1番目のもの
では、放熱性が悪く、重く、フレキシビリティがなく、
しかも破損しやすいという問題があった。また、上記第
2番目のものでは、樹脂が非常に高価であるので、太陽
電池のコスト・ダウンを図ることがむずかしく、柔かす
ぎてこしがなく、しかもa−3i影形成にガスが発生す
るという問題があった。さらに、上記第3番目のもので
は、ステンレス鋼板およびポリイミド樹脂が非常に高価
であるので、太陽電池のコスト・ダウンを図ることはむ
ずかしいという問題があった。
Conventionally, substrates for a-Si solar cells have been made of glass, those made of highly heat-resistant resin such as polyimide resin, and stainless steel plates with a film made of highly heat-resistant resin such as polyimide resin as an electrical insulating layer on the surface. Those that were formed were used. However, the first method has poor heat dissipation, is heavy, and lacks flexibility.
Moreover, there was a problem that it was easily damaged. In addition, in the second case, the resin is very expensive, so it is difficult to reduce the cost of solar cells, and it is too soft and stiff, and gas is generated during a-3i shadow formation. There was a problem. Furthermore, in the third method, the stainless steel plate and polyimide resin are very expensive, so it is difficult to reduce the cost of the solar cell.

そこで、上記の問題を解決したa−3L太陽電池用基板
として、アルミニウム板の表面に陽極酸化皮膜が形成さ
れ、陽極酸化皮膜の表面に5i02またはAl2O3か
らなる膜厚100〜500人のスパッタ膜が形成された
ものが提案された(特開昭60−198782号公報参
照)。ところが、この基板では、次のような問題がある
。すなわち、膜厚100〜500人のスパッタ膜はポー
ラス状でかつ表面に微細な凹凸が多数存在したものとな
る。したがってその上に太陽電池を形成した場合、太陽
電池とアルミニウム板との間の電気絶縁性が十分ではな
くなり、その結果各太陽電池間の電気絶縁性が十分では
なくなる。
Therefore, as a substrate for a-3L solar cells that solves the above problems, an anodic oxide film is formed on the surface of an aluminum plate, and a sputtered film of 5i02 or Al2O3 with a thickness of 100 to 500 is formed on the surface of the anodic oxide film. A structure having the following structure was proposed (see Japanese Unexamined Patent Publication No. 198782/1982). However, this board has the following problems. In other words, a sputtered film with a thickness of 100 to 500 mm is porous and has many fine irregularities on its surface. Therefore, when solar cells are formed thereon, the electrical insulation between the solar cells and the aluminum plate is no longer sufficient, and as a result, the electrical insulation between each solar cell is no longer sufficient.

この発明の目的は、上記問題を一挙に解決したa−Si
太陽電池用基板を提供することにある。
The purpose of this invention is to solve the above problems all at once.
An object of the present invention is to provide a substrate for solar cells.

問題点を解決するための手段 この発明によるa−Si太陽電池用基板は、アルミニウ
ム板の少なくとも片面に膜厚1〜10J111の未封孔
陽極酸化皮膜が形成され、未封孔陽極酸化皮膜の表面に
膜厚1〜10Jy!のセラミックス皮膜が形成されたも
のである。
Means for Solving the Problems In the a-Si solar cell substrate according to the present invention, an unsealed anodic oxide film with a thickness of 1 to 10J111 is formed on at least one side of an aluminum plate, and the surface of the unsealed anodic oxide film is The film thickness is 1 to 10 Jy! A ceramic film is formed.

上記において、未封孔陽極酸化皮膜およびセラミックス
皮膜の2つの皮膜により、アルミニウム板と、形成され
る太陽電池との間の極めて優れた電気絶縁性が保証され
る。すなわち、未封孔陽極酸化皮膜およびセラミックス
皮膜は、それぞれ電気絶縁性を有するが、いずれもポー
ラス状であるために、それぞれ単独では極めて優れた電
気絶縁性は得られない。両者が重なり合って存在するこ
とにより極めて優れた電気絶縁性が得られる。
In the above, the two films, the unsealed anodic oxide film and the ceramic film, ensure excellent electrical insulation between the aluminum plate and the solar cell to be formed. That is, although the unsealed anodic oxide film and the ceramic film each have electrical insulation properties, since both are porous, extremely excellent electrical insulation properties cannot be obtained by using each film alone. Extremely excellent electrical insulation can be obtained by the overlapping presence of both.

陽極酸化皮膜としては、硫酸陽極酸化皮膜、しゅう酸陽
極酸化皮膜、クロム酸陽極酸化皮膜等各種のものを使用
することができる。また、陽極酸化皮膜を未封孔として
おくのは、未封孔陽極酸化皮膜が次の2つの特性を有す
ることが判明したからである。その1は高温にさらされ
ても皮膜にクラックが発生しにくいことである。
As the anodic oxide film, various types can be used, such as a sulfuric acid anodic oxide film, an oxalic acid anodic oxide film, and a chromic acid anodic oxide film. Furthermore, the reason why the anodic oxide film is left unsealed is that it has been found that the unsealed anodic oxide film has the following two characteristics. The first is that the film is less likely to crack even when exposed to high temperatures.

このことにより、下部電極やa−5i層を形成するさい
に基板の温度が250〜350℃まで上昇したとしても
陽極酸化皮膜にクラックが発生されるのが防止され、ク
ラックの存在による皮膜の電気絶縁性の低下が防止され
る。その2は、皮膜表面が微細な針状構造となっていな
いことである。陽極酸化皮膜の表面が針状構造となって
いると、その上に形成されるセラミックス皮膜の表面に
も微細な凹凸が存在することになり太陽電池の特性が出
ないおそれがある。通常、陽極酸化皮膜には、これを形
成するための陽極酸化処理後封孔処理を施すのが一般的
であるが、封孔状態の陽極酸化皮膜では、下部電極やa
−3i層の形成時にクラックが発生し、電気絶縁性が低
下するおそれがある。また、封孔状態の陽極酸化皮膜の
表面は、微細な針状構造となっているので、この表面に
セラミックス皮膜を形成し、さらにa−SL太陽電池を
形成した場合、太陽電池の特性が出ないおそれがある。
This prevents cracks from occurring in the anodic oxide film even if the temperature of the substrate rises to 250 to 350°C when forming the lower electrode and the a-5i layer. Deterioration of insulation properties is prevented. Second, the surface of the film does not have a fine needle-like structure. If the surface of the anodic oxide film has a needle-like structure, the ceramic film formed thereon will also have fine irregularities on its surface, which may result in the failure of solar cell characteristics. Normally, the anodic oxide film is subjected to a sealing treatment after the anodizing treatment to form it.
There is a risk that cracks may occur during the formation of the -3i layer, resulting in a decrease in electrical insulation. In addition, the surface of the sealed anodic oxide film has a fine needle-like structure, so if a ceramic film is formed on this surface and an a-SL solar cell is further formed, the characteristics of the solar cell will be improved. There is a possibility that it is not.

陽極酸化皮膜の膜厚を1〜10/Jとしたのは、IIg
/1未満であるとセラミックス皮膜形成のさいの取扱い
上のきず等によって絶縁破壊を起こすおそれがあり、1
0Jmを越えるとa−St層をCVD法により形成する
さいの基板温度の上昇により陽極酸化皮膜にクラックが
発生し、絶縁破壊を起こす可能性が大きくなるばかりで
あり、絶縁性の向上にはあまり寄与しないからである。
The thickness of the anodic oxide film was set to 1 to 10/J because of IIg.
If it is less than 1, there is a risk of dielectric breakdown due to handling flaws during ceramic film formation.
If it exceeds 0 Jm, cracks will occur in the anodic oxide film due to the rise in substrate temperature when forming the a-St layer by the CVD method, and the possibility of causing dielectric breakdown will increase, and the insulation will not be improved much. This is because it does not contribute.

また、未封孔陽極酸化皮膜は、アルミニウム板およびセ
ラミックス皮膜のいずれとも密着性が優れており、セラ
ミックス皮膜の剥離を確実に防止しつる。
Furthermore, the unsealed anodic oxide film has excellent adhesion to both the aluminum plate and the ceramic film, and reliably prevents the ceramic film from peeling off.

セラミックス皮膜としては、SiO,SiO2,5iC
sSt3N4等の酸化物、炭化物、窒化物等からなるも
のが用いられる。セラミックス皮膜を形成する方法とし
ては、PVD法(物理的気相メッキ法)や、CVD法(
化学的気相メッキ法)や、分散質であるセラミックス粒
子がイソプロピルアルコール等の分散媒中に均一に分散
した分散液をはけ塗り、吹付け、ディッピング等により
塗布し、その後乾燥させる方法などがある。セラミック
ス皮膜の膜厚を1〜10/ffとしたのは、IJUI未
満であると、未封孔陽極酸化皮膜の表面にセラミックス
皮膜を形成することによる電気絶縁性向上の効果が得ら
れず、ICIを越えても電気絶縁性向上の効果は変iら
ず、かえってコストが高くなるからである。また、セラ
ミックス皮膜は、下部電極やa−SL層形成のさいに基
板が加熱されたとしても、ガスの発生量は少ない。
As the ceramic film, SiO, SiO2, 5iC
A material made of oxide, carbide, nitride, etc. such as sSt3N4 is used. Methods for forming ceramic films include PVD method (physical vapor phase plating method) and CVD method (
(chemical vapor phase plating method) or a method in which a dispersion liquid in which ceramic particles as a dispersoid are uniformly dispersed in a dispersion medium such as isopropyl alcohol is applied by brushing, spraying, dipping, etc., and then dried. be. The reason why the thickness of the ceramic film is set to 1 to 10/ff is that if it is less than IJUI, the effect of improving electrical insulation by forming a ceramic film on the surface of the unsealed anodic oxide film cannot be obtained, and ICI This is because even if it exceeds 1, the effect of improving electrical insulation will not change, but the cost will increase. Further, the ceramic film generates a small amount of gas even if the substrate is heated during formation of the lower electrode and the a-SL layer.

なお、アルミニウム板における陽極酸化皮膜を形成すべ
き面の表面粗さは、R’max、 0 、 51U11
以下としておくことが好ましい。
Note that the surface roughness of the surface of the aluminum plate on which the anodic oxide film is to be formed is R'max, 0, 51U11
It is preferable to keep the following.

実  施  例 以下、この発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図には、a−Si太陽電池用基板が示されている。FIG. 1 shows an a-Si solar cell substrate.

a−Si太陽電池用基板(1)は、アルミニウム板(2
)の片面に膜厚1〜10切の未封孔陽極酸化皮膜(3)
が形成され、皮膜(3〉の表面に膜厚1〜10贋のセラ
ミックス皮膜(4)が形成されたものである。
The a-Si solar cell substrate (1) is an aluminum plate (2
) unsealed anodic oxide film with a film thickness of 1 to 10 mm on one side (3)
is formed, and a ceramic film (4) with a thickness of 1 to 10 mm is formed on the surface of the film (3).

第2図には、基板(1)を使用した直列接続型a−Si
太陽電池が示されている。直列接続型a−3L太陽電池
は、セラミックス皮膜′(4)上に複数のクロム下部電
極(11)が形成され、下部電極(11)上がa−3t
層(12)で覆われ、a−Si層(12)上に透明導電
膜からなる上部電極(13)が形成されたものであり、
上部電極(13)と隣りの電池の下部電極(11)とが
電気的に接続されることによりすべての電池が直列に接
続されている。
Figure 2 shows a series-connected a-Si using the substrate (1).
A solar cell is shown. The series connection type a-3L solar cell has a plurality of chromium lower electrodes (11) formed on the ceramic film' (4), and the a-3T on the lower electrode (11).
It is covered with a layer (12), and an upper electrode (13) made of a transparent conductive film is formed on the a-Si layer (12),
All the batteries are connected in series by electrically connecting the upper electrode (13) and the lower electrode (11) of the adjacent battery.

次に、この発明による太陽電池用基板の性能を調べるた
めに行なった試験について、比較品について行なった試
験とともに説明する。
Next, tests conducted to examine the performance of the solar cell substrate according to the present invention will be described together with tests conducted on comparative products.

J I 5A1050からなる縦×横×厚さが100m
+*X 100mmX 0. 3mraであるアルミニ
ウム板(1)を用意した。このアルミニウム板(1)の
表面粗さはRmax、 0 、 51m以下としておい
た。
J I 5A1050 length x width x thickness 100m
+*X 100mmX 0. An aluminum plate (1) of 3 mra was prepared. The surface roughness of this aluminum plate (1) was set to Rmax, 0, 51 m or less.

そして、このアルミニウム板(1)に、15wt%H2
SO4水溶液からなる液温20±1℃の電解液中で、電
流密度1.3A/dm2で直流電解により所定時間陽極
酸化処理を施して膜厚5切の硫酸陽極酸化皮膜(3)を
形成した。硫酸陽極酸化皮膜(3)には封孔処理を施さ
ず、未封孔状態のままでこの皮膜(3)の表面に、PV
D法により膜厚5pのS i 02皮膜(4)を形成す
ることによって、この発明の太陽電池用基板(1)(発
明品)を製造した。
Then, on this aluminum plate (1), 15 wt% H2
A sulfuric acid anodic oxide film (3) with a thickness of 5 mm was formed by performing anodization treatment for a predetermined period of time by direct current electrolysis at a current density of 1.3 A/dm2 in an electrolytic solution consisting of an SO4 aqueous solution with a liquid temperature of 20 ± 1 ° C. . The sulfuric acid anodized film (3) was not subjected to sealing treatment, and PV was applied to the surface of this film (3) in an unsealed state.
A solar cell substrate (1) (invention product) of the present invention was manufactured by forming a Si 02 film (4) with a film thickness of 5p by method D.

また比較品として、5i02皮膜の膜厚が0゜5pであ
ること以外は上記発明品と同様な基板を製造した。
As a comparative product, a substrate similar to the above invention product was manufactured except that the thickness of the 5i02 film was 0°5p.

その後、電子ビーム蒸着法により、発明品の基板(1)
および比較品の基板の5i02皮膜上に、それぞれクロ
ムからなる1辺15m+sの正方形状下部電極を24個
形成した。そして、各下部電極とアルミニウム板との間
の抵抗を測定し、電気絶縁性を調べた。その結果、本発
明品の基板では、24個の下部電極すべてにおいて上記
抵抗が20MΩ以上であった。これに対して、比較品の
基板では、24個中19個の下部電極において上記抵抗
が20MΩ未満であった。
After that, the substrate of the invention (1) was formed by electron beam evaporation method.
And on the 5i02 film of the comparative substrate, 24 square lower electrodes each made of chromium and having a side of 15 m+s were formed. Then, the resistance between each lower electrode and the aluminum plate was measured to examine electrical insulation. As a result, in the substrate of the present invention, the resistance was 20 MΩ or more in all 24 lower electrodes. On the other hand, in the comparative substrate, 19 out of 24 lower electrodes had the above-mentioned resistance of less than 20 MΩ.

発明の効果 この発明によるa−Si太陽電池用基板は、アルミニウ
ム板の少なくとも片面に膜厚1〜10pの未封孔陽極酸
化皮膜が形成され、未封孔陽極酸化皮膜の表面に膜厚1
〜10μmのセラミックス皮膜が形成されたものである
から、従来のステンレス鋼板の表面にポリイミド樹脂等
の高耐熱性樹脂皮膜を形成したものに比べて安価である
とともに軽量となり、しかもa−3i形成時のガス発生
量が少なくなる。また、従来のガラス製のものに比べて
軽量であるとともに放熱性に優れ、しかも取扱いのさい
にも破損のおそれがない。また、従来のポリイミド樹脂
等の高耐熱性樹脂製のものに比べて、安価であるととも
にa−SL影形成時ガス発生量が少なく、しかも適当な
剛性を有している。さらに、従来のアルミニウム板の表
面に陽極酸化皮膜が形成され、この皮膜の表面にA/2
03またはSiO2からなる膜厚100〜500人のセ
ラミックス皮膜が形成されたものに比べて、アルミニウ
ム板と、セラミックス皮膜上に形成されるa−3L電池
の下部電極との間の電気絶縁性が優れている。
Effects of the Invention In the a-Si solar cell substrate according to the present invention, an unsealed anodic oxide film having a thickness of 1 to 10 p is formed on at least one side of an aluminum plate, and a film thickness of 1 to 10 p is formed on the surface of the unsealed anodic oxide film.
Since it has a ~10 μm ceramic film formed on it, it is cheaper and lighter than conventional stainless steel sheets with a highly heat-resistant resin film such as polyimide resin formed on the surface. The amount of gas generated is reduced. In addition, it is lighter than conventional glass products, has excellent heat dissipation properties, and has no risk of breakage when handled. Furthermore, compared to conventional materials made of highly heat-resistant resins such as polyimide resins, they are less expensive, generate less gas during a-SL shadow formation, and have appropriate rigidity. Furthermore, an anodic oxide film is formed on the surface of the conventional aluminum plate, and the surface of this film is A/2
The electrical insulation between the aluminum plate and the lower electrode of the A-3L battery formed on the ceramic film is superior to that of a ceramic film made of 03 or SiO2 with a thickness of 100 to 500 people. ing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるa−8L太陽電池用基板の垂直
断面図、第2図はこの発明による基板を用いた直列接続
型a−SL太陽電池の垂直断面図である。 (1)・・・a−3i太陽電池用基板、(2)・・・ア
ルミニウム板、(3)・・・未封孔陽極酸化皮膜、(4
)・・・セラミックス皮膜。 以  上
FIG. 1 is a vertical cross-sectional view of a substrate for an a-8L solar cell according to the present invention, and FIG. 2 is a vertical cross-sectional view of a series-connected type a-SL solar cell using the substrate according to the present invention. (1)...a-3i solar cell substrate, (2)...aluminum plate, (3)...unsealed anodic oxide film, (4
)... Ceramic film. that's all

Claims (1)

【特許請求の範囲】[Claims] アルミニウム板の少なくとも片面に膜厚1〜10μmの
未封孔陽極酸化皮膜が形成され、未封孔陽極酸化皮膜の
表面に膜厚1〜10μmのセラミックス皮膜が形成され
たアモルファスシリコン太陽電池用基板。
An amorphous silicon solar cell substrate comprising: an unsealed anodic oxide film having a thickness of 1 to 10 μm formed on at least one side of an aluminum plate; and a ceramic film having a thickness of 1 to 10 μm formed on the surface of the unsealed anodic oxide film.
JP62056198A 1987-03-11 1987-03-11 Substrate for amorphous silicon solar cell Pending JPS63222468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056198A JPS63222468A (en) 1987-03-11 1987-03-11 Substrate for amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056198A JPS63222468A (en) 1987-03-11 1987-03-11 Substrate for amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPS63222468A true JPS63222468A (en) 1988-09-16

Family

ID=13020421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056198A Pending JPS63222468A (en) 1987-03-11 1987-03-11 Substrate for amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS63222468A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971633A (en) * 1989-09-26 1990-11-20 The United States Of America As Represented By The Department Of Energy Photovoltaic cell assembly
JP2007208007A (en) * 2006-02-02 2007-08-16 Tama Tlo Kk Solar cell module with integrated cooling mechanism, and light/heat hybrid energy convertor
JP2010212336A (en) * 2009-03-09 2010-09-24 Fujifilm Corp Photoelectric converting element and method of manufacturing the same, and solar cell
JP2011233874A (en) * 2010-04-07 2011-11-17 Fujifilm Corp Metal substrate with isolation layer and photoelectric conversion element
JPWO2016047702A1 (en) * 2014-09-24 2017-04-27 京セラ株式会社 Electronic component mounting substrate and light emitting device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971633A (en) * 1989-09-26 1990-11-20 The United States Of America As Represented By The Department Of Energy Photovoltaic cell assembly
JP2007208007A (en) * 2006-02-02 2007-08-16 Tama Tlo Kk Solar cell module with integrated cooling mechanism, and light/heat hybrid energy convertor
JP2010212336A (en) * 2009-03-09 2010-09-24 Fujifilm Corp Photoelectric converting element and method of manufacturing the same, and solar cell
JP2011233874A (en) * 2010-04-07 2011-11-17 Fujifilm Corp Metal substrate with isolation layer and photoelectric conversion element
JPWO2016047702A1 (en) * 2014-09-24 2017-04-27 京セラ株式会社 Electronic component mounting substrate and light emitting device using the same

Similar Documents

Publication Publication Date Title
US4806436A (en) Substrate for amorphous silicon solar cells
JPS6086814A (en) Method of producing cathode for electrolytic condenser
JP2000349320A (en) Insulating material made of aluminum alloy excellent in withstand voltage characteristic and its manufacture
EP0729195B1 (en) Current collecting elements
JPS60157872A (en) Production of electro-thermal converter for liquid jet recording head
JPS63249379A (en) Manufacture of substrate for thin film solar cell
JPS63222468A (en) Substrate for amorphous silicon solar cell
JP2778091B2 (en) Metallized film for capacitor and method of manufacturing the same
US3231479A (en) Method of manufacturing a capacitor
JPS58101469A (en) Thin film solar battery
JPS63249380A (en) Manufacture of substrate for thin film solar cell
JPH0133909B2 (en)
JPH0696847A (en) Surface heating unit and manufacture thereof
JPS61284971A (en) Substrate for thin film solar battery
JPH02158057A (en) Electrode substrate for bipolar lead-storage battery
JPS63250866A (en) Manufacture of substrate for thin film solar cell
CN107331487A (en) It is a kind of for TaN film resistors of hot environment and preparation method thereof
JPS61133676A (en) Substrate for amorphous si solar battery
JPH01205571A (en) Manufacture of substrate for thin-film solar cell
JPS62260096A (en) Sealing treatment of porous film
JPS62142366A (en) Manufacture of substrate for thin film solar battery
JPS62134980A (en) Mother plate for solar battery substrate and manufacture thereof
JPS61133675A (en) Manufacture of substrate for amorphous si solar battery
JPS61133677A (en) Plate material for amorphous si solar battery substrate
JPS6142972A (en) Manufacture of substrate for a-si solar cell