JPS61284971A - Substrate for thin film solar battery - Google Patents

Substrate for thin film solar battery

Info

Publication number
JPS61284971A
JPS61284971A JP60126514A JP12651485A JPS61284971A JP S61284971 A JPS61284971 A JP S61284971A JP 60126514 A JP60126514 A JP 60126514A JP 12651485 A JP12651485 A JP 12651485A JP S61284971 A JPS61284971 A JP S61284971A
Authority
JP
Japan
Prior art keywords
film
substrate
pore
anodic oxidation
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60126514A
Other languages
Japanese (ja)
Inventor
Koichi Yamasaka
山坂 孝一
Koshiro Mori
森 幸四郎
Zenichiro Ito
伊藤 善一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60126514A priority Critical patent/JPS61284971A/en
Publication of JPS61284971A publication Critical patent/JPS61284971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve the heat resistance of a substrate for a solar battery, to shorten pore sealing time or to delete pore sealing step by setting the pore sealability of an anodic oxidation alumina of the substrate made of aluminum/ anodic oxidation alumina film to 40% or less. CONSTITUTION:An anodic oxidation alumina film 2 of 40% or less of pore sealability sealed in pressurized steam of 4 atm is formed by subjecting an aluminum plate 1 of 99.99% of purity with 0.3mm thick to an anodic oxidation in an oxalic acid bath to insulate the surface of the plate. The first electrode 3 is formed of a thin metal film made of metal such as stainless steel, chromium or titanium. 4 is an a-Si layer, and formed of a P-type layer, an I-type layer and an N-type layer. The second electrode 5 is of light transmission, and formed of a thin In2O3 film containing 5wt% of SnO2. Since the pore sealability of the alumina film is set to 40% or less, the film can sufficiently endure the accumulating temperature of the a-Si solar battery having heat resistance of 300 deg.C or higher.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルミニウムまたはアルミニウム合金板の少
なくとも一方の表面を陽極酸化法による酸化アルミニウ
ムで覆って絶縁化し友集積型薄膜太陽電池用基板に関す
るものである0 従来の技術 アルミニウムの陽極酸化皮膜は表面に無数のポアーヲ有
している。しかし、このままの開孔状態の皮膜では耐蝕
性が劣っているため、生成した皮膜を加圧水蒸気、沸騰
水等により水和処理し、下記反応によりベーマイトまた
はパイヤライトを生成し、それらの体積膨張によりボア
ーをふさぎ、耐蝕性を向上させている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a substrate for an integrated type thin film solar cell in which at least one surface of an aluminum or aluminum alloy plate is covered with aluminum oxide formed by an anodizing method to insulate it. 0 Prior Art The anodic oxide film of aluminum has countless pores on its surface. However, since the film in its open state has poor corrosion resistance, the formed film is hydrated with pressurized steam, boiling water, etc., and the following reaction produces boehmite or pierite, and the volumetric expansion of the film creates pores. This improves corrosion resistance.

十H20 発明が解決しようとする問題点 これらの陽極酸化アルミナは耐熱性にすぐれているため
、アモルファスシリコン(以下!L−Siト記す)太陽
電池基板としての使用が可能である(特願昭59−71
979号)。そしてこれらの陽極酸化アルミナは通常、
封孔度70%以上に処理されている。しかし、封孔処理
を施したム1/陽極酸化アルミナ1(a−8i太陽雷池
用基板として用いた場合、厚さが7μmよシ厚い湯極酸
化アルミナ皮膜では、200℃以下の温度でクラックを
生じ、また厚さが7μm以下の薄い陽極酸化アルミナ皮
膜では耐熱性が向上するものの260℃以上になるとク
ラックを発生していた。
10H20 Problems to be Solved by the Invention Since these anodized aluminas have excellent heat resistance, they can be used as amorphous silicon (hereinafter referred to as L-Si) solar cell substrates (Patent Application No. 1983). -71
No. 979). And these anodized aluminas are usually
Treated with a sealing degree of 70% or more. However, when used as a substrate for a solar lightning pond (Mu1/anodized alumina 1 (a-8i) that has undergone sealing treatment, a hot water anodized alumina film with a thickness of about 7 μm will not crack at temperatures below 200°C. In addition, although the heat resistance of a thin anodized alumina film with a thickness of 7 μm or less is improved, cracks occur when the temperature exceeds 260°C.

このように陽極酸化アルミナ皮膜を封孔処理したム1/
陽極酸化アルiす皮膜の耐熱温度は250〜300℃で
あるが、さらに高温側でh−8iを堆積し、SiH2結
合の少ない良質な膜を形成したり、低抵抗、高光透過性
の透明導電膜を形成するために陽極酸化アルミナの耐熱
性をさらに向上させなけルばならないという問題があっ
た。
In this way, the anodized alumina film was sealed.
The heat resistance temperature of the anodized aluminum film is 250 to 300°C, but H-8i is deposited on the higher temperature side to form a high-quality film with few SiH2 bonds, and to create a transparent conductive film with low resistance and high light transmittance. There was a problem in that in order to form a film, the heat resistance of anodized alumina had to be further improved.

本発明はこのような問題点を解決するもので、a−8l
太陽電池用のム1/陽極酸化アルミナ皮膜からなる基板
の耐熱性を向上させることを目的とするものである。
The present invention solves these problems, and a-8l
The purpose of this invention is to improve the heat resistance of a substrate made of Mu1/anodized alumina film for solar cells.

問題点を解決するための手段 この問題点を解決するために、本発明者らは陽極酸化ア
ルミナの厚さならびにその封孔度と耐熱性との関係に着
目し、検討企行なった。
Means for Solving the Problem In order to solve this problem, the present inventors focused on the thickness of anodized alumina and the relationship between its degree of sealing and heat resistance, and conducted studies.

なお、封孔度の評価は、次に示す酸性亜硫酸水溶液法で
行なった。すなわち、無水亜硫酸水溶液(1og/i?
)に酢酸水溶液(20〜40mg/J)を加えてpH3
,6〜3゜8とし、さらに硫酸(6N)によってpH2
・6とした試験液を用意する。試験片(面積5aI11
)は50’/TlID硝酸(18〜22℃)中に10分
間浸漬した後、水洗乾燥後重量(A(g))e測定する
。90〜92℃に加熱した上記の試験液に試験片を20
分浸漬し、水洗乾燥後重量(B(g))を測定する。こ
の際の重量減(A−B (: g ’))が少ないほど
封孔は進行している。
The degree of sealing was evaluated using the following acidic sulfite aqueous solution method. That is, anhydrous sulfite aqueous solution (1 og/i?
) to pH 3 by adding acetic acid aqueous solution (20 to 40 mg/J).
, 6-3°8, and further adjusted to pH 2 with sulfuric acid (6N).
・Prepare the test solution marked 6. Test piece (area 5aI11
) is immersed in 50'/TlID nitric acid (18 to 22°C) for 10 minutes, then washed with water and dried, and the weight (A(g))e is measured. A test piece was placed in the above test solution heated to 90-92℃ for 20 minutes.
After soaking in water and drying, measure the weight (B (g)). The smaller the weight loss (A-B (: g')) at this time, the more the sealing progresses.

なお、封孔度を次式で定義した。In addition, the degree of sealing was defined by the following formula.

式中ムo 、 Bo 、 Soは未封孔の試験片を用い
た値である。
In the formula, O, Bo, and So are values obtained using an unsealed test piece.

試験片は99・99チ純度の0・3mm厚さのアルミニ
ウム板を用い、蓚酸浴中で陽極酸化を施して厚さ3μm
、10μm、15μmの酸化アルミナ皮膜を形成し、加
圧水蒸気(+atm)中で封孔処理した。封孔度は水蒸
気処理時間によって変化させ、上記方法で測定した。さ
らに試験片は所定の温度(20℃おきに100〜soo
”c)で1時間加熱した後、1mol/dのNa1l水
溶液中で、炭素棒を対向電極とし、1・6vの電圧を印
加した。クラックがある場合、H2Oの電気分解により
気泡が発生するので気泡発生の有無により、クラック発
生の有無を判定した0その結果全第1図に示す。陽極酸
化アルミナ皮膜が厚くても、その封孔度′f:40チ以
下にすることにより、クラック発生温度を300’C以
上まで向上させることが可能となった。
The test piece was a 0.3 mm thick aluminum plate with 99.99% purity, and was anodized in an oxalic acid bath to a thickness of 3 μm.
, 10 μm, and 15 μm alumina oxide films were formed and sealed in pressurized steam (+ATM). The degree of sealing was varied depending on the steam treatment time and was measured by the method described above. Furthermore, the test piece was heated to a predetermined temperature (100 to soo every 20°C).
After heating for 1 hour in ``c), a voltage of 1.6 V was applied using a carbon rod as a counter electrode in a 1 mol/d Na1 aqueous solution.If there were cracks, bubbles would be generated due to electrolysis of H2O. The presence or absence of crack generation was determined based on the presence or absence of air bubbles.The results are shown in Figure 1.Even if the anodic oxidation alumina film is thick, by keeping its sealing degree f: 40 inches or less, the crack generation temperature can be reduced. It became possible to improve the temperature to 300'C or more.

一般に封孔度が低い陽極酸化アルミナは耐蝕性が劣ると
いわれているが、a−8i太陽電池用基板として使用す
る場合、封孔度40%以下でも実用上問題なく、未封孔
処理基板を用いた場合でさえ、60℃、96%RH条件
下に20oO時間放置しておいても実用上、何ら問題は
生じなかった。これは未封孔のポアーをa−8i太陽電
池で覆うために、耐蝕性が向上していると考えられる。
It is generally said that anodized alumina with a low sealing degree has poor corrosion resistance, but when used as a substrate for A-8I solar cells, there is no practical problem even with a sealing degree of 40% or less, and an unsealed substrate can be used. Even when used, no problems were caused in practice even if it was left for 200 hours under conditions of 60° C. and 96% RH. This is thought to be due to the fact that the unsealed pores are covered with the A-8i solar cells, resulting in improved corrosion resistance.

従来、陽極酸化アルミナ層が薄い場合には、封孔度が4
0チよシ大きくても、クラック発生温度が300 ’C
以上で耐熱上問題のない場合もあったが、これらの基板
に関しても、封孔度を40%以下にすることによって、
さらに耐熱性が向上し信頼性の向上が期待される。
Conventionally, when the anodized alumina layer is thin, the sealing degree is 4.
Even if it is larger than 0, the crack generation temperature is 300'C.
There were cases in which there were no problems in terms of heat resistance with the above, but even for these substrates, by reducing the degree of sealing to 40% or less,
Furthermore, heat resistance is improved and reliability is expected to be improved.

作用 このように陽極酸化アルミナ皮膜の封孔度t−40チ以
下におさえたAl/陽極酸化アルミナ基板は300℃以
上までの加熱が可能となる。この基板を用いて加熱温度
300℃に近い280’C,でa −81太陽電池を形
成すると、200ルックス白色螢光灯下での短絡電流が
5%増加した。これは良質のa−8iの堆積が可能にな
ったことに加えて、高温形成により透光性電極の光透過
率の向上の相乗効果によるものと考えられる。
Function: An Al/anodized alumina substrate in which the sealing degree of the anodized alumina film is kept below t-40 can be heated up to 300° C. or higher. When an A-81 solar cell was formed using this substrate at a heating temperature of 280'C, which is close to 300C, the short circuit current under a 200 lux white fluorescent lamp increased by 5%. This is considered to be due to the synergistic effect of improving the light transmittance of the transparent electrode due to high temperature formation in addition to the ability to deposit high-quality a-8i.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第2図において1は厚さ0.3mmの純度99.99チ
アルミニウム板であり、2は蓚酸浴中で陽極酸化して4
atlllの加圧水蒸気中で封孔処理した封孔度40%
以下の陽極酸化アルミナ皮膜であり、アルミニウム表面
全絶縁化している。3は金属からなる第1電極であり、
ステンレス鋼、クロム、チタン等の金属薄膜である。4
はa−8i層であり、p層、1層、n層より構成されて
いる。5は透光性の第2電極であシ、6重量係のSnO
2を含有するIn2O3薄膜により構成されている。
In Fig. 2, 1 is a 99.99 purity thialuminum plate with a thickness of 0.3 mm, and 2 is anodized in an oxalic acid bath.
Sealing degree 40% after sealing in pressurized steam of atll
This is the anodized alumina film shown below, which completely insulates the aluminum surface. 3 is a first electrode made of metal;
It is a thin metal film made of stainless steel, chromium, titanium, etc. 4
is an a-8i layer, which is composed of a p layer, a 1 layer, and an n layer. 5 is a light-transmitting second electrode, 6 is SnO of weight ratio.
It is composed of an In2O3 thin film containing In2O3.

この第2図は複数の薄膜太陽電池を共通の基板上に集積
したものであり、基板はその表面の陽極酸化アルミナ皮
膜で電気的な絶縁が確保されている。しかも陽極酸化ア
ルミナ皮膜の封孔度’(z40チ以下にしているため3
00℃以上の耐熱性をもつa−Si太陽電池の堆積温度
に十分耐えることができる。
FIG. 2 shows a plurality of thin film solar cells integrated on a common substrate, and the substrate has an anodized alumina film on its surface to ensure electrical insulation. Moreover, the sealing degree of the anodic oxidized alumina film is 3.
It can sufficiently withstand the deposition temperature of an a-Si solar cell having a heat resistance of 00° C. or more.

発明の効果 以上のように本発明によれば、ム1/陽極酸化アルミナ
皮膜からなる太陽電池用基板の陽極酸化アルミナの封孔
度i40%以下にすることにより、基板の耐熱性を向上
させることが可能であるばかりでなく、封孔処理時間の
短縮化、あるいは、封孔処理工程の削除が可能となり、
製造時間の短縮や製造コストダウン等の利点が大きい。
Effects of the Invention As described above, according to the present invention, the heat resistance of the substrate can be improved by reducing the sealing degree i of the anodized alumina of the solar cell substrate made of the Mu1/anodized alumina film to 40% or less. Not only is it possible to do this, but it also makes it possible to shorten the sealing time or eliminate the sealing process.
It has great advantages such as shortening manufacturing time and reducing manufacturing costs.

また、従来の7層%以上の封孔度となるよう封孔処理工
程したム1/陽極酸化アルミナ皮膜基板では陽極酸化ア
ルミナ皮膜層を薄くすることによって、耐熱性を向上さ
せていたが、陽極酸化アルミナ皮膜を薄くした場合、ア
ルミニウム、またはアルミニウム合金板中の不純物(特
にSi 、 Fe )が、陽極酸化アルミナ中の欠陥と
なり、絶縁不良の発生をひき起こすために、高純度のア
ルミニウム、またはFe 、 Si f含有しないアル
ミニウム合金を用いなければならなかった0ところが本
発明によれば、封孔度を低下させることによって耐熱性
に富む厚い陽極酸化アルミナ層を形成することが可能な
ため、Si、Feを含有する低純度のアルミニウム板を
使用することが可能である0例えば、不純物として0・
5%Si + Fe含有する純度99・5チアルミニウ
ム板表面に10μmの厚さに陽極酸化アルミナ皮膜を形
成し、ポアーを未封孔とした基板は、500”C:の耐
熱性を有している0
In addition, heat resistance has been improved by thinning the anodized alumina film layer of the Mu1/anodized alumina film substrate, which has been subjected to a sealing process to achieve a sealing degree of 7% or higher than the conventional one. When the alumina oxide film is thinned, impurities (particularly Si, Fe) in the aluminum or aluminum alloy plate become defects in the anodized alumina, causing insulation defects. However, according to the present invention, it is possible to form a thick anodized alumina layer with high heat resistance by reducing the degree of sealing. It is possible to use a low-purity aluminum plate containing Fe. For example, it is possible to use a low-purity aluminum plate containing Fe.
A 10 μm thick anodized alumina film is formed on the surface of a 99.5 thialuminium plate containing 5% Si + Fe, and the pores are left unsealed.The substrate has a heat resistance of 500"C. There is 0

【図面の簡単な説明】[Brief explanation of drawings]

第1因は陽極酸化アルミナ皮膜の封孔度〔チ〕と、クラ
ック発生温度(”C’)との関係を示す図、第2図は本
発明におけるム14極酸化アルミナ皮膜基板を用いた集
積型薄膜太陽電池の構成図である0 1・・・・・・アルミニウムまたはアルミニウム合金、
2・・・・・・封孔度4oqb以下の陽極酸化アルミナ
皮膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名@1
図 打汎崖閂1
The first factor is a diagram showing the relationship between the degree of sealing [C] of the anodized alumina film and the crack initiation temperature ("C'), and Figure 2 shows the integration using the M14 anodized alumina film substrate in the present invention. This is a block diagram of a type thin film solar cell. 01... Aluminum or aluminum alloy,
2...Anodized alumina film with a sealing degree of 4 oz or less. Name of agent: Patent attorney Toshio Nakao and 1 other person @1
Zuuchihan cliff bolt 1

Claims (1)

【特許請求の範囲】[Claims] アルミニウムまたはアルミニウム合金板の少なくとも一
方の表面を、陽極酸化法による酸化アルミニウムで絶縁
化し、酸化アルミニウムを40%以下の封孔度で封孔処
理した薄膜太陽電池用基板。
A substrate for a thin film solar cell, in which at least one surface of an aluminum or aluminum alloy plate is insulated with aluminum oxide by an anodizing method, and the aluminum oxide is sealed with a sealing degree of 40% or less.
JP60126514A 1985-06-11 1985-06-11 Substrate for thin film solar battery Pending JPS61284971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60126514A JPS61284971A (en) 1985-06-11 1985-06-11 Substrate for thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60126514A JPS61284971A (en) 1985-06-11 1985-06-11 Substrate for thin film solar battery

Publications (1)

Publication Number Publication Date
JPS61284971A true JPS61284971A (en) 1986-12-15

Family

ID=14937091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60126514A Pending JPS61284971A (en) 1985-06-11 1985-06-11 Substrate for thin film solar battery

Country Status (1)

Country Link
JP (1) JPS61284971A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971633A (en) * 1989-09-26 1990-11-20 The United States Of America As Represented By The Department Of Energy Photovoltaic cell assembly
US5558723A (en) * 1994-04-15 1996-09-24 Siemens Solar Gmbh Thin-film solar module with electrically conductive substrate and method for the manufacture thereof
WO2009041657A1 (en) * 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
JP2009267336A (en) * 2007-09-28 2009-11-12 Fujifilm Corp Substrate for solar cell and solar cell
JP2011159796A (en) * 2010-02-01 2011-08-18 Fujifilm Corp Substrate with insulating layer, and thin-film solar cell
JP2012180592A (en) * 2009-05-08 2012-09-20 Fujifilm Corp Al base material, metal substrate with insulating layer using the same, semiconductor element, and solar cell
WO2018062307A1 (en) * 2016-09-28 2018-04-05 積水化学工業株式会社 Flexible solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971633A (en) * 1989-09-26 1990-11-20 The United States Of America As Represented By The Department Of Energy Photovoltaic cell assembly
US5558723A (en) * 1994-04-15 1996-09-24 Siemens Solar Gmbh Thin-film solar module with electrically conductive substrate and method for the manufacture thereof
WO2009041657A1 (en) * 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
JP2009267336A (en) * 2007-09-28 2009-11-12 Fujifilm Corp Substrate for solar cell and solar cell
JP2012180592A (en) * 2009-05-08 2012-09-20 Fujifilm Corp Al base material, metal substrate with insulating layer using the same, semiconductor element, and solar cell
JP2011159796A (en) * 2010-02-01 2011-08-18 Fujifilm Corp Substrate with insulating layer, and thin-film solar cell
WO2018062307A1 (en) * 2016-09-28 2018-04-05 積水化学工業株式会社 Flexible solar cell
JPWO2018062307A1 (en) * 2016-09-28 2019-07-11 積水化学工業株式会社 Flexible solar cells

Similar Documents

Publication Publication Date Title
TW554080B (en) Aluminum alloy member having excellent corrosion resistance
TWI263701B (en) Electrolytic electrode and process of producing the same
JPS61284971A (en) Substrate for thin film solar battery
JPS63249379A (en) Manufacture of substrate for thin film solar cell
CN1004887B (en) Fast anodic oxidation technique of aluminum film under room temp.
JPS63250866A (en) Manufacture of substrate for thin film solar cell
CA1169021A (en) Ac etching of aluminum capacitor foil
JPH065772B2 (en) Method of manufacturing thin film solar cell substrate
JPS61133676A (en) Substrate for amorphous si solar battery
JPS60198782A (en) Amorphous thin film solar cell
JP2635357B2 (en) Manufacturing method of aluminum material for electrolytic capacitor
JPH0436361B2 (en)
JPH0566005B2 (en)
JPS6211487B2 (en)
JPS6053453B2 (en) Aluminum chemical conversion method
JPH01205571A (en) Manufacture of substrate for thin-film solar cell
CN105803505A (en) Variable-frequency alternating-current anodic oxidation method for anode aluminum foil for aluminium electrolytic capacitor
JPS604919B2 (en) Electrodeposition method of beryllium or aluminum hydroxide or hydrate
JPS6041158B2 (en) Surface treatment method for aluminum or aluminum alloy
CN104846414B (en) A kind of TiO2The differential arc oxidation preparation method of semiconductor optical anode
JPS5819948B2 (en) Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material
JPS63155681A (en) Manufacture of base board for solar cell substrate
KR950006282B1 (en) Method for removing an oxygen gas in a conversion coating of an aluminum foil
JP2639553B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors
JPS62142366A (en) Manufacture of substrate for thin film solar battery