JPH01205571A - Manufacture of substrate for thin-film solar cell - Google Patents

Manufacture of substrate for thin-film solar cell

Info

Publication number
JPH01205571A
JPH01205571A JP63031652A JP3165288A JPH01205571A JP H01205571 A JPH01205571 A JP H01205571A JP 63031652 A JP63031652 A JP 63031652A JP 3165288 A JP3165288 A JP 3165288A JP H01205571 A JPH01205571 A JP H01205571A
Authority
JP
Japan
Prior art keywords
film
stage
aluminum
electrolytic solution
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63031652A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tada
清志 多田
Akira Hashimoto
明 橋本
Eizo Isoyama
礒山 永三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP63031652A priority Critical patent/JPH01205571A/en
Publication of JPH01205571A publication Critical patent/JPH01205571A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve heat resistance by forming an anode oxide film by performing a first-stage anode oxidation processing to an aluminum plate and by performing a second-stage anode oxidation processing by constant voltage electrolysis. CONSTITUTION:A first-stage anode oxidation processing is performed to an aluminum plate made of an aluminum based alloy containing 0.05-0.4% Cu with the remaining part being Al and unavoidable impurities in an electrolytic solution containing oxalic acid, and on the surface is formed an anode oxidation film. Following this, the voltage is abruptly dropped in the same electrolytic solution, after which a second anode oxidation processing is performed by constant-voltage electrolysis. The surface of a base aluminum-based alloy is made coarse in the interface with the film by, recovery phenomenon so internal stress within the film is reduced in the interface at the time of high-temperature heating, preventing cracks. This makes it possible to improve heat resistance of an anode oxide film.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は薄膜太陽電池用基板の製造方法に関し、さら
にくわしくいえば、高電圧を取り出すのに好適な直列接
続型薄膜太陽電池に用いられる基板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing a substrate for thin-film solar cells, and more specifically, to a method for manufacturing a substrate for use in series-connected thin-film solar cells suitable for extracting high voltage. It is about the method.

この明細書において、「%」は重量基準である。In this specification, "%" is by weight.

従来技術とその問題点 1枚の基板上に複数個の太陽電池を形成し、これらを直
列に接続した直列接続型薄膜太陽電池として、基板上に
クロム合金などからなる下部電極を電子ビーム蒸着法な
どにより複数個設け、各下部電極上に薄膜アモルファス
シリコン(以下ra−3iJという)層をCVD法など
により形成し、各a−8i層を上部電極となる透明導電
膜で被覆し、各電池を直列に接続したものかある。この
ような太陽電池においては、当然のことなから下部電極
どうしの間か電気的に絶縁されていなければならず、下
部電極どうしの間の電気抵抗値をたとえば20MΩ以上
とすることが必要となってくる。
Conventional technology and its problems A series-connected thin-film solar cell is created by forming multiple solar cells on one substrate and connecting them in series.A lower electrode made of a chromium alloy or the like is formed on the substrate by electron beam evaporation. A thin film amorphous silicon (hereinafter referred to as RA-3iJ) layer is formed on each lower electrode by CVD method or the like, and each A-8i layer is covered with a transparent conductive film that becomes the upper electrode. Are there any that are connected in series? In such a solar cell, it is a matter of course that the lower electrodes must be electrically insulated from each other, and the electrical resistance value between the lower electrodes must be, for example, 20 MΩ or more. It's coming.

従来、a−3i薄膜太陽電池用基板としては、■ガラス
製のもの、■ポリイミド樹脂などの高耐熱性樹脂製のも
の、■ステンレス鋼板の表面に電気絶縁層としてポリイ
ミド樹脂などの高耐熱性樹脂からなる皮膜か形成された
ものなどか用いられていた。
Conventionally, substrates for A-3I thin film solar cells have been made of: ■ glass, ■ high heat resistant resin such as polyimide resin, and ■ high heat resistant resin such as polyimide resin as an electrical insulating layer on the surface of a stainless steel plate. A film formed from

しかしなから、上記■のものには、放熱性か悪く、重く
、可撓性かなく、しかも破損しやずいという問題点かあ
った。また、」二記■のものには、ポリイミド樹脂か高
価であるので、これを用いて製造する太陽電池のコスト
・ダウンを図ることかむずかしいはかりか、基板か柔ら
かすきて腰かなく、しかもa−8i層形成時にノJスか
発生ずるという問題点かあった。さらに、上記■のもの
には、ステンレス鋼板およびポリイミド樹脂か高価であ
るので、太陽電池のコスト・ダウンを図ることかむすか
しいという問題点かあった。
However, the above-mentioned item (1) had problems in that it had poor heat dissipation, was heavy, lacked flexibility, and was easily damaged. In addition, since polyimide resin is expensive, it is difficult to reduce the cost of solar cells manufactured using polyimide resin, and the substrate is soft and unstable. There was a problem in that noise was generated during the formation of the -8i layer. Furthermore, the above-mentioned method (1) has the problem that it is difficult to reduce the cost of the solar cell because the stainless steel plate and polyimide resin are expensive.

そこで、上記の問題点を解決したa−8i薄膜太陽電池
用基板の製造方法として、本出願人はすてに、アルミニ
ウム板にしゅう酸を含む電解液中で陽極酸化処理を施し
、その表面に膜厚1〜20tllllの陽極酸化皮膜を
形成することを特徴とする方法(特開昭61.−429
72号)および、アルミニウム板にクロム酸を含む電解
液中で陽極酸化処理を施し、その表面に膜厚]〜201
i mの陽極酸化皮膜を形成することを特徴とする方法
(特開昭61−133675月)を提案した。
Therefore, as a manufacturing method for an A-8I thin film solar cell substrate that solves the above problems, the present applicant applied anodization treatment to an aluminum plate in an electrolytic solution containing oxalic acid, and the surface of the aluminum plate was anodized. A method characterized by forming an anodic oxide film with a thickness of 1 to 20 tllll (Japanese Patent Application Laid-Open No. 61-429
No. 72) and anodizing an aluminum plate in an electrolytic solution containing chromic acid to give a film thickness on the surface] ~ 201
proposed a method (Japanese Unexamined Patent Publication No. 133675/1983) characterized by forming an anodic oxide film of i m.

前者の方法によれば、絶縁性および放熱性にすくれ、軽
量かつ低コスI・の基板を得ることかでき、また後者の
方法によれば、絶縁性および放熱性にすくれ、軽量かつ
低コストであ−)で、欠陥が少なく、しかもa−8i層
を形成する場合なとにおいて高温に加熱されても皮膜に
クラックの発生しにくい基板を得ることができるのであ
るか、難をいえば、それぞれつぎのような問題点があっ
た。
According to the former method, it is possible to obtain a lightweight and low-cost board with excellent insulation and heat dissipation properties, and with the latter method, it is possible to obtain a lightweight and low-cost board with excellent insulation and heat dissipation properties. It is difficult to say whether it is possible to obtain a substrate that has fewer defects and is less likely to cause cracks in the film even when heated to high temperatures, such as when forming an A-8i layer. , each had the following problems.

すなわち、前者においては、a−3i層を形成する際の
皮膜クラック発生を抑えるヒ1的で陽極酸化皮膜の封孔
処理は行なわないため、陽極酸化処理後、a  S1層
形成時までの間(たとえば出荷までの在庫期間中)に皮
膜か経115劣化するおそれかあった。また後者におい
ては、a害なりロム酸の使用により公害問題が発生ずる
おそれかある上にコスト高になるという問題点かあった
In other words, in the former case, sealing of the anodic oxide film is not performed in order to prevent cracks in the film when forming the a-3i layer. For example, there was a risk that the film would deteriorate over time (during the inventory period before shipping). In addition, the latter method has the problem of not only causing pollution problems due to the use of a-poisonous or romic acid but also increasing costs.

この発明の1]的は、」二記の問題点を解決した薄膜太
陽電池用基板を製造する方法を提供することにある。
The first object of the present invention is to provide a method for manufacturing a thin film solar cell substrate that solves the problems mentioned in section 2 above.

問題点を解決するための手段 この発明による薄膜太陽電池用基板の製造方法は、Cu
を0.05−0.4%含み、残部か八Ωおよび不可避不
純物であるアルミニウム基合金からなるアルミニウム板
に、しゅう酸を含む電解液中で第1段の陽極酸化処理を
施してその表面に陽極酸化皮膜を形成し、引き続いて同
一電解液中で、電圧を急激に降下させた後、定電圧電解
により第2段の陽極酸化処理を施ずことをη寺徴吉する
Means for Solving the Problems The method for manufacturing a thin film solar cell substrate according to the present invention is a method for manufacturing a thin film solar cell substrate using Cu.
An aluminum plate made of an aluminum-based alloy containing 0.05-0.4% of oxalic acid, the balance being 8 ohms, and inevitable impurities is subjected to a first-stage anodizing treatment in an electrolytic solution containing oxalic acid to coat its surface. After forming an anodic oxide film and subsequently rapidly lowering the voltage in the same electrolytic solution, it is recommended that a second stage of anodizing treatment be performed by constant voltage electrolysis.

」二記においてCuを含むアルミニウム基合金を用いる
のは、後述の回復現象を起こさせるのに好適たからであ
り、またCu量を0.05〜0.4%に限定するのは、
下限値未盛では回復現象か起こらず、逆に上限値を越え
ると形成された陽極酸化皮膜の絶縁性か悪くなるおそれ
かあるからである。すなわちアルミニウム基合金のへρ
純度は99.7%以」二とすることか好ましい。純度か
99.7%未満の場合にあっては、製造上不可避の不純
物であるSiおよびFeの含有量が必然的に増えている
。その場合、SlおよびFeの晶出物がアルミニウム板
の表面に露出し、この部分において陽極酸化皮膜に欠陥
か生じて皮膜の絶縁性が悪くなるおそれがあるからであ
る。
The reason why an aluminum-based alloy containing Cu is used in Section 2 is because it is suitable for causing the recovery phenomenon described below, and the reason why the amount of Cu is limited to 0.05 to 0.4% is because
This is because if the lower limit value is exceeded, no recovery phenomenon will occur, whereas if the upper limit value is exceeded, the insulation properties of the formed anodic oxide film may deteriorate. In other words, ρ of aluminum-based alloy
It is preferable that the purity is 99.7% or higher. If the purity is less than 99.7%, the content of Si and Fe, which are unavoidable impurities during production, inevitably increases. In that case, the crystallized products of Sl and Fe are exposed on the surface of the aluminum plate, and defects may occur in the anodic oxide film in this area, which may deteriorate the insulation properties of the film.

上記において、しゅう酸を含む電解液中で陽極酸化処理
を行なうのはつぎの理由による。すなわち、しゅう酸を
含む電解液中で陽極酸化処理を施して形成した陽極酸化
皮膜は、解離定数の大きい電解質アニオンを含んでおら
す、しかも水分の吸着量かきイっめて少ないため、その
電気絶縁性が向」ニするからである。
In the above, the reason why the anodic oxidation treatment is performed in an electrolytic solution containing oxalic acid is as follows. In other words, an anodized film formed by anodizing in an electrolytic solution containing oxalic acid contains electrolyte anions with a large dissociation constant, and also has a very small amount of water adsorption, so its electricity is This is because the insulation properties are better.

陽極酸化処理用の電解液としては、しゅう酸を含むもの
のほかに、硫酸を含むもの、リン酸を含むものおよびク
ロム酸を含むものなどか−・膜面である。ところか、硫
酸を含む電解液中て陽極酸化処理を施して形成した陽極
酸化皮膜は、解離定数の大きい硫酸アニオンや吸着水を
多く含んでいるために絶縁性か悪いという問題点かある
。また、リン酸を含む′rR解液によ一ンて陽極酸化処
理をした場合、−膜面に陽極酸化皮膜の膜厚(」薄いた
め、太陽電池の基板として使用すると取扱い」二のきず
なとによる絶縁破壊を起こすおそれかある。さらに、ク
ロム酸を含む電解ltk中での陽極酸化処理は、酊害な
りロム酸の使用により公害問題か発生ずるおそれかある
とともにコストか高くなる。
Electrolytes for anodizing include those containing oxalic acid, sulfuric acid, phosphoric acid, and chromic acid. However, the anodic oxide film formed by anodizing in an electrolytic solution containing sulfuric acid has poor insulation properties because it contains a large amount of sulfate anions with a large dissociation constant and adsorbed water. In addition, when anodizing is performed using an RR solution containing phosphoric acid, the thickness of the anodic oxide film on the film surface (because it is thin, it must be handled carefully when used as a substrate for solar cells). In addition, anodizing in an electrolytic LTK containing chromic acid may cause pollution problems due to intoxication or the use of chromic acid, and is expensive.

しゅう酸を含む電解液中で第1段の陽極酸化処理を施す
前のアルミニウム板の表面粗さは、アルミニウム+IM
の表面に皮膜かなめらかに形成されるように、最大高さ
(Rmax)を03μ[]1以下としておくことか好ま
しい。0,3μllIRmrtx以下とする方法として
は、ノ\フ研磨および化学研磨をこの順序で行なう方法
がある。また、このような研磨を施す代わりに、アルミ
ニウム板として光沢圧延板を用いてもよい。
The surface roughness of the aluminum plate before the first stage anodizing treatment in an electrolytic solution containing oxalic acid is aluminum + IM.
It is preferable that the maximum height (Rmax) is set to 03μ[]1 or less so that a film is formed smoothly on the surface of the film. As a method for reducing the IRmrtx to 0.3 μll or less, there is a method of performing nof polishing and chemical polishing in this order. Moreover, instead of performing such polishing, a glossy rolled plate may be used as the aluminum plate.

第1段の陽極酸化処理は、上記のアルミニウム基合金を
、しゅう酸電解液中で、交流、直流または交流・直流の
重畳流によって、所疋厚さの皮膜か得られるまで電解す
るものである。ここでしゅう酸の濃度は好ましくは1〜
5%、特に好ましくは2〜3%である。この電解は、定
電流電解であっても定電圧電解であってもよい。
The first stage of anodizing treatment is to electrolyze the above aluminum-based alloy in an oxalic acid electrolyte using alternating current, direct current, or a superimposed flow of alternating current and direct current until a thin film is obtained. . Here, the concentration of oxalic acid is preferably 1 to
5%, particularly preferably 2-3%. This electrolysis may be constant current electrolysis or constant voltage electrolysis.

第2段の陽極酸化処理は、第1段における電圧から所定
の値に電圧を急激に降下させた後、第1段の処理品を定
電圧電解処理するものである。このように、電圧を急激
に降下させた後、定電圧電解を行なった場合、電流はす
くには流れず、数秒〜数分経過後、徐々に流れ始め、し
ばらくして定常状態に達する。この現象は回復現象と呼
はれている。この回復現象によって、陽極酸化皮膜か成
長するとともに、同皮膜の下地アルミニウム基合金面か
皮膜との界面において一様に粗面化されるのである。
In the second stage anodizing treatment, the voltage is rapidly lowered from the voltage in the first stage to a predetermined value, and then the product treated in the first stage is subjected to constant voltage electrolysis treatment. In this way, when constant voltage electrolysis is performed after the voltage has been rapidly lowered, the current does not flow quickly, but gradually begins to flow after several seconds to several minutes, and reaches a steady state after a while. This phenomenon is called a recovery phenomenon. Due to this recovery phenomenon, the anodic oxide film grows, and the surface of the underlying aluminum-based alloy surface of the film is uniformly roughened at the interface with the film.

ここで、第1段における電圧から第2段における電圧へ
の電圧降下は急激に行なわれるが、Q     − 実際の操作では、第1段における通電を一旦停止し第2
段の初めに1−1fび所定電圧に印加する方法を採用す
るのか好まし7い。
Here, the voltage drop from the voltage in the first stage to the voltage in the second stage occurs rapidly, but in actual operation, the energization in the first stage is temporarily stopped and the voltage in the second stage is dropped rapidly.
It is preferable to adopt a method of applying a predetermined voltage of 1-1f at the beginning of the stage.

第2段における電圧は、5V未満では上記の回復効果か
少ないため下地面の粗面化か進まず、逆に35Vを超え
ると酸化皮膜か急速に成長して下地粗面がなくなってし
まうので、5〜35■の範囲に設定するのか好ましい。
If the voltage in the second stage is less than 5V, the above-mentioned recovery effect will be small and the roughening of the underlying surface will not proceed.On the other hand, if it exceeds 35V, the oxide film will grow rapidly and the roughening of the underlying surface will disappear. It is preferable to set it in the range of 5 to 35 cm.

特に好ましい電圧の範囲は15〜20Vである。またこ
の第2段における電流も、交流、直流または交流・直流
の重畳流のいずれてあってもよい。
A particularly preferred voltage range is 15-20V. Further, the current in this second stage may be either an alternating current, a direct current, or a superimposed flow of alternating current and direct current.

第2段の電解処理時間は特に限定されないか、5分未消
“dては、下地アルミニウム基合金の粗面化が進まず、
逆に25分を超えると下地粗面がなくなる傾向にあるの
で、5〜25分、特に10〜20分か好ましい。
The second stage electrolytic treatment time is not particularly limited, or if 5 minutes is left unused, the surface roughening of the underlying aluminum-based alloy will not proceed.
On the other hand, if it exceeds 25 minutes, the rough surface of the base tends to disappear, so 5 to 25 minutes, particularly 10 to 20 minutes, is preferable.

しゅう酸を含む電解液中で2段階の陽極酸化処理を施し
て形成する陽極酸化皮膜の厚さは1〜2 OAtmか好
ましい。下限値未満であると太陽電池の基板として使用
した場合に取扱い上のきずなどによる絶縁破壊を起こす
おそれがあり、上限値を越えるとCVD時の基板温度の
上昇により皮膜クラックか発生し、絶縁破壊のおそれか
大きくなるばかりで、絶縁性の向上にはあまり寄与しな
いからである。より好ましい皮膜の厚さは10μm前後
である。
The thickness of the anodic oxide film formed by performing two-stage anodic oxidation treatment in an electrolytic solution containing oxalic acid is preferably 1 to 2 OAtm. If it is less than the lower limit, there is a risk of dielectric breakdown due to handling scratches when used as a solar cell substrate, and if it exceeds the upper limit, film cracks may occur due to the rise in substrate temperature during CVD, resulting in dielectric breakdown. This is because the risk of oxidation only increases, and it does not contribute much to improving insulation. A more preferable film thickness is around 10 μm.

上記の方法で製造された基板において、陽極酸化皮膜」
二に複数個の下部電極を形成し、各下部電極上にa−8
i層を形成し、a−3i層を上部電極となる透明導電膜
で被覆して、直列接続型a−81薄膜太陽電池とする。
In the substrate manufactured by the above method, the anodic oxide film
2. Form a plurality of lower electrodes on each lower electrode, and form a-8 on each lower electrode.
An i layer is formed and the a-3i layer is covered with a transparent conductive film serving as an upper electrode to form a series-connected a-81 thin film solar cell.

作  用 2段階に陽極酸化処理を施すことにより、陽極酸化皮膜
の耐熱性が向上するのはつぎの理由によるものと推測さ
れる。すなわち、高温加熱時に陽極酸化皮膜にクラック
か生じるのは、下地アルミニウム基合金と皮膜との熱膨
張係数の違いに起因するものであるが、上記のように回
復現象によって下地アルミニウム基合金面が皮膜との界
面において粗面化されているので、高温加熱時に皮膜中
の内部応力が同界面において軽減されてクラック発生か
防11−される結果、耐熱性か向上する。
It is presumed that the heat resistance of the anodic oxide film is improved by performing the two-step anodizing treatment for the following reason. In other words, cracks occur in the anodic oxide film during high-temperature heating due to the difference in thermal expansion coefficient between the base aluminum-based alloy and the film, but as mentioned above, the recovery phenomenon causes the surface of the base aluminum-based alloy to Since the surface is roughened at the interface with the film, internal stress in the film is reduced at the interface when heated at high temperatures, preventing cracks from occurring and improving heat resistance.

実施例と比較例 以ド、この発明の2つの実施例を2つの比較例とともに
説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Two examples of the present invention will now be described together with two comparative examples.

試料として、Cu0.1%、残部Aρおよび不可避不純
物のアルミニウム基合金により、縦×横×厚さか100
X100X0.5mmのアルミニウム板を48枚用意し
た。これらの表面粗さはいずれも0.37zm Rma
x以下とじ−Cおいた。そして、各アルミニウム板に界
面活性剤を用いて無侵食脱脂処理を施した後、これらを
12枚ずつの4クループに分けて、各グループのものを
実施例と比較例とに使用した。
The sample was made of an aluminum-based alloy with 0.1% Cu, the balance Aρ, and unavoidable impurities.
Forty-eight aluminum plates measuring 100 mm and 0.5 mm were prepared. All of these surface roughnesses are 0.37zm Rma
x and below are bound-C. Then, each aluminum plate was subjected to a non-erosive degreasing treatment using a surfactant, and then divided into four groups of 12 sheets each, and each group was used for an example and a comparative example.

実施例1 12枚のアルミニウム板のそれぞれに、3%(COOH
)2水溶液からなる電解液中で、液温を35±2°Cに
保って電流密度]、、3A/dm2の直流電解により所
定時間の第1段の陽極酸化処理を施して、所定膜厚の陽
極酸化皮膜を形成した。そして−11通電を止めた後、
同一電解液中において名アルミニウム板を20Vの電圧
下でそれぞれ所定時間、直流定電圧電解することにより
、第2段の陽極酸化処理を行なった。そして酸化皮膜に
封孔処理を施すことなく、a−8j薄膜太陽電池用基板
を製造した。
Example 1 Each of 12 aluminum plates was coated with 3% (COOH
2) In an electrolytic solution consisting of an aqueous solution, the liquid temperature is maintained at 35 ± 2 ° C and the current density is 3 A/dm2, and the first stage anodization treatment is performed for a predetermined time for a predetermined time to form a predetermined film thickness. An anodic oxide film was formed. After turning off the -11 power,
The aluminum plate was subjected to constant DC voltage electrolysis at a voltage of 20 V for a predetermined period of time in the same electrolytic solution, thereby performing a second-stage anodizing treatment. Then, an A-8J thin film solar cell substrate was manufactured without performing any sealing treatment on the oxide film.

このようにして製造された、3種類の皮膜厚さ(6μm
、10μm、201zm)からなる12枚の基板の耐熱
性を検査するため、各基板を250〜400°Cの所定
温度で加熱した後、皮膜のクラック発生状況について肉
眼観察を行なった。その結果を表1に示す。
Three types of film thicknesses (6 μm
, 10 μm, and 201 zm), each substrate was heated at a predetermined temperature of 250 to 400° C., and then the appearance of cracks in the film was visually observed. The results are shown in Table 1.

実施例2 各アルミニウム板に実施例1と同じ条件で2段階の陽極
酸化処理を行なった。その後、これらのアルミニウム板
に純水沸騰水中で20分間の封孔処理を施し、a−81
薄膜太陽電池用基板を製造した。そl−で、これらの基
板について実施例1と同じ耐熱試験を行なった。その結
果を表1に示す。
Example 2 Each aluminum plate was subjected to two-stage anodizing treatment under the same conditions as in Example 1. After that, these aluminum plates were sealed in boiling pure water for 20 minutes, and the a-81
A thin film solar cell substrate was manufactured. Then, the same heat resistance test as in Example 1 was conducted on these substrates. The results are shown in Table 1.

比較例1 各アルミニウム板に15%H2SO4水溶液からなる電
解液中で、液温を20±1°Cに保って電流密度1.3
A/c1m2の直流電解により所定時間の陽極酸化処理
を施して、所定膜厚の陽極酸化皮膜を形成した。ついて
、これらのアルミニウム板に実施例2と同じ条件て封孔
処理を族l−1a−3i薄膜太陽電池用基板を製造した
。その後、これらの基板について実施例1と同じ耐熱試
験を行なった。その結果を表1に示す。
Comparative Example 1 Each aluminum plate was heated with a current density of 1.3 in an electrolytic solution consisting of a 15% H2SO4 aqueous solution while keeping the liquid temperature at 20 ± 1°C.
An anodic oxidation treatment was performed for a predetermined time by direct current electrolysis at A/c 1 m<2> to form an anodic oxide film having a predetermined thickness. These aluminum plates were then subjected to a sealing treatment under the same conditions as in Example 2 to produce a group 1-1a-3i thin film solar cell substrate. Thereafter, the same heat resistance test as in Example 1 was conducted on these substrates. The results are shown in Table 1.

比較例2 各アルミニウム板に施す陽極酸化処理の電解液か3%(
COOH)2水溶液である点、および電解液の液温を3
5±2°Cに保つ点を除いては、比較例1と同じ条件で
、a−81薄膜太陽電池用基板を製造した。その後、こ
れらの基板について実施例]と同し耐熱試験を行なった
Comparative Example 2 The electrolyte solution for anodizing treatment applied to each aluminum plate was 3% (
COOH) 2 aqueous solution and the temperature of the electrolyte 3
An a-81 thin film solar cell substrate was manufactured under the same conditions as Comparative Example 1 except that the temperature was maintained at 5±2°C. Thereafter, these substrates were subjected to the same heat resistance test as in Example].

その結果を表1に示す。The results are shown in Table 1.

表1 ○・・・クラックなし   ×・・クラックあり発明の
効果 この発明による薄膜太陽電池用基板の製造方法は上述の
ように構成されているから、この方法で製造された基板
は、従来の基板に比べてつきのような長所を持っている
Table 1 ○... No cracks ×... Cracks Effects of the Invention Since the method for manufacturing a thin film solar cell substrate according to the present invention is configured as described above, the substrate manufactured by this method is different from the conventional substrate. It has similar advantages compared to .

すなわち、従来のガラス製のものに比べて軽量であると
ともに放熱性、可撓性にずくれ、しかも取扱いの際にも
破損のおそれかない。また、従来の、ポリイミド樹脂な
どの高耐熱性樹脂製のものに比べて、安価であるととも
に柔らかすぎず、しかもa−3i層形成時にカスが発生
することかない。さらに、従来の、ステンレス鋼板の表
面にポリイミド樹脂なとの高耐熱性樹脂皮膜を形成した
ものに比べて安価であるとともに軽量である。
That is, it is lighter than conventional glass products, has good heat dissipation properties, has good flexibility, and is free from damage when handled. Furthermore, compared to conventional materials made of highly heat-resistant resins such as polyimide resins, they are less expensive, not too soft, and do not generate scum when forming the a-3i layer. Furthermore, it is cheaper and lighter than the conventional one in which a highly heat-resistant resin film such as polyimide resin is formed on the surface of a stainless steel plate.

その上、従来の、アルミニウム板にしゆう酸を含む電解
液中で陽極酸化処理を施してその表面に陽極酸化皮膜を
形成する方法で製造された基板に比べて、陽極酸化皮膜
に封孔処理を行なわないものについても、陽極酸化処理
後、a−81層形成時までの間に皮膜か経時劣化するこ
とがなく、きわめて高い耐熱性を備えている。
Furthermore, compared to the conventional method of anodizing an aluminum plate in an electrolyte containing oxidized acid to form an anodized film on its surface, the anodized film is sealed. Even in cases where the coating is not anodized, the film does not deteriorate over time after the anodizing treatment until the formation of the A-81 layer, and has extremely high heat resistance.

加えて、従来の、アルミニウム板にクロム酸を含む電解
液中で陽極酸化処理を施してその表面に陽極酸化皮膜を
形成する方法で製造された基板に比べて、製造過程で、
有害なりロム酸の使用により公害問題か発生することか
なく、しかもコストが低いという長所を持っている。
In addition, compared to the conventional method of anodizing an aluminum plate in an electrolytic solution containing chromic acid to form an anodized film on the surface, the manufacturing process
It has the advantage of not causing any pollution problems due to the use of harmful romic acid, and is low in cost.

以  −4− 特許出願人  昭和アルミニウム株式会社代  理  
人   岸  本  瑛  之  助 (外4名)−1
6=
-4- Patent applicant: Showa Aluminum Co., Ltd.
Person Einosuke Kishimoto (4 others) -1
6 =

Claims (1)

【特許請求の範囲】[Claims]  Cuを0.05〜0.4%含み、残部がAlおよび不
可避不純物であるアルミニウム基合金からなるアルミニ
ウム板に、しゅう酸を含む電解液中で第1段の陽極酸化
処理を施してその表面に陽極酸化皮膜を形成し、引き続
いて同一電解液中で、電圧を急激に降下させた後、定電
圧電解により第2段の陽極酸化処理を施すことを特徴と
する薄膜太陽電池用基板の製造方法。
An aluminum plate made of an aluminum-based alloy containing 0.05 to 0.4% Cu and the remainder being Al and unavoidable impurities is subjected to a first-stage anodizing treatment in an electrolytic solution containing oxalic acid to coat its surface. A method for producing a thin-film solar cell substrate, which comprises forming an anodized film, then rapidly lowering the voltage in the same electrolytic solution, and then performing a second-stage anodic oxidation treatment by constant voltage electrolysis. .
JP63031652A 1988-02-12 1988-02-12 Manufacture of substrate for thin-film solar cell Pending JPH01205571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031652A JPH01205571A (en) 1988-02-12 1988-02-12 Manufacture of substrate for thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031652A JPH01205571A (en) 1988-02-12 1988-02-12 Manufacture of substrate for thin-film solar cell

Publications (1)

Publication Number Publication Date
JPH01205571A true JPH01205571A (en) 1989-08-17

Family

ID=12337102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031652A Pending JPH01205571A (en) 1988-02-12 1988-02-12 Manufacture of substrate for thin-film solar cell

Country Status (1)

Country Link
JP (1) JPH01205571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486238A (en) * 1991-10-22 1996-01-23 Canon Kabushiki Kaisha Photovoltaic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486238A (en) * 1991-10-22 1996-01-23 Canon Kabushiki Kaisha Photovoltaic device
US5770463A (en) * 1991-10-22 1998-06-23 Canon Kabushiki Kaisha Method of fabricating a photovoltaic device

Similar Documents

Publication Publication Date Title
EP0181173B1 (en) Anodic aluminium oxide film and method of forming it
EP1918427B1 (en) Metal oxide film, laminate, metal member and process for producing the same
KR100482862B1 (en) Surface treatment for vacuum chamber made of aluminum or its alloy
KR101698694B1 (en) Aluminum alloy having excellent anodic oxidation treatability, and anodic-oxidation-treated aluminum alloy member
EP0531183B1 (en) Protective coatings for metal parts to be used at high temperatures
TWI424096B (en) Method for forming anodic oxide film
US4133725A (en) Low voltage hard anodizing process
JPS63249379A (en) Manufacture of substrate for thin film solar cell
JPH0525694A (en) Production of aluminum or aluminum alloy for vacuum equipment
JPH01205571A (en) Manufacture of substrate for thin-film solar cell
JP3746878B2 (en) Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment
JP2004035930A (en) Aluminum alloy material and anodization treatment method therefor
JP2569422B2 (en) Aluminum oxide laminated structure film and method for producing the same
JPH08144089A (en) Vacuum chamber member made of aluminum or aluminum alloy
JPS63250866A (en) Manufacture of substrate for thin film solar cell
JPS61284971A (en) Substrate for thin film solar battery
JP2014065946A (en) Aluminum anode oxide coating
JPS63222468A (en) Substrate for amorphous silicon solar cell
JPH06297639A (en) Film laminating aluminum material and manufacture thereof
RU2471020C1 (en) Application method of electrolytic copper coating to parts from aluminium and its alloys
JP2602013B2 (en) Aluminum foil for electrolytic capacitors for etching
JPS63249380A (en) Manufacture of substrate for thin film solar cell
JP2014214342A (en) Method for forming oxidized film
JP3587266B2 (en) Aluminum foil for electrolytic capacitor electrode and method for producing the same
RU2039850C1 (en) Method for anodizing made of aluminium alloys