JPH06297639A - Film laminating aluminum material and manufacture thereof - Google Patents

Film laminating aluminum material and manufacture thereof

Info

Publication number
JPH06297639A
JPH06297639A JP10986393A JP10986393A JPH06297639A JP H06297639 A JPH06297639 A JP H06297639A JP 10986393 A JP10986393 A JP 10986393A JP 10986393 A JP10986393 A JP 10986393A JP H06297639 A JPH06297639 A JP H06297639A
Authority
JP
Japan
Prior art keywords
film
aluminum material
oxide film
resin film
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10986393A
Other languages
Japanese (ja)
Inventor
Masahiro Kurata
倉田正裕
Sadao Shiraishi
白石貞雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP10986393A priority Critical patent/JPH06297639A/en
Publication of JPH06297639A publication Critical patent/JPH06297639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain an aluminum material having base stability also after polymer processing and having high adhesion to a resin film by a manufacturing method wherein environmental pollution does not occur, processing can be done in a short time and productivity is high, the cost for equipment is low, and processing cost is also low. CONSTITUTION:On an aluminum material having an oxide film with branched micropores having film thickness of 500-5000 angstrom, a resin film is layered. As for manufacturing method, the surface of the aluminum material is electrolyzed by alternating wave form in an alkaline water solution so as to form the oxide film with the branched micropores having the film thickness of 500-5000 angstrom. Or, precedingly, etching processing is performed by an acid solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフィルム積層後成型加工
を行ってから、容器、コンデンサ−ケ−ス、炊飯ジャ−
内釜、自動車ボディシ−ト等の用途に供するフィルム積
層用アルミニウム材に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a container, a capacitor case, a rice cooker after the film is laminated and molded.
The present invention relates to an aluminum material for laminating a film, which is used for an inner pot, an automobile body sheet and the like.

【0002】[0002]

【従来の技術】使用に先立ち成型加工される用途におい
ても、最終製品の耐食性、耐薬品性等を付与するため、
および/または成形加工時の潤滑性を付与するためにア
ルミニウム材(の特に板またはコイル)に対し有機樹脂フ
ィルム等をラミネ−トすることが行われている。しか
し、成型加工において樹脂フィルムとアルミニウム材と
の密着性が不十分であると、成型中に樹脂フィルムが剥
離したり、密着性の不十分な場所から腐食が発生する等
十分な性能が発揮されない場合がある。この密着性は、
樹脂フィルムの材質や接着剤の種類に大きく影響される
がアルミニウム材の表面の状況にもまた大きく影響され
る。そこで、アルミニウム材と樹脂フィルムの密着性を
向上させるために従来から以下のような表面処理をアル
ミニウム材に行っている。 (1)アルミニウム材にリン酸クロメ−ト処理を施しアル
ミニウム材表面に形成されたリン酸クロム酸塩被覆によ
り樹脂フィルムとの密着性を向上させる。 (2)特開平1−114435号に開示されているような
特定樹脂と繊維金属化合物の複合皮膜を形成させ(接着
プライマ−)、樹脂フィルムとの密着性を向上させる。 (3)特開昭63−126728に開示されているような
アルミニウム水和酸化皮膜を設け、密着性を向上させ
る。
2. Description of the Related Art In order to impart corrosion resistance, chemical resistance, etc. of a final product even in the case where it is molded before use,
Lamination of an organic resin film or the like on an aluminum material (particularly, a plate or a coil) has been performed in order to impart lubricity during molding. However, if the adhesion between the resin film and the aluminum material is insufficient in the molding process, the resin film will not peel off during molding, or corrosion will occur from a location with insufficient adhesion, and sufficient performance will not be exhibited. There are cases. This adhesion is
It is greatly affected by the material of the resin film and the type of adhesive, but it is also greatly affected by the condition of the surface of the aluminum material. Therefore, in order to improve the adhesion between the aluminum material and the resin film, the following surface treatment has been conventionally performed on the aluminum material. (1) A phosphoric acid chromate treatment is applied to an aluminum material to improve the adhesion to a resin film by coating the phosphoric acid chromate formed on the surface of the aluminum material. (2) A composite film of a specific resin and a fiber metal compound as disclosed in JP-A-1-114435 is formed (adhesive primer) to improve the adhesion to the resin film. (3) An aluminum hydrated oxide film as disclosed in JP-A-63-126728 is provided to improve the adhesion.

【0003】[0003]

【発明が解決しようとする課題】しかし、(1)のリン酸
クロメ−ト処理法は処理液が主としてクロム酸塩、リン
酸塩、フッ酸等からなり人体に有害なため莫大な排水処
理設備が必要であり、環境保全の面からふさわしくな
い。また、リン酸クロム酸塩皮膜は樹脂フィルム積層時
の加熱、成型加工によってクラックが入りやすいため、
この部分において塗膜密着性が低下することがあるとい
う欠点を有する。また、(2)の接着プライマ−を形成さ
せる方法においてはプライマ−塗布によるコスト高を招
くだけでなく、塗装焼き付け工程が別に必要となるため
に生産性が悪くなるという問題がある。(3)の水和酸化
皮膜を設ける方法は水和酸化皮膜処理に長時間を要する
ために生産性が悪く、また水和酸化皮膜が硬いため成型
加工中にクラックを生じやすく、リン酸クロメ−トの場
合同様この部分で塗膜密着性が低下することがある。本
発明者らは、前記従来技術の欠点を克服した、環境汚染
性が無く、処理時間が短時間で済み生産性が高く、設備
的にも低コストですみ加工費も低く、成型加工後も下地
が安定で樹脂フィルムとの密着性が高い高性能のアルミ
ニウム板を提供すべく研究を行い本発明を完成したもの
である。
However, in the phosphoric acid chromate treatment method (1), the treatment liquid is mainly chromate, phosphate, hydrofluoric acid, etc. and is harmful to the human body, which is an enormous wastewater treatment facility. Is necessary and is not suitable from the viewpoint of environmental protection. In addition, since the phosphoric acid chromate film is prone to cracks due to heating and molding during resin film lamination,
There is a drawback in that the coating film adhesion may decrease in this portion. In addition, the method (2) of forming an adhesive primer not only causes a high cost due to the application of the primer, but also has a problem that productivity is deteriorated because a separate baking process is required. The method of providing the hydrated oxide film of (3) is poor in productivity because it takes a long time to process the hydrated oxide film, and the hydrated oxide film is so hard that cracks are likely to occur during the molding process. In the same manner as in the above case, the adhesion of the coating film may decrease in this part. The present inventors have overcome the above-mentioned drawbacks of the prior art, have no environmental pollution, require only a short processing time, have high productivity, have low equipment costs, and have low processing costs. The present invention has been completed by conducting research to provide a high-performance aluminum plate having a stable base and high adhesion to a resin film.

【0004】[0004]

【課題を解決するための手段】これらの課題を達成する
ため本願において各請求項は下記の構成を有する。すな
わち、請求項1は、膜厚500〜5000オングストロ
ームの枝分かれしたマイクロポアを有する酸化皮膜を形
成させたアルミニウム材に樹脂フィルムを積層させてな
るフィルム積層アルミニウム材。請求項2は、アルミニ
ウム材の表面をアルカリ性水溶液中にて交番波形で電解
処理を施して膜厚500〜5000オングストロームの
枝分かれしたマイクロポアを有する酸化皮膜を形成させ
たことを特徴とする積層樹脂フィルムとの密着性に優れ
たフィルム積層用アルミニウム材の製造方法。請求項3
は、電解処理条件が、pH=9〜13の35〜85℃の
アルカリ性水溶液中、電流密度4〜50A/dm2 にて
電気量が80C/dm2 を越えることを特徴とする請求
項2に記載のフィルム積層用アルミニウム材の製造方
法。請求項4は、アルカリ性水溶液中にて交番波形で電
解処理する前に、濃度1〜30wt%、浴温10〜90
℃の酸性溶液で1秒〜数十秒の時間エッチング処理し金
属間化合物を除去し水洗することを特徴とする請求項2
または3に記載のフィルム積層用アルミニウム材の製造
方法。である。
In order to achieve these objects, in the present application, each claim has the following structure. That is, claim 1 is a film laminated aluminum material obtained by laminating a resin film on an aluminum material on which an oxide film having branched micropores having a film thickness of 500 to 5000 angstrom is formed. According to a second aspect of the present invention, the surface of the aluminum material is electrolyzed in an alkaline aqueous solution with an alternating waveform to form an oxide film having branched micropores having a film thickness of 500 to 5000 angstroms. A method for producing an aluminum material for film lamination, which has excellent adhesiveness with. Claim 3
The electrolysis condition is that the amount of electricity exceeds 80 C / dm 2 at a current density of 4 to 50 A / dm 2 in an alkaline aqueous solution of pH 9 to 13 at 35 to 85 ° C. A method for producing an aluminum material for film lamination as described above. According to a fourth aspect of the present invention, the concentration is 1 to 30 wt% and the bath temperature is 10 to 90 before the electrolytic treatment with an alternating waveform in an alkaline aqueous solution.
The intermetallic compound is removed by etching treatment with an acidic solution at a temperature of 1 ° C. for several seconds to several tens of seconds, followed by washing with water.
Alternatively, the method for producing an aluminum material for film lamination according to Item 3. Is.

【0005】以下、各構成要件について詳細に説明す
る。本発明の対象となるアルミニウム材は成型加工でき
るアルミニウム合金であれば制限は無く、JISまたは
AA規格合金の全てに適応できる。ただし、コスト、加
工性の点からは1100,1200等の1000系、3
003,3004等の3000系、5052,5082
等の5000系、6061等の6000系の合金が好ま
しい。本発明において、アルカリ性溶液中で交流電解処
理により得られる酸化皮膜は500〜5000オングス
トロームの膜厚とする。また、この酸化皮膜は多孔質で
枝分かれしたマイクロポアを有し、さらに表面が清浄で
あるため、積層される樹脂フィルムとの初期密着性だけ
でなく、樹脂フィルム積層時の加熱や絞り比の高い深絞
り加工を行ってもクラックが生じないため、積層体の深
絞り加工後も強固な密着性を維持できるのである。な
お、かかる酸化皮膜の膜厚が500オングストロームよ
りも薄くなると、樹脂フィルムとの密着性が十分でなく
なる。一方、酸化皮膜の厚さが5000オングストロー
ムを越えても特に障害は無いが、通常の処理条件で得ら
れる厚さの上限としてこの程度が限界であり、これ以上
厚くしても特にメリットは無い。積層する樹脂フィルム
としては、使用する用途に併せて適宜選択すれば良く特
に限定されるものではないが、PET等のポリエステル
系フィルム,4フッ化エチレン−6フッ化プロピレン共
重合樹脂フィルム等の熱融着フッ素系フィルム,ポリプ
ロピレン等のポリオレフィン系フィルムが好適に用いら
れる。樹脂フィルムの厚さも使用する用途に併せて適宜
選択すれば良いが、通常10〜50μm程度の範囲から
選択する。樹脂フィルムの積層温度も樹脂フィルムの特
性により大きく変わるが、通常、室温〜300℃前後の
温度から選択される。本発明に使用するアルカリ性水溶
液としては、特に制限は無いが、通常はピロリン酸ナト
リウム,リン酸ナトリウム,リン酸カリウム,リン酸水
素ナトリウム等のリン酸塩、炭酸ナトリウム,炭酸カリ
ウム,炭酸水素ナトリウム等の炭酸塩、水酸化ナトリウ
ム,水酸化カリウム等のアルカリ金属水酸化物の1種ま
たは2種以上の混合溶液が良い。また、脱脂性を向上さ
せるために界面活性剤を含んでいても良い。この電解液
のpHは9〜13の範囲とする。特に好ましくは9.5
〜12である。pH9未満では脱脂性が劣り、アルミニ
ウム表面の圧延油、アルミニウム板製造中に形成された
酸化皮膜の除去が不十分で、本発明で付与すべき枝分か
れしたマイクロポアを有する多孔質酸化皮膜の形成が阻
害される。また、浴電圧が上昇して不均一な電解が生じ
やすいため好ましくない。一方、pHが13を越えると
電解液の溶解性が強すぎて、密着性に優れた多孔性酸化
皮膜が形成されなくなるので避けるべきである。アルカ
リ性溶液の浴温は、35〜85℃の範囲とする。特に好
ましくは40〜70℃の範囲である。35℃未満では脱
脂・洗浄効果が不十分で、一方85℃を越えると溶解性
が強すぎ必要な酸化皮膜が得られなくなる。交番波形で
の最大電流密度は4〜50A/dm2 、好ましくは5〜
30A/dm2 ある。4A/dm2 未満では電解時に発
生する気泡の量が不十分で、表面の清浄化効果が劣り、
密着性に優れた多孔性酸化皮膜の生成が不十分であるた
め好ましくない。50A/dm2 を越えると電解電圧が
高くなりすぎ、、漏電を起こしやすくなるだけでなく、
反応熱による「焼け」等の外観ムラが発生しやすいので
好ましくない。電解は総電気量が80C/dm2 を越え
る時間行う必要がある。総電気量が80C/dm2 以下
であると多孔性酸化皮膜が所定の厚みまで生成しないの
で、樹脂フィルムとの密着性が不十分である。更に細か
く見ると極性がプラスの時の電気量(アノ−ド電気量)
は40C/dm2 を越える範囲であることが望ましい。
アノ−ド電気量が40C/dm2 以下では多孔性酸化皮
膜の成長が不十分で、洗浄作用も十分に行われない。さ
らに、極性がマイナスの時の電気量(カソ−ド電気量)
は40C/dm2 以上が好ましい。カソ−ド電気量が4
0C/dm2 未満では洗浄作用が不十分である。なおア
ノ−ド電気量とカソ−ド電気量は上記の範囲を満たして
おれば良く、同じ電気量である必要は無い。電流波形は
交番波形であれば良く、正弦波交流、矩形波、台形波、
三角波等で良い。電解時間は必要電気量と電流密度の関
係から設定すれば良く、高電流密度であれば短時間の処
理で済む。工業的には数秒〜30秒程度が好ましい。電
解前の清浄化処理は必要に応じて行うことができる。特
に、合金成分量が多いアルミニウム合金の場合、材料表
面に晶出物や析出物等の状態で金属間化合物が多数存在
する。(例えば5082の場合Al−Mg系アルミニウ
ム合金中にはAl3Fe,Mg2Si等)これらの化合物
は電解処理による多孔性の酸化皮膜の形成を阻害する。
すなわち、上述のような枝分かれした多孔性皮膜は、A
3Fe,Mg2Si等の金属間化合物の表面には形成さ
れない。そのため、ミクロ的に見ると部分的に酸化皮膜
が形成されない微欠陥となる。このような欠陥が存在す
るとフィルム積層後、剥離の起点となりやすく性能低下
を引き起こす。このような化合物は酸性の溶液中でエッ
チングした後、水洗することにより除去できる。そこで
本願第3項のように、酸性の溶液中でエッチングした後
水洗し、しかる後に前記のアルカリ性溶液中で交番波形
にて電解処理すると、欠陥の無い均一な枝分かれした多
孔質酸化皮膜が得られる。本願第3項の酸性溶液でのエ
ッチングに用いる酸溶液としては、硫酸,硝酸,塩酸,
リン酸等の鉱酸,スルファミン酸等の有機酸またはこれ
らの混酸で良い。濃度は1〜30wt%、好ましくは2
〜20wt%である。濃度1wt%未満ではエッチング
効果が低く、金属間化合物または析出物を十分除去でき
ない。濃度が30wt%を越えると、取扱い上の危険性
が増大するので不適当である。浴温は10〜90℃、好
ましくは20〜50℃である。10℃未満ではエッチン
グ速度が遅く処理時間が極端に長くなるため不向きであ
り、90℃を越えると多量のガス、ミストが発生するた
め危険である上、設備費用が急激に増大する。時間は1
秒〜数十秒の範囲、好ましくは数秒〜10数秒の範囲が
良い。
Each constituent element will be described in detail below. The aluminum material that is the subject of the present invention is not limited as long as it is an aluminum alloy that can be molded, and it can be applied to all JIS or AA standard alloys. However, from the viewpoint of cost and workability, 1000 series such as 1100 and 1200, 3
3000 series such as 003, 3004, 5052, 5082
And the like, and 6000 series alloys such as 6061 are preferable. In the present invention, the oxide film obtained by the alternating current electrolytic treatment in the alkaline solution has a film thickness of 500 to 5000 angstrom. In addition, since this oxide film has porous and branched micropores and the surface is clean, not only the initial adhesion to the resin film to be laminated but also the high heating and drawing ratio when laminating the resin film Since cracks do not occur even when deep drawing is performed, strong adhesion can be maintained even after deep drawing of the laminate. If the thickness of the oxide film is less than 500 Å, the adhesion with the resin film will be insufficient. On the other hand, even if the thickness of the oxide film exceeds 5000 angstroms, there is no particular problem, but this is the upper limit of the thickness obtained under normal processing conditions, and there is no particular advantage if the thickness is further increased. The resin film to be laminated is not particularly limited as long as it is appropriately selected according to the use purpose, but is not limited to a polyester film such as PET, a tetrafluoroethylene-6-fluoropropylene copolymer resin film, or the like. A fused fluorine film and a polyolefin film such as polypropylene are preferably used. The thickness of the resin film may be appropriately selected depending on the intended use, but it is usually selected from the range of about 10 to 50 μm. The lamination temperature of the resin film also varies greatly depending on the characteristics of the resin film, but it is usually selected from a temperature of room temperature to about 300 ° C. The alkaline aqueous solution used in the present invention is not particularly limited, but is usually a phosphate such as sodium pyrophosphate, sodium phosphate, potassium phosphate, sodium hydrogenphosphate, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, etc. One or a mixture of two or more kinds of the above-mentioned carbonates, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide is preferable. Further, a surfactant may be contained in order to improve the degreasing property. The pH of this electrolytic solution is in the range of 9 to 13. Particularly preferably 9.5
~ 12. If the pH is less than 9, the degreasing property is poor, the rolling oil on the aluminum surface and the oxide film formed during the production of the aluminum plate are not sufficiently removed, and the porous oxide film having branched micropores to be imparted by the present invention is not formed. Be hindered. In addition, the bath voltage rises and uneven electrolysis is likely to occur, which is not preferable. On the other hand, when the pH exceeds 13, the solubility of the electrolytic solution is too strong and a porous oxide film having excellent adhesiveness cannot be formed, so this should be avoided. The alkaline solution bath temperature is in the range of 35 to 85 ° C. Particularly preferably, it is in the range of 40 to 70 ° C. If the temperature is lower than 35 ° C, the degreasing / cleaning effect is insufficient. On the other hand, if the temperature exceeds 85 ° C, the solubility is so strong that the required oxide film cannot be obtained. The maximum current density in the alternating waveform is 4 to 50 A / dm 2 , preferably 5 to
There is 30 A / dm 2 . If it is less than 4 A / dm 2 , the amount of bubbles generated during electrolysis is insufficient and the surface cleaning effect is poor.
It is not preferable because the formation of the porous oxide film having excellent adhesion is insufficient. If it exceeds 50 A / dm 2 , not only the electrolysis voltage becomes too high and it is easy for leakage to occur,
It is not preferable because unevenness in appearance such as "burning" easily occurs due to reaction heat. It is necessary to perform electrolysis for a time when the total amount of electricity exceeds 80 C / dm 2 . If the total amount of electricity is 80 C / dm 2 or less, the porous oxide film does not form up to a predetermined thickness, so the adhesion with the resin film is insufficient. If you look at it more closely, the amount of electricity when the polarity is positive (anode amount of electricity)
Is preferably in the range of more than 40 C / dm 2 .
If the anodic charge is 40 C / dm 2 or less, the growth of the porous oxide film is insufficient and the cleaning action is not sufficiently performed. In addition, the amount of electricity when the polarity is negative (cathode amount of electricity)
Is preferably 40 C / dm 2 or more. Cathode electricity amount is 4
If it is less than 0 C / dm 2 , the cleaning action is insufficient. The anodic electric quantity and the cathodic electric quantity need only satisfy the above-mentioned range, and do not have to be the same electric quantity. The current waveform should be an alternating waveform, such as sine wave alternating current, rectangular wave, trapezoidal wave,
A triangular wave or the like will do. The electrolysis time may be set based on the relationship between the required amount of electricity and the current density, and if the current density is high, a short treatment time will suffice. Industrially, it is preferably several seconds to 30 seconds. The cleaning treatment before electrolysis can be performed as necessary. In particular, in the case of an aluminum alloy having a large amount of alloy components, a large number of intermetallic compounds are present on the surface of the material in the form of crystallized substances or precipitates. (For example, in the case of 5082, Al 3 Fe, Mg 2 Si, etc. in the Al-Mg based aluminum alloy) These compounds inhibit the formation of porous oxide film by electrolytic treatment.
That is, the branched porous film as described above is
It is not formed on the surface of intermetallic compounds such as l 3 Fe and Mg 2 Si. Therefore, when viewed microscopically, it becomes a fine defect in which an oxide film is not partially formed. The presence of such a defect easily becomes a starting point of peeling after the film is laminated, which causes a deterioration in performance. Such a compound can be removed by etching in an acidic solution and then washing with water. Therefore, as in the third item of the present application, when etching is performed in an acidic solution, followed by washing with water, and then electrolytic treatment with an alternating waveform in the alkaline solution, a uniform branched porous oxide film without defects is obtained. . The acid solution used for etching with the acidic solution of the third section of the present application includes sulfuric acid, nitric acid, hydrochloric acid,
A mineral acid such as phosphoric acid, an organic acid such as sulfamic acid, or a mixed acid thereof may be used. The concentration is 1 to 30 wt%, preferably 2
~ 20 wt%. If the concentration is less than 1 wt%, the etching effect is low and the intermetallic compound or precipitate cannot be sufficiently removed. If the concentration exceeds 30 wt%, the handling risk increases, which is unsuitable. The bath temperature is 10 to 90 ° C, preferably 20 to 50 ° C. If the temperature is lower than 10 ° C., the etching rate is slow and the processing time becomes extremely long, which is not suitable, and if the temperature exceeds 90 ° C., a large amount of gas and mist are generated, which is dangerous and the facility cost rapidly increases. Time is 1
The range of seconds to several tens of seconds is preferable, and the range of several seconds to several tens of seconds is preferable.

【0006】[0006]

【作用】この発明では35〜85℃という高温のアルカ
リ性溶液中で交番波形を用いて電解処理を行う。このよ
うな電解処理によって、以下に詳細に述べるようにアル
ミニウム材の表面が強力に脱脂・洗浄されると同時に、
樹脂フィルムとの密着性が優れた多孔性酸化皮膜が生成
される。まず脱脂・洗浄作用について述べれば、アルカ
リ性溶液はそれ自体で脱脂性を有しているのに加え、高
温であるためより強い脱脂性が発現される。しかも交番
波形による電解では、アノ−ド反応時には酸素ガスが発
生する一方、カソ−ド反応時には水素ガスが発生するの
で、アノ−ド反応時にはアルミニウム材表面に付着して
いる有機物の酸化による脱脂・洗浄作用が働き、カソ−
ド反応時には板表面での水素気泡の膨脹による機械的洗
浄作用が働く。従って高温のアルカリ性溶液中での交番
波形での電解によれば上述の各作用が相乗的に機能して
強力な脱脂・洗浄効果が発揮され、極めて短時間で樹脂
フィルムとの密着性に悪影響を与えるアルミニウム材表
面の圧延油等の油分、圧延等の塑性加工途中で形成され
た塊状の熱酸化皮膜をはじめとする汚れが完全に除去さ
れ清浄な表面を持つ酸化皮膜を形成するのである。さら
に本発明では高温のアルカリ性溶液中、交番波形にて電
解処理を行っているため、高電流密度での電解が可能と
なり高速の化学反応が起こる。すなわち、高温のアルカ
リ性水溶液による酸化皮膜の溶解反応と極性が陽極での
酸化皮膜の生成反応とが高速で起こる。また、酸化皮膜
表面での溶解反応と交番波形による断続的な酸化皮膜成
長とによって生成する酸化皮膜は、一般的な酸性水溶液
にて直流電解によって陽極酸化処理した酸化皮膜に比べ
ると、非常に多孔質でしかも枝分かれした非常に複雑な
構造のマイクロポアが形成される。一方、直流電解によ
り得られた陽極酸化皮膜ではポア密度が低い脆い酸化皮
膜となる。そのため成型加工中に受ける応力を緩和でき
ず、酸化皮膜それ自体が破壊され、その結果、酸化皮膜
の上に積層された樹脂フィルムにもクラック等の破壊が
生じ、欠陥が発生する。この多孔性酸化皮膜の生成はア
ルカリ性水溶液中で交番波形にて電解処理することによ
り初めてその実現が可能となる。すなわち、一般的な直
流電解による電解処理ではポア密度が低いため電流が流
れにくく浴電圧が急激に上昇し、「焼け」等の皮膜欠陥が
生じ易く多孔性酸化皮膜生成に必要な高電流密度の電解
が不可能となる。また、一般に陽極酸化皮膜を形成する
のに使われているリン酸、硫酸等の酸性水溶液では表面
の清浄化作用が小さいため浴電圧が上昇しやすく高電流
密度での電解が不可能となる。このようにアルカリ性水
溶液中で交番波形にて電解処理した酸化皮膜は表面が清
浄であり、また枝分かれした複雑なマイクロポア構造を
有する多孔性酸化皮膜であるために、積層される樹脂フ
ィルムとの初期密着性だけでなく、樹脂フィルム積層時
の加熱や絞り比の高い深絞り加工を行っても皮膜が受け
る応力を緩和する作用が強く、酸化皮膜にクラックが生
ぜず破壊されないため、積層体の深絞り加工後も強固な
密着性を維持できるのである。
In the present invention, electrolytic treatment is carried out using an alternating waveform in an alkaline solution at a high temperature of 35 to 85 ° C. By such electrolytic treatment, as described in detail below, the surface of the aluminum material is strongly degreased and washed, and at the same time,
A porous oxide film having excellent adhesion to the resin film is produced. First, regarding the degreasing / cleaning action, the alkaline solution itself has degreasing properties, and in addition, because of the high temperature, stronger degreasing properties are exhibited. In addition, in the electrolysis using the alternating waveform, oxygen gas is generated during the anodic reaction, while hydrogen gas is generated during the cathodic reaction, so during the anodic reaction, degreasing and degreasing of organic substances adhering to the surface of the aluminum material is caused. The cleaning action works,
During the reaction, the mechanical cleaning action is performed by the expansion of hydrogen bubbles on the plate surface. Therefore, electrolysis with an alternating waveform in a high-temperature alkaline solution synergistically functions the above-mentioned actions to exert a strong degreasing / cleaning effect, which adversely affects the adhesion to the resin film in an extremely short time. Oil components such as rolling oil on the surface of the aluminum material to be given, and lumps of thermal oxide film formed during plastic working such as rolling are completely removed to form an oxide film having a clean surface. Furthermore, in the present invention, since the electrolytic treatment is performed in an alkaline solution at a high temperature with an alternating waveform, electrolysis can be performed at a high current density and a high-speed chemical reaction occurs. That is, the dissolution reaction of the oxide film by the high temperature alkaline aqueous solution and the reaction of forming the oxide film at the anode having the polarity occur at high speed. In addition, the oxide film formed by the dissolution reaction on the surface of the oxide film and the intermittent oxide film growth due to the alternating waveform is much more porous than the oxide film anodized by DC electrolysis in a general acidic aqueous solution. Micropores of very complex structure with quality and branching are formed. On the other hand, an anodized film obtained by direct current electrolysis is a brittle oxide film having a low pore density. Therefore, the stress received during the molding process cannot be relaxed, the oxide film itself is destroyed, and as a result, the resin film laminated on the oxide film also suffers damage such as cracks and defects. The formation of this porous oxide film can be realized only by performing electrolytic treatment in an alkaline aqueous solution with an alternating waveform. That is, in the electrolytic treatment by general direct current electrolysis, since the pore density is low, the current hardly flows, the bath voltage rises rapidly, and film defects such as "burning" are likely to occur. Electrolysis becomes impossible. In addition, an acidic aqueous solution of phosphoric acid, sulfuric acid, etc., which is generally used for forming an anodized film, has a small cleaning effect on the surface, so that the bath voltage is likely to rise and electrolysis at a high current density is impossible. In this way, the oxide film electrolytically treated in an alkaline aqueous solution in an alternating waveform has a clean surface, and since it is a porous oxide film having a branched and complicated micropore structure, it is not mixed with the resin film to be laminated in the initial stage. Not only the adhesion, but also the effect of relieving the stress on the coating is strong even when heating at the time of laminating resin films and deep drawing with a high drawing ratio. It is possible to maintain strong adhesion even after drawing.

【0007】そしてまた、脱脂洗浄と多孔性酸化皮膜の
生成が同一槽内で同一電解処理によって行われ、しかも
その電解時間も短いため従来よりも全体として作業時間
が著しく短縮され、生産性が向上するとともに設備コス
トも著しく安価となる。また、クロムのような人体に有
害な物質を使用しないので操業面及び環境保全上大きな
利点となる。このように、本願発明は樹脂フィルムに対
する密着性が良好であるのみならず短時間、最小工程の
処理で済み、且つ設備的にも操業的にも低コストの製造
方法を提供するものである。また、表面に金属間化合物
を多く生ずる材料に対しては、析出物を酸系溶液でエッ
チング除去した後、アルカリ性水溶液中で電解処理する
とアルミニウム合金全面に多孔性酸化皮膜が形成される
ので、フィルムとの密着性がさらに大きく向上する。
Further, degreasing cleaning and formation of a porous oxide film are carried out by the same electrolytic treatment in the same tank, and the electrolysis time is also shorter, so that the working time as a whole is remarkably shortened as compared with the conventional one, and the productivity is improved. In addition, the facility cost will be significantly reduced. In addition, since a substance harmful to human body such as chromium is not used, it is a great advantage in terms of operation and environmental protection. Thus, the present invention provides a manufacturing method that not only has good adhesion to a resin film, but also requires a minimum number of steps for a short time, and that is inexpensive in terms of equipment and operation. Also, for materials that produce a lot of intermetallic compounds on the surface, after removing the precipitates by etching with an acid-based solution and performing electrolytic treatment in an alkaline aqueous solution, a porous oxide film is formed on the entire surface of the aluminum alloy. The adhesiveness with is further improved.

【0008】[0008]

【実施例】次に本発明の実施例について説明する。 (実施例1)JIS A1100アルミニウム板を冷間
圧延し、板厚0.3mmの板材とした。これに表1に示
すような下地処理を行い、水洗、乾燥後、各下地処理済
みのアルミニウム材に厚さ30μmのオレフィン系接着
層を有するフッ素系樹脂フィルムを圧力=7kg/cm
2 、温度=300℃、10分の条件で熱圧着し、積層板
を作製した。この積層板を総シゴキ率40%で成型し、
直径5mm、高さ11mmの円筒容器とした。ついでこ
の円筒容器をトリミングし、レトルト処理(121℃、
3h)した後、樹脂フィルムの付着状況を観察した。結
果を表1に示す。発明例はいずれも樹脂フィルムの剥離
が無く、良好であった。一方、比較例はいずれも樹脂フ
ィルムが剥離した。
EXAMPLES Next, examples of the present invention will be described. (Example 1) A JIS A1100 aluminum plate was cold-rolled to obtain a plate material having a plate thickness of 0.3 mm. This is subjected to a base treatment as shown in Table 1, washed with water and dried, and then a fluorine-based resin film having an olefin-based adhesive layer having a thickness of 30 μm is applied to each pretreated aluminum material under a pressure of 7 kg / cm.
2 , thermocompression-bonded under the conditions of temperature = 300 ° C. and 10 minutes to produce a laminated plate. This laminated board is molded with a total squeeze rate of 40%,
A cylindrical container having a diameter of 5 mm and a height of 11 mm was prepared. Then, this cylindrical container was trimmed and retorted (121 ° C,
After 3 h), the adhesion state of the resin film was observed. The results are shown in Table 1. In each of the invention examples, there was no peeling of the resin film, which was good. On the other hand, in each of the comparative examples, the resin film peeled off.

【0009】[0009]

【表1】 [Table 1]

【0010】(実施例2)JIS A5052アルミニ
ウム板を冷間圧延し、板厚0.3mmの板材とする。こ
れに表2に示すような下地処理を行い、水洗、乾燥後、
各下地処理済みのアルミニウム材に厚さ30μmの接着
剤成分を含有するナイロン系樹脂フィルムを圧力=5k
g/cm2 、温度=230℃、10分の条件で熱圧着
し、積層板を作製した。この積層板を総シゴキ率40%
で成型し、直径5mm、高さ11mmの円筒容器とし
た。ついでこの円筒容器をトリミングし、レトルト処理
(121℃、3h)した後、樹脂フィルムの付着状況を
観察した。発明例はいずれも樹脂フィルムの剥離が無
く、良好であった。一方、比較例はいずれも樹脂フィル
ムが剥離した。
(Example 2) A JIS A5052 aluminum plate is cold-rolled to form a plate material having a plate thickness of 0.3 mm. This is subjected to a base treatment as shown in Table 2, washed with water and dried,
Nylon-based resin film containing adhesive components with a thickness of 30 μm is applied to each pre-treated aluminum material at a pressure of 5k.
Thermocompression bonding was performed under the conditions of g / cm 2 and temperature = 230 ° C. for 10 minutes to prepare a laminated plate. This laminated board is 40% in total
Was molded into a cylindrical container having a diameter of 5 mm and a height of 11 mm. Then, this cylindrical container was trimmed and subjected to retort treatment (121 ° C., 3 hours), and then the adhesion state of the resin film was observed. In each of the invention examples, there was no peeling of the resin film, which was good. On the other hand, in each of the comparative examples, the resin film peeled off.

【0011】[0011]

【表2】 [Table 2]

【0012】(実施例3)JIS A5082アルミニ
ウム合金板を冷間圧延し、板厚0.3mmの板材とし
た。これに表3に示すような下地処理を行い、水洗、乾
燥後、各下地処理済みのアルミニウム材に厚さ30μm
の接着剤成分を含有するナイロン系樹脂フィルムを圧力
=5kg/cm2 、温度=230℃、10分の条件で熱
圧着し、積層板を作製した。この積層板を総シゴキ率4
0%で成型し、直径5mm、高さ11mmの円筒容器と
した。ついでこの円筒容器をトリミングし、過酷なレト
ルト処理(121℃、12h)した後、フィルムの付着
状況を観察した。過酷なレトルト処理条件にもかかわら
ず、請求項4における発明例はいずれもフィルムの剥離
が無く、良好であった。一方、請求項4における比較例
はこのような過酷なレトルト処理条件では、いずれもフ
ィルムが剥離した。
(Example 3) A JIS A5082 aluminum alloy plate was cold-rolled to obtain a plate material having a plate thickness of 0.3 mm. This is subjected to a base treatment as shown in Table 3, washed with water and dried, and then each pretreated aluminum material has a thickness of 30 μm.
The nylon-based resin film containing the adhesive component was heat-pressed under the conditions of pressure = 5 kg / cm 2 and temperature = 230 ° C. for 10 minutes to produce a laminated plate. This laminate has a total squeeze rate of 4
It was molded with 0% to obtain a cylindrical container having a diameter of 5 mm and a height of 11 mm. Then, the cylindrical container was trimmed and subjected to a severe retort treatment (121 ° C., 12 h), and then the film adhesion state was observed. Despite the severe retort treatment conditions, all of the invention examples in claim 4 were good with no peeling of the film. On the other hand, in the comparative example of claim 4, the film peeled off under the severe retort treatment conditions.

【0013】[0013]

【効果】このようにアルカリ性水溶液中で交番波形にて
電解処理することにより形成された酸化皮膜は表面が清
浄であり、また非常に多孔質でしかも枝分かれ構造を有
するために、樹脂フィルムとの密着性が著しく改善さ
れ、しかも柔軟性に富むために成型加工を行ってもクラ
ック、樹脂フィルムの剥離を生じないため、成型加工後
も強固な密着性を維持できることとなる。また、脱脂洗
浄と多孔性酸化皮膜の生成が同一槽で同一の電解処理に
より同時に行われ、しかも時間が短いため従来よりも作
業時間が短縮され、生産性が向上するとともに設備コス
トも安価となる。更に化成処理と異なり、クロムのよう
な人体に有害な物質を使用しないので操業面及び保全上
大きな利点となる。さらに、表面に金属間化合物を多く
生ずる材料に対しても、アルカリ性水溶液中で電解処理
する前に、析出物を酸系溶液でエッチング除去する工程
を付加することにより、同様の効果が得られる。
[Effect] The oxide film formed by electrolytically treating in an alkaline aqueous solution with an alternating waveform in this way has a clean surface, and is very porous and has a branched structure, so it adheres to the resin film. Since the adhesiveness is remarkably improved, and since it is rich in flexibility, cracking and peeling of the resin film do not occur even when molding is performed, it is possible to maintain strong adhesion even after molding. In addition, degreasing cleaning and formation of a porous oxide film are performed simultaneously in the same tank by the same electrolytic treatment, and because the time is shorter, the work time is shorter than before, productivity is improved, and equipment costs are low. . Further, unlike chemical conversion treatment, it does not use a substance harmful to the human body such as chromium, which is a great advantage in terms of operation and maintenance. Furthermore, even for a material that produces a large amount of intermetallic compounds on its surface, the same effect can be obtained by adding a step of removing the precipitate by etching with an acid-based solution before electrolytically treating it in an alkaline aqueous solution.

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C25F 3/04 A 8414−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C25F 3/04 A 8414-4K

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 膜厚500〜5000オングストローム
の枝分かれしたマイクロポアを有する酸化皮膜を形成さ
せたアルミニウム材に樹脂フィルムを積層させてなるフ
ィルム積層アルミニウム材。
1. A film laminated aluminum material obtained by laminating a resin film on an aluminum material on which an oxide film having branched micropores having a film thickness of 500 to 5000 angstrom is formed.
【請求項2】 アルミニウム材の表面をアルカリ性水溶
液中にて交番波形で電解処理を施して膜厚500〜50
00オングストロームの枝分かれしたマイクロポアを有
する酸化皮膜を形成させたことを特徴とする積層樹脂フ
ィルムとの密着性に優れたフィルム積層用アルミニウム
材の製造方法。
2. A film thickness of 500 to 50 obtained by subjecting the surface of an aluminum material to an electrolytic treatment with an alternating waveform in an alkaline aqueous solution.
A method for producing an aluminum material for film lamination having excellent adhesion to a laminated resin film, characterized in that an oxide film having branched micropores of 00 angstrom is formed.
【請求項3】 電解処理条件が、pH=9〜13の35
〜85℃のアルカリ性水溶液中、電流密度4〜50A/
dm2 にて電気量が80C/dm2 を越えることを特徴
とする請求項2に記載のフィルム積層用アルミニウム材
の製造方法。
3. The electrolytic treatment is carried out under the condition that the pH is 9 to 13 (35).
Current density 4 to 50 A / in alkaline aqueous solution at ~ 85 ° C
method of producing a film laminating aluminum material according to claim 2 in which the quantity of electricity is equal to or in excess of 80C / dm 2 at dm 2.
【請求項4】 アルカリ性水溶液中にて交番波形で電解
処理する前に、濃度1〜30wt%、浴温10〜90℃
の酸性溶液で1秒〜数十秒の時間エッチング処理し金属
間化合物を除去し水洗することを特徴とする請求項2ま
たは3に記載のフィルム積層用アルミニウム材の製造方
法。
4. A concentration of 1 to 30 wt% and a bath temperature of 10 to 90 ° C. before electrolytic treatment with an alternating waveform in an alkaline aqueous solution.
The method for producing an aluminum material for film lamination according to claim 2 or 3, wherein the acidic solution is subjected to etching treatment for 1 second to several tens of seconds to remove intermetallic compounds and washed with water.
JP10986393A 1993-04-13 1993-04-13 Film laminating aluminum material and manufacture thereof Pending JPH06297639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10986393A JPH06297639A (en) 1993-04-13 1993-04-13 Film laminating aluminum material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10986393A JPH06297639A (en) 1993-04-13 1993-04-13 Film laminating aluminum material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06297639A true JPH06297639A (en) 1994-10-25

Family

ID=14521110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10986393A Pending JPH06297639A (en) 1993-04-13 1993-04-13 Film laminating aluminum material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06297639A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531302A (en) * 2000-04-26 2003-10-21 ボーヴイル,ジヤック Electrolysis method for plasma microarc oxidation
JP2006037231A (en) * 2004-07-24 2006-02-09 Km Europ Metal Ag Method for forming inorganic coating layer on surface of workpiece and plate or belt-like product
JP2010084200A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Laminate with porous aluminum oxide film
WO2011071102A1 (en) * 2009-12-11 2011-06-16 日本軽金属株式会社 Aluminium/resin composite exhibiting excellent weather resistance and manufacturing method for same
JP2012025145A (en) * 2010-06-22 2012-02-09 Furukawa-Sky Aluminum Corp Composite material of aluminum material/thermoplastic foamed resin layer and method of manufacturing the same
CN105951149A (en) * 2016-05-14 2016-09-21 西安科技大学 Alumina ceramic foil can be bent substantially without damage and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531302A (en) * 2000-04-26 2003-10-21 ボーヴイル,ジヤック Electrolysis method for plasma microarc oxidation
JP2006037231A (en) * 2004-07-24 2006-02-09 Km Europ Metal Ag Method for forming inorganic coating layer on surface of workpiece and plate or belt-like product
JP2010084200A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Laminate with porous aluminum oxide film
WO2011071102A1 (en) * 2009-12-11 2011-06-16 日本軽金属株式会社 Aluminium/resin composite exhibiting excellent weather resistance and manufacturing method for same
JP2012025145A (en) * 2010-06-22 2012-02-09 Furukawa-Sky Aluminum Corp Composite material of aluminum material/thermoplastic foamed resin layer and method of manufacturing the same
CN105951149A (en) * 2016-05-14 2016-09-21 西安科技大学 Alumina ceramic foil can be bent substantially without damage and preparation method thereof
CN105951149B (en) * 2016-05-14 2018-09-21 西安科技大学 It is a kind of can substantially lossless bending aluminium oxide ceramics foil and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0181173B1 (en) Anodic aluminium oxide film and method of forming it
US3824159A (en) Method of anodically coating aluminum
CN110983415B (en) Magnesium-lithium alloy surface composite oxidation treatment method
CN112663107A (en) Matte-surface black high-corrosion-resistance aluminum alloy surface treatment method
US4293617A (en) Process for producing strippable copper on an aluminum carrier and the article so obtained
JP5079103B2 (en) Multifunctional coating on aluminum parts
MX2010011889A (en) Process for production of tin-plated steel sheets, tin-plated steel sheets and chemical conversion treatment fluid.
JPH06297639A (en) Film laminating aluminum material and manufacture thereof
JPH052744B2 (en)
JP2003342790A (en) Surface treated aluminum material and thermoplastic resin-coated aluminum material
JP5143416B2 (en) Method for producing surface-treated aluminum material
KR100777176B1 (en) Method for Treating the Surface of Magnesium and Its Alloys
JPH06272015A (en) Production of aluminum sheet for film laminating
RU2471020C1 (en) Application method of electrolytic copper coating to parts from aluminium and its alloys
JP2569422B2 (en) Aluminum oxide laminated structure film and method for producing the same
JPH05191001A (en) Board for printed wiring and manufacture thereof
US2370108A (en) Method of making bimetal bond
JPH0413894A (en) Aluminum alloy material to be coated for automobile and its production
JP2002299187A (en) Thermoplastic resin-coated aluminum alloy board and method of manufacturing the same
JPH1112762A (en) Surface-treated aluminum material for two-piece can and production of surface-treated aluminum material for two-piece can
JPH03229895A (en) Aluminum alloy sheet to be coated for can lid and its production
JP5086688B2 (en) Method for producing surface-treated aluminum
CN116676653A (en) Formula of white anodic oxidation liquid for aluminum alloy
US20240229286A9 (en) A process to protect light metal substrates
JPH04333576A (en) Production of surface-treated steel sheet having excellent adhesive property