JPS6053453B2 - Aluminum chemical conversion method - Google Patents

Aluminum chemical conversion method

Info

Publication number
JPS6053453B2
JPS6053453B2 JP15980478A JP15980478A JPS6053453B2 JP S6053453 B2 JPS6053453 B2 JP S6053453B2 JP 15980478 A JP15980478 A JP 15980478A JP 15980478 A JP15980478 A JP 15980478A JP S6053453 B2 JPS6053453 B2 JP S6053453B2
Authority
JP
Japan
Prior art keywords
foil
chemical conversion
aluminum
electrolytic
conversion method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15980478A
Other languages
Japanese (ja)
Other versions
JPS5585676A (en
Inventor
秀晃 望月
徹 田村
滋 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15980478A priority Critical patent/JPS6053453B2/en
Publication of JPS5585676A publication Critical patent/JPS5585676A/en
Publication of JPS6053453B2 publication Critical patent/JPS6053453B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウムの化成法にかかり、アルミニウ
ム電解コンデンサの陽極箔して使用してもれ電流の少な
いアルミニウム箔を製造するのに適した方法を提供しよ
うとするものである。
[Detailed Description of the Invention] The present invention relates to a chemical conversion method for aluminum, and aims to provide a method suitable for producing aluminum foil with low leakage current, which can be used as an anode foil for aluminum electrolytic capacitors. be.

アルミニウム電解コンデンサの陽極箔は、アルミニウ
ム上にバリヤー型の緻密な酸化皮膜を形成されたもので
あつて、その膜厚は印加電圧1ボルト当たり14Aとき
わめて薄いにもかかわらず、高い電気絶縁性を有してい
る。
The anode foil of aluminum electrolytic capacitors has a dense barrier-type oxide film formed on aluminum, and although the film is extremely thin at 14A per volt of applied voltage, it has high electrical insulation properties. have.

酸化皮膜の電気絶縁性を直接測定することはできないけ
れども、電解液中で一定電圧を印加したときに流れるも
れ電流値によつて間接的にそれを知ることができる。こ
のもれ電流は、化成電解液の種類、そのpHや電導度、
温度、電流密度などによつて一様ではないが、もつとも
大きな影響を与えるのは酸化皮膜中の欠陥部分の存在で
ある。そして、その欠陥を発生させる最大の要因はアル
ミニウム中に含まれる不純物金属である。ところで、現
在のところアルミニウムの純度を高める唯一の方法は電
解精錬法であつて、実際、2次電解箔は1次電解箔に比
して二桁ほど純度の高いものであり、必然的にもれ電流
値もきわめて小さい。しカルながら、電解精錬法はエネ
ルギー多消費型であり、箔の価格も非常に高くなつてし
まう。それにもかかわらずコンデンサの陽極箔として高
純度の2次電解箔が多く用いられているのは、電気機器
や電子機器の高級化、高品位化が進む中で、電子部品と
(てのコンデンサヘの高性能化の要求が非常に強いから
といえるだろう。 本発明は、上述した高性能化と低価
格化という矛盾する二つの要求を同時に満足させること
のできる化成法を実現したものである。
Although it is not possible to directly measure the electrical insulation properties of the oxide film, it can be indirectly determined by the leakage current value that flows when a constant voltage is applied in the electrolyte. This leakage current depends on the type of chemical electrolyte, its pH and conductivity,
Although it varies depending on temperature, current density, etc., the presence of defective parts in the oxide film has the greatest influence. The biggest factor causing these defects is impurity metals contained in aluminum. By the way, currently the only way to increase the purity of aluminum is electrolytic refining, and in fact, secondary electrolytic foil is two orders of magnitude more pure than primary electrolytic foil, so it is inevitable that The leakage current value is also extremely small. However, the electrolytic refining method consumes a lot of energy, and the price of the foil becomes extremely high. Despite this, high-purity secondary electrolytic foils are often used as anode foils for capacitors, as electric and electronic devices become more sophisticated and high quality. This can be said to be because there is a very strong demand for higher performance.The present invention realizes a chemical synthesis method that can simultaneously satisfy the two contradictory demands of higher performance and lower cost mentioned above. .

アルミニウム電解コンデンサの陽極箔の製造方法とし
て、現在一般に次のような方法が実施されている。
Currently, the following method is generally used to manufacture anode foil for aluminum electrolytic capacitors.

すなわち、まず、塩酸や塩化ナトリウムなどの水溶液中
でアルミニウム箔を電解エッチングして表面積を増大さ
せる。次に、このアルミニウム箔を硼酸や有機酸あるい
はそれらの塩を溶質とする水溶液中で一定時間化成する
。そして、化成時間の短縮および化成皮膜の電気特性の
向上を目的として、電圧印加を中断し、アルミニウム箔
を空気中で300〜59℃の範囲内の温度で数分間加熱
する。通常は上述の化成と熱処理とを数回繰返し行なつ
ている。 本発明の化成法は、この第1回目の化成(以
下前化成という)の終了後の箔を熱処理する前に、特殊
な酸処理を行なうことが大きな特徴である。
That is, first, aluminum foil is electrolytically etched in an aqueous solution such as hydrochloric acid or sodium chloride to increase its surface area. Next, this aluminum foil is chemically converted for a certain period of time in an aqueous solution containing boric acid, an organic acid, or a salt thereof as a solute. Then, for the purpose of shortening the chemical conversion time and improving the electrical properties of the chemical conversion film, the voltage application is interrupted and the aluminum foil is heated in air at a temperature within the range of 300 to 59° C. for several minutes. Usually, the above chemical conversion and heat treatment are repeated several times. A major feature of the chemical conversion method of the present invention is that a special acid treatment is performed before heat treating the foil after the first chemical conversion (hereinafter referred to as pre-chemical conversion).

具体的にはPHO.l〜6.0に調整した酸性水溶液に
塩化マグネシウムを溶解した処理液中で、前述の前化成
したアルミニウム箔を浸漬処理する。このときの処理条
件は、液温、PH浸漬時間、酸の種類、アルミニウムの
浸漬量などによつて一概に規定することはできないが一
般にPHが低い程、また液温が高い程、浸漬時間を短縮
することができる。ここで、処理後のPHが0.1より
低い場合には酸化皮膜の溶解が起りやすいため使用しに
くい。PHが6.0より大きくなると、有効な処理がで
きない。なお、処理液において、塩化マグネシウムが0
.1重量パーセントよりも少なくなると十分な効果を期
待することができないので、溶解量は0.1重量パーセ
ントから飽和水溶液とすることが望ましい。酸処理工程
を終えた箔を十分に水洗した後、300〜500Cの範
囲内の温度で数分間熱処理する。この熱処理までの工程
が完了した箔については、以後再化成、熱処理を繰り返
しても、本発明の目的とする皮膜の特性改善効果が薄れ
るということはない。すなわち、本発明の化成方法によ
つて形成された酸化皮膜は、単位容量当りのもれ電流値
の比較において、前述の1次電解箔の化成皮膜よりも大
きく改善されているもので、2次電解箔のそれに近い特
性を示す。しかも、処理法自体きわめて簡便で、低コス
トで実施することができるため、実用的も優れた方法で
ある。以下に本発明について実施例、参考例、比較例を
あげて説明する。
Specifically, PHO. The above-mentioned preformed aluminum foil is immersed in a treatment solution prepared by dissolving magnesium chloride in an acidic aqueous solution adjusted to 1 to 6.0. The treatment conditions at this time cannot be unconditionally defined depending on the liquid temperature, PH immersion time, type of acid, amount of aluminum immersion, etc., but in general, the lower the PH and the higher the liquid temperature, the longer the immersion time. Can be shortened. Here, if the pH after treatment is lower than 0.1, it is difficult to use because the oxide film tends to dissolve. If the pH is greater than 6.0, effective treatment cannot be performed. In addition, in the treatment solution, magnesium chloride is 0.
.. If the amount is less than 1% by weight, a sufficient effect cannot be expected, so it is preferable that the amount dissolved is 0.1% by weight to a saturated aqueous solution. After completing the acid treatment step, the foil is sufficiently washed with water and then heat treated at a temperature within the range of 300 to 500C for several minutes. For foils that have undergone the steps up to this heat treatment, even if the re-forming and heat treatments are repeated thereafter, the effect of improving the properties of the film, which is the objective of the present invention, will not diminish. In other words, the oxide film formed by the chemical conversion method of the present invention is significantly improved compared to the chemical conversion film of the primary electrolytic foil described above in comparison of the leakage current value per unit capacity. It exhibits properties close to those of electrolytic foil. In addition, the treatment method itself is extremely simple and can be carried out at low cost, making it an excellent practical method. The present invention will be described below with reference to Examples, Reference Examples, and Comparative Examples.

参考例 市販の厚さ100pmの2次電解アルミニウム箔(純度
99.99%以上)を濃度10%の食塩水溶液中で常法
に従つて電解エッチングした。
Reference Example A commercially available secondary electrolytic aluminum foil (purity of 99.99% or more) having a thickness of 100 pm was electrolytically etched in a saline solution having a concentration of 10% according to a conventional method.

こうしてエッチングした箔を濃度10%の硼酸アルミニ
ウム水溶液中に浸漬してこれを陽極とし、30Cの液温
を保.つて100Vまで定電流化成したのち、100V
で10分間定電圧化成を続けた(これまでの化成を前化
成という)。以上のようにして前化成された箔を水洗い
してから、4凹℃の炉中で3分間熱処理した。それから
、同一の電解液中でさらに1紛間、−1■■の定電圧化
成を繰返した。この2次化成箔を、水洗し、400℃の
炉中で3分間熱処理した。化成の完了した箔について、
濃度10%の硼酸アルミニウム水溶液中において100
Vの電圧を印加して1分後のもれ電流値および120H
zでの静電容量を測定した。これらの結果を下表に示す
。比較例 市販の厚さ100pmの1次電解アルミニウム箔(純度
99%以上)を上記参考例と同じ方法でエッチングし、
その化成をした。
The etched foil was immersed in a 10% aluminum borate aqueous solution, used as an anode, and maintained at a temperature of 30C. After applying constant current to 100V, 100V
Constant voltage formation was continued for 10 minutes (formation performed so far is referred to as pre-formation). The foil preformed as described above was washed with water and then heat treated in a 4° C. oven for 3 minutes. Then, constant voltage formation was repeated for one more time in the same electrolytic solution at -1■■. This secondary chemically formed foil was washed with water and heat treated in a 400° C. oven for 3 minutes. Regarding the foil that has been chemically formed,
100 in an aluminum borate aqueous solution with a concentration of 10%
Leakage current value 1 minute after applying voltage of V and 120H
The capacitance at z was measured. These results are shown in the table below. Comparative Example A commercially available primary electrolytic aluminum foil (purity of 99% or more) with a thickness of 100 pm was etched in the same manner as in the above reference example,
I did the chemical conversion.

そのもれ電流値および静電容量を同じく下表に示す。実
施例1 市販の厚さ100P7rI,の1次電解アルミニウム箔
″を参考例におけると同じ方法でエッチングから前化成
まで行なつた。
The leakage current value and capacitance are also shown in the table below. Example 1 A commercially available "primary electrolytic aluminum foil" having a thickness of 100P7rI was subjected to etching and pre-forming in the same manner as in the reference example.

次に、濃度1%の塩酸水溶液に塩化マグネシウムを1重
量%の割合になるよう溶解して、中間処理液とし、液温
を40±2℃に保持して、前記前化成箔を3分間浸漬処
理した。処理後の箔を十分に水洗した後、400℃の炉
中で3分間熱処理した。以後の2次化成から熱処理まで
は参考例と同じ方法を採つた。化成完了後の箔の電気特
性を下表に示す。実施例2 実施例1に述べた化成法において、中間処理を以下の方
法で置換した。
Next, magnesium chloride was dissolved in an aqueous solution of hydrochloric acid with a concentration of 1% to a proportion of 1% by weight to obtain an intermediate treatment solution, and the pre-formed foil was immersed for 3 minutes while maintaining the solution temperature at 40±2°C. Processed. After the treated foil was thoroughly washed with water, it was heat-treated in a 400° C. oven for 3 minutes. The same method as in the reference example was adopted from subsequent secondary chemical formation to heat treatment. The electrical properties of the foil after completion of chemical formation are shown in the table below. Example 2 In the chemical conversion method described in Example 1, the intermediate treatment was replaced by the following method.

すなわち、塩化マグネシウムが0.5重量%となるよう
濃度5%の燐酸水溶液に溶解して中間処理液となし、液
温を50±2℃に保持して、前化成箔を3分間浸漬処理
した。中間処理後の箔を十分に水洗し、400℃で3分
間熱処理した。この他のエッチング、前化成、2次化成
については実施例1と同じ方法を用いた。化成の完了し
た箔の電気特性を下表に示す。実施例3 実施例1に述べた化成法において中間処理を以下の方法
で置換した。
That is, an intermediate treatment solution was prepared by dissolving magnesium chloride in a 5% aqueous phosphoric acid solution to a concentration of 0.5% by weight, and the pre-formed foil was immersed for 3 minutes while maintaining the solution temperature at 50±2°C. . The foil after the intermediate treatment was thoroughly washed with water and heat treated at 400° C. for 3 minutes. The same methods as in Example 1 were used for other etching, pre-chemical formation, and secondary chemical formation. The electrical properties of the foil after chemical conversion are shown in the table below. Example 3 In the chemical conversion method described in Example 1, the intermediate treatment was replaced by the following method.

すなわち、塩化マグネシウムを2重量%となるよう濃度
5%のしゆう酸水溶液中に溶解して中間処理液となし、
液温70Cにて5分間浸漬処理した。処理後の箔を充分
に水洗し、400Cで3分間熱処理した。この他の、エ
ッチング、前化成、2次化成については実施例1の方法
と同様にして行なつた。化成完了後の箔の電気特性を下
表に示す。上表の結果から明らかなように、同一のエッ
チング条件では、2次電解箔の方が1次電解箔よりもエ
ッチング倍率が高くなる。
That is, magnesium chloride was dissolved in an oxalic acid aqueous solution with a concentration of 5% to give an intermediate treatment solution of 2% by weight,
It was immersed for 5 minutes at a liquid temperature of 70C. The treated foil was thoroughly washed with water and heat treated at 400C for 3 minutes. Other etching, pre-chemical formation, and secondary chemical formation were carried out in the same manner as in Example 1. The electrical properties of the foil after completion of chemical formation are shown in the table below. As is clear from the results in the table above, under the same etching conditions, the etching magnification of the secondary electrolytic foil is higher than that of the primary electrolytic foil.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム電解コンデンサの陽極箔としての一次
電解アルミニウム箔を一度化成したのち、塩化マグネシ
ウムを含むpH0.1〜6.0の酸性水溶液中に浸漬処
理し、水洗後熱処理を行なつた上で、再度化成処理を行
なつてなるアルミニウムの化成法。
1. After a primary electrolytic aluminum foil as an anode foil for an aluminum electrolytic capacitor is once chemically formed, it is immersed in an acidic aqueous solution containing magnesium chloride with a pH of 0.1 to 6.0, washed with water, heat-treated, and then treated again. A chemical conversion method for aluminum that involves chemical conversion treatment.
JP15980478A 1978-12-21 1978-12-21 Aluminum chemical conversion method Expired JPS6053453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15980478A JPS6053453B2 (en) 1978-12-21 1978-12-21 Aluminum chemical conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15980478A JPS6053453B2 (en) 1978-12-21 1978-12-21 Aluminum chemical conversion method

Publications (2)

Publication Number Publication Date
JPS5585676A JPS5585676A (en) 1980-06-27
JPS6053453B2 true JPS6053453B2 (en) 1985-11-26

Family

ID=15701613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15980478A Expired JPS6053453B2 (en) 1978-12-21 1978-12-21 Aluminum chemical conversion method

Country Status (1)

Country Link
JP (1) JPS6053453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335386B2 (en) * 1985-10-04 1988-07-14 Takegawa Tekko Kk

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776510B2 (en) * 2006-11-21 2011-09-21 ニチコン株式会社 Method for producing anode foil for electrolytic capacitor
JP4942837B2 (en) * 2010-06-30 2012-05-30 三洋電機株式会社 Solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335386B2 (en) * 1985-10-04 1988-07-14 Takegawa Tekko Kk

Also Published As

Publication number Publication date
JPS5585676A (en) 1980-06-27

Similar Documents

Publication Publication Date Title
JP2000348984A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP2663541B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPS6053453B2 (en) Aluminum chemical conversion method
US2166990A (en) Electrolytic condenser and method of producing same
JP7227870B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS5825218A (en) Method of producing low voltage electrolytic condenser electrode foil
JPS60157214A (en) Method of electrochemically anodically oxidizing aluminum foil for electrolytic condenser
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JPH01266712A (en) Preparation of electrode foil for aluminum electrolytic capacitor
JPS6065517A (en) Method of compounding electrode foil for aluminum electrolytic condenser
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
JPH02216811A (en) Manufacture of aluminum foil for electrolytic capacitor
JP2847087B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP3480164B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3460418B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS6211487B2 (en)
JPH04364019A (en) Fabrication of electrolytic capacitor electrode foil
JPS6217185A (en) Production of electrode foil for aluminum electrolytic capacitor
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor
JPH04196305A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH0566004B2 (en)
JPH01287916A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH09246108A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH06302476A (en) Formation method of electrode foil for aluminum electrolytic capacitor
JPH04279017A (en) Manufacture of electrode foil for aluminum electrolytic capacitor