JPS58101469A - Thin film solar battery - Google Patents

Thin film solar battery

Info

Publication number
JPS58101469A
JPS58101469A JP56199796A JP19979681A JPS58101469A JP S58101469 A JPS58101469 A JP S58101469A JP 56199796 A JP56199796 A JP 56199796A JP 19979681 A JP19979681 A JP 19979681A JP S58101469 A JPS58101469 A JP S58101469A
Authority
JP
Japan
Prior art keywords
electrode
film
thin film
amorphous
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56199796A
Other languages
Japanese (ja)
Inventor
Tsutomu Otake
大竹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP56199796A priority Critical patent/JPS58101469A/en
Publication of JPS58101469A publication Critical patent/JPS58101469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the photoelectric performance and yield of a solar battery by interposing an Mo-Si or Ti-Si alloy film between an Al electrode and an amorphous Si. CONSTITUTION:An amorphous Si film 23 is formed by a conventional method on a glass substrate 21 which has a transparent conductive film 22. Then, an alloy film 24 of Si such as Mo-Si, Ta-Si, Ti-Si or the like and a high melting point metal is accumulated by a sputtering method in a thickness of several hundreds Angstrom , an Al film 25 is covered in a thickness of approx. 0.5-1mm., thereby maintaining the conductivity as an electrode. According to this structure, the amorphous Si is prevented from being locally derived into Al like the conventional one and the Al is prevented from being diffused into the amorphous Si. Further, the exfoliation of the electrode is reduced as compared with the case of the mere interposition of the high melting point metal layer, thereby improving the photoelectric performance and the yield.

Description

【発明の詳細な説明】 本発明は電極にアル建を用いたアモルファスシリコン太
霞電f/IAにおいて、アル電電極と7そル7アスシリ
;ン(以下a−114とかく)との間にシリコンを含む
高融点金属O膜を形成することによ〉、太陽電fIAの
歩*)と性能陶土をはかり九薄膜太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an amorphous silicon Taikaden f/IA using aluminum for the electrode, in which silicon is used between the aluminum electrode and the silicon (hereinafter referred to as a-114). By forming a high-melting-point metal O film containing a solar cell fIA*) and performance china clay, nine thin-film solar cells are developed.

近年、太陽電池の低コスト化へOアゲa−チとして、a
−84を用いた太陽電池が非常に注−を県めている。
In recent years, efforts have been made to reduce the cost of solar cells.
Solar cells using -84 are attracting a lot of attention.

従来の・−8(薄膜太陽電池の断面構造01例として、
一方の電極に!111j導電膜、一方の電極に金属を用
いたものを第1511に示す、岡閣において、!1はガ
ラス、12は透明導電膜で、過當軸0. 、 X@Os
、rto(インジウム酸化錫)がMいられる。★九、1
3は6−8(膜で透明導電膜側から1層、(層。
Conventional -8 (as an example of cross-sectional structure 01 of a thin film solar cell,
On one electrode! 111j A conductive film using metal for one electrode is shown in No. 1511, in Okakaku! 1 is glass, 12 is a transparent conductive film, and the vertical axis is 0. , X@Os
, rto (indium tin oxide) is included. ★9, 1
3 is 6-8 (film, one layer from the transparent conductive film side, (layer.

襲層の積層構造になっている。 14はアル電電極であ
る。
It has a layered structure with multiple layers. 14 is an alkaline electrode.

光は矢印ムO方向から照射され、太陽電池の電気的出力
は、透明電極玖と金属電極14とから取り出す。
Light is irradiated from the direction of the arrow O, and the electrical output of the solar cell is extracted from the transparent electrode hole and the metal electrode 14.

製造方法は通常のグツズ1CYD味が一毅に用いられる
。すなわち透明導電@120つ%/%えガラス基[11
を真空容器に入れ280〜300℃に加熱する。この状
態で必!!に応じ1141.、 ym、 、 B、H6
0ガスを流しtkから、高周波放電によル、ア、イ2%
の各a−Billを形成する。
As for the production method, the usual Gutsuzu 1CYD flavor is used for Ikki. That is, transparent conductive @ 120%/% glass base [11
Place in a vacuum container and heat to 280-300°C. A must in this condition! ! According to 1141. , ym, , B, H6
0 gas flows from tk, R, A, A 2% by high frequency discharge
form each a-Bill.

このあと、真空蒸着ヤスバッタ等にょルアルミ電極14
がつけられる。金属電極としては、反射率が大きいアル
ミが用いられる。これは6−8(中を透過し走光をアル
ミとa−84の界面でα−8(中に反射させ光の利用効
率を高める丸めである。壕九アルンは蒸着やスパッタが
し中すく、得られた膜の導電率が大きいなどの特徴も備
えている。
After this, vacuum evaporated Yasubata etc. aluminum electrode 14
can be added. Aluminum, which has a high reflectance, is used as the metal electrode. This is a round shape that increases the efficiency of light use by transmitting light through 6-8 and reflecting it into α-8 at the interface between aluminum and a-84. The resulting film also has features such as high electrical conductivity.

第1図は、電極の一方に透明導電膜を用い友場合につい
て述べ友が、両電極を金属にして、光を入射する方O電
極を半透BAKする構造も可能である。この場合にも半
透明電極としてアルミが用いられる。
FIG. 1 shows a case in which a transparent conductive film is used for one of the electrodes. However, it is also possible to use a structure in which both electrodes are made of metal and the O electrode on which light is incident is semi-transparent. Also in this case, aluminum is used as the semitransparent electrode.

このようにアルミは電極として利用し中すい材料である
。反面、大きな欠点を有している。
In this way, aluminum is a medium material that can be used as an electrode. On the other hand, it has major drawbacks.

それは、アルミが低い温度(5百数十度℃)で8イと共
晶になることであ)、さらK 4−g(中に拡散し中す
いことである。スパッタ中真空蒸着時に充分な熱エネル
ギーをもったアルミの原子がQ−8イ表i1に飛んでく
ると、その原子は、えヤす(a−Bi中に拡散する。ま
た場合によりてはアルミと共晶をつ<シ、α−日iを局
部的に奪い去る丸めピンホールを生ずる。
The reason for this is that aluminum becomes eutectic with 8-g at low temperatures (500-odd degrees Celsius), and that it diffuses into K4-g (aluminum easily). When an aluminum atom with thermal energy flies into Q-8 A-Table i1, that atom diffuses into a-Bi. , produces a rounding pinhole that locally removes α-day i.

仁のような現象が起こるため太陽電池はリーク電流が増
加したシ、あるいはピンホールに起因する両電極間のシ
ョート状態が生じ、光電性能の低下、ならびに歩留シの
低下をも九らす。
Due to this phenomenon, solar cells experience an increase in leakage current or a short-circuit between the two electrodes due to pinholes, resulting in a decrease in photoelectric performance and even a decrease in yield.

また、このような構造を有するアルミ電極のもつ欠点を
補なう方法として、a−8イとアルミ電極との間に高融
点金属、九とえばW、M@、テ・、!’ e H/等の
薄い膜を形成する方法も提案されている。
In addition, as a method to compensate for the drawbacks of the aluminum electrode having such a structure, a high melting point metal, such as W, M@, Te...! A method of forming a thin film such as ' e H/ has also been proposed.

しかし、a−Biとこれらの高融点金属薄膜は密着性が
悪く、微妙な作製条件の差などにより、膜がはがれる場
合がある。これは薄膜太陽電池の信頼性を悪くシ、一つ
の欠点である。
However, a-Bi and these high melting point metal thin films have poor adhesion, and the films may peel off due to subtle differences in manufacturing conditions. This is one drawback, as it reduces the reliability of thin-film solar cells.

本発明はかかる欠点を除去し友ものであって、その目的
とするところは、アルミ電極のもつ導電性の良さをいか
しつつ、薄膜太陽電池0光電性能ならびに歩留シの向上
をはかゐことKある。さらに他の目的は、薄膜太陽電池
の信頼性を向上させることにある。
The present invention aims to eliminate such drawbacks, and its purpose is to improve the photoelectric performance and yield of thin-film solar cells while taking advantage of the good conductivity of aluminum electrodes. There is K. Yet another objective is to improve the reliability of thin film solar cells.

本発明の断面構造を第2図に示す。第2図において、2
1はガラス、22は透明導電膜、23はa−8till
で透明導電展側からP層、i層、8層の積層構造になっ
て・いる、24はシリコンを含む高融点金属の薄膜、2
5Fiアルミ電極である。
A cross-sectional structure of the present invention is shown in FIG. In Figure 2, 2
1 is glass, 22 is a transparent conductive film, 23 is a-8till
It has a laminated structure of 8 layers, P layer, I layer, from the transparent conductive side, 24 is a thin film of high melting point metal containing silicon, 2
It is a 5Fi aluminum electrode.

光は矢印Bの方向から照射される。Light is emitted from the direction of arrow B.

本発明の製造方法は、透明導電膜22のついたガラス基
1に21の上にα−ETSII23をつける工程までは
従来の方法と同じである。
The manufacturing method of the present invention is the same as the conventional method up to the step of attaching α-ETSII 23 on the glass substrate 1 with the transparent conductive film 22 attached thereto.

その後、スパッタまたは電子ビーム蒸着によシシリコン
と高融点金属との合金、たとえば、M〇−84、Tα−
s= 、 T=−s4等の薄膜を形成する。膜厚は数百
オングストロームである。膜厚を厚くするために長時間
成膜することは熱的影蕃によシ太陽電池の特性劣化をま
ねく。
Thereafter, an alloy of silicon and a high melting point metal is formed by sputtering or electron beam evaporation, such as M〇-84, Tα-
A thin film such as s= , T=-s4 is formed. The film thickness is several hundred angstroms. Forming a film for a long time in order to increase the film thickness causes thermal effects and leads to deterioration of the characteristics of the solar cell.

次に、シリコンと高融点金属との合金薄膜上に真空蒸着
あるいはスパッタによシアルミを0゜5〜1.0μmつ
ける。このアルミにより電極としての導電性は充分保た
れる。
Next, sialumium is applied to a thickness of 0.5 to 1.0 .mu.m by vacuum deposition or sputtering on the thin alloy film of silicon and high melting point metal. This aluminum maintains sufficient electrical conductivity as an electrode.

仁のような構造にすることによシ、従来のもののように
a−13iが局部的にアルミ中へ奪い去られることも、
α−8i中へのアルミの拡散をも防ぐことができた。
By creating a nickel-like structure, the a-13i is not locally taken away into the aluminum like in conventional products.
It was also possible to prevent aluminum from diffusing into α-8i.

また最近提案された構造、すなわちa−日iとアルミと
の間に高融点金属の薄膜を形成する方法に比べて、電極
のはがれも少なく信頼性が向上した。
Furthermore, compared to a recently proposed structure, ie, a method in which a thin film of a high melting point metal is formed between the a-day i and aluminum, there is less peeling of the electrode and the reliability is improved.

太陽電池の光電性能ならびに歩留シを調べてみると、い
ずれも従来のものに比べてかな夛の向上がみられた。
When we investigated the photoelectric performance and yield of solar cells, we found that they were both significantly improved compared to conventional ones.

たとえば、20cNφの平行板型の電極を4つプラズマ
C%rD装置において、基機温度り00℃、高周板出力
40 ” e Hsベースの1056 BiHa、 5
00PPMの”s e 500 PPMのβz)Ig 
 を用いて、1.1のG−8(太陽電池を約100個作
製した。その場合ショート状態となって光起電力が0.
1v以下の素子ができる確率は従来のものでは約30t
sであった。
For example, in a plasma C%rD device with four parallel plate type electrodes of 20 cNφ, the base temperature is 00°C and the high frequency plate output is 40''e Hs based on 1056 BiHa, 5
00PPM's e 500 PPM's βz) Ig
Approximately 100 G-8 (1.1 solar cells) were produced using the following method.In this case, a short circuit occurred and the photovoltaic force was 0.
The probability of creating an element of 1V or less is about 30t with conventional technology.
It was s.

一方本発明の電極構造を用いた素子でa71Gであシ、
非常に歩留シが向上した。
On the other hand, an element using the electrode structure of the present invention is a71G,
Yield was greatly improved.

また上述の条件で作製した太陽電池の曲線因子の平均値
は従来の構造のものが55噂であるのに対し、本発明の
太陽電池d61%であplそれに伴って変換効率も向上
していた。
Furthermore, the average value of the fill factor of the solar cells produced under the above conditions is rumored to be 55 for the conventional structure, whereas the solar cell of the present invention had a d of 61%, and the conversion efficiency also improved accordingly. .

以上の説明かられかるように、本発明はα−s7薄膜太
陽電池の光電性能ならびに歩留シを向上させ、さらに、
信頼性の向上をはかる上で非常に有筋である。
As can be seen from the above description, the present invention improves the photoelectric performance and yield of α-S7 thin film solar cells, and furthermore,
This is extremely useful for improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のα−5ins太陽電池の断面図、第2図
は本発明の断面図である。 2111・・ガラス基板 22φ・・透明導電膜 23 拳a e a−Bi I! 24・・・シリコンを含む高融点金属の薄膜25自−・
アルミ電極 以   上 出願人 株式会社諏訪精工舎 代理人 弁理士最 上  務 第1図 第2図
FIG. 1 is a sectional view of a conventional α-5ins solar cell, and FIG. 2 is a sectional view of the present invention. 2111...Glass substrate 22φ...Transparent conductive film 23 Fist a e a-Bi I! 24... Thin film of high melting point metal containing silicon 25...
Aluminum electrodes and above Applicant Suwa Seikosha Co., Ltd. Agent Mogami Patent Attorney Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 中身なくとも一方O電flK7klを用いえア毫ルファ
スシリコン薄膜太陽電池において、アル々電極とア毫ル
ファスシリコンとの関にシリコンを含む^融点金属膜を
形成したことを特徴とすゐ薄膜太陽電池。 tarシリ;ンを會む高融点金属としてM、−14,テ
ィーjI(、の命命を用い九ことを特徴とする特許請求
O範jlJ111[記載の薄膜太陽電池。
[Scope of Claims] In an amorphous silicon thin film solar cell using at least one of the O electrodes and the amorphous silicon, a melting point metal film containing silicon is formed between the aluminum electrode and the amorphous silicon. Tosui thin film solar cell. A thin film solar cell according to claim 1, characterized in that the high melting point metal that meets the tar silicon is M, -14, TjI (9).
JP56199796A 1981-12-11 1981-12-11 Thin film solar battery Pending JPS58101469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199796A JPS58101469A (en) 1981-12-11 1981-12-11 Thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199796A JPS58101469A (en) 1981-12-11 1981-12-11 Thin film solar battery

Publications (1)

Publication Number Publication Date
JPS58101469A true JPS58101469A (en) 1983-06-16

Family

ID=16413757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199796A Pending JPS58101469A (en) 1981-12-11 1981-12-11 Thin film solar battery

Country Status (1)

Country Link
JP (1) JPS58101469A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191973A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting thin film photoelectric conversion element and manufacture thereof
JPS6191974A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting multijunction type semiconductor element
JPS61174779A (en) * 1985-01-30 1986-08-06 Kanegafuchi Chem Ind Co Ltd Light converging type generator
JPS61255072A (en) * 1985-05-07 1986-11-12 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
US4765845A (en) * 1984-06-15 1988-08-23 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Heat-resistant thin film photoelectric converter
JPS63503103A (en) * 1985-09-30 1988-11-10 鐘淵化学工業株式会社 Multi-junction semiconductor device
JPH05335607A (en) * 1983-07-22 1993-12-17 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH0774374A (en) * 1994-03-10 1995-03-17 Citizen Watch Co Ltd Thin film diode and manufacture thereof
CN103022163A (en) * 2011-09-22 2013-04-03 比亚迪股份有限公司 Crystal silicon solar cell and preparation method thereof
US20140174911A1 (en) * 2012-12-21 2014-06-26 Intermolecular, Inc. Methods and Systems for Reducing Particles During Physical Vapor Deposition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021225A (en) * 1973-06-29 1975-03-06
JPS5320857A (en) * 1976-08-11 1978-02-25 Toshiba Corp Semiconductor device
JPS5380183A (en) * 1976-12-25 1978-07-15 Fujitsu Ltd Semiconductor device
JPS54141593A (en) * 1978-04-24 1979-11-02 Rca Corp Amorphous silicon solar battery
JPS5626478A (en) * 1979-08-13 1981-03-14 Shunpei Yamazaki Optoelectro conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021225A (en) * 1973-06-29 1975-03-06
JPS5320857A (en) * 1976-08-11 1978-02-25 Toshiba Corp Semiconductor device
JPS5380183A (en) * 1976-12-25 1978-07-15 Fujitsu Ltd Semiconductor device
JPS54141593A (en) * 1978-04-24 1979-11-02 Rca Corp Amorphous silicon solar battery
JPS5626478A (en) * 1979-08-13 1981-03-14 Shunpei Yamazaki Optoelectro conversion device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335607A (en) * 1983-07-22 1993-12-17 Semiconductor Energy Lab Co Ltd Semiconductor device
US4765845A (en) * 1984-06-15 1988-08-23 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Heat-resistant thin film photoelectric converter
JPS6191973A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting thin film photoelectric conversion element and manufacture thereof
JPS6191974A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting multijunction type semiconductor element
JPS61174779A (en) * 1985-01-30 1986-08-06 Kanegafuchi Chem Ind Co Ltd Light converging type generator
JPS61255072A (en) * 1985-05-07 1986-11-12 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS63503103A (en) * 1985-09-30 1988-11-10 鐘淵化学工業株式会社 Multi-junction semiconductor device
JPH0774374A (en) * 1994-03-10 1995-03-17 Citizen Watch Co Ltd Thin film diode and manufacture thereof
CN103022163A (en) * 2011-09-22 2013-04-03 比亚迪股份有限公司 Crystal silicon solar cell and preparation method thereof
US20140174911A1 (en) * 2012-12-21 2014-06-26 Intermolecular, Inc. Methods and Systems for Reducing Particles During Physical Vapor Deposition

Similar Documents

Publication Publication Date Title
US4162505A (en) Inverted amorphous silicon solar cell utilizing cermet layers
US6187150B1 (en) Method for manufacturing thin film photovoltaic device
US6452090B2 (en) Photovoltaic device
JPS627169A (en) Photoconductive device and manufacture thereof
JPH0656883B2 (en) Semiconductor device
JPS58101469A (en) Thin film solar battery
JPH09129906A (en) Integrated thin film tandem solar battery and manufacture thereof
JPH06163955A (en) Solar cell substrate and solar cell
US5298087A (en) Photovoltaic device useful as a mirror
JPH11103081A (en) Photovoltaic element
JPH08107225A (en) Manufacture of thin film solar cell
JPS58111379A (en) Thin-film solar cell
JPS5898985A (en) Thin film solar battery
JP2003124485A (en) Method for manufacturing photovoltaic device and photovoltaic device
JPS5975679A (en) Photoelectromotive force generating device
JPS59125669A (en) Solar battery
JP2746074B2 (en) Manufacturing method of amorphous silicon solar cell
JPS61280680A (en) Manufacture of semiconductor device
JP4127365B2 (en) Method for manufacturing photoelectric conversion device
JP3346119B2 (en) Silver-based thin film structure
JP3455364B2 (en) Thin film solar cell and method of manufacturing the same
JP4132019B2 (en) Method for manufacturing photoelectric conversion device
JPH0936407A (en) Solar cell
JPH11298021A (en) Substrate for photovoltaic element, and photovoltaic element using the same, and integrated photovoltaic element and manufacture of the integrated photovoltaic element
JP2001156313A (en) Solar battery and base therefor