JPS58111379A - Thin-film solar cell - Google Patents

Thin-film solar cell

Info

Publication number
JPS58111379A
JPS58111379A JP56214728A JP21472881A JPS58111379A JP S58111379 A JPS58111379 A JP S58111379A JP 56214728 A JP56214728 A JP 56214728A JP 21472881 A JP21472881 A JP 21472881A JP S58111379 A JPS58111379 A JP S58111379A
Authority
JP
Japan
Prior art keywords
film
solar cell
electrode
thin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56214728A
Other languages
Japanese (ja)
Inventor
Tsutomu Otake
大竹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP56214728A priority Critical patent/JPS58111379A/en
Publication of JPS58111379A publication Critical patent/JPS58111379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve photoelectric performance and yield by inserting a thin insulating layer between an Al electrode and amorphous Si. CONSTITUTION:An a-Si film 23 is formed, and monosilane and oxygen are flowed, and plasma-discharged. An amorphous Si layer with PIN structure is deposited by 6,000Angstrom , the degree of vacuum is increased, and the Si layer is plasma-discharged. A SiO2 film 24 with approximately 80Angstrom is formed onto the a-Si film through the process. Al Is attached by 0.5-1.0mum, and the Al electrode 25 is formed. According to such structure, the partial robbing of a-Si into Al and the diffusion of Al into a-Si as seen in the conventional devices can be prevented. Large difference is not recognized in the performance of the solar cell even when either of SiO, SiO2 or Si3N4 is used as an insulating film.

Description

【発明の詳細な説明】 本発明は電極にアルミを用い九アモルファスシリコン太
陽電池において、アルミ電極とアモルファスシリコン、
(以下a−81とかく)との間に薄い絶縁層を形成、す
るこ・とにより、、太陽電池の歩留りと性能向上をはか
りた薄膜太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses aluminum for electrodes in nine amorphous silicon solar cells, in which aluminum electrodes, amorphous silicon,
(hereinafter referred to as a-81).This invention relates to a thin film solar cell in which the yield and performance of the solar cell are improved by forming a thin insulating layer between the two.

近年、太陽電池の低コスト化へのアプローチとして、a
−81を用いた太陽電池が非常に注目を集めている。
In recent years, as an approach to lowering the cost of solar cells, a
Solar cells using -81 are attracting much attention.

従来のa−81薄膜太陽電池のIIFIIii構造の一
例として、一方の電極に透明導電膜、一方の電IIK金
属を甲いた屯のを第1図に示す。同図において、11け
ガラス、12は透明導電膜で、通常Snow。
As an example of the IIFIII structure of a conventional A-81 thin film solar cell, FIG. 1 shows a structure in which one electrode is covered with a transparent conductive film and the other electrode is covered with IIK metal. In the figure, 11 is a glass, 12 is a transparent conductive film, and it is usually Snow.

工nOs、工To(インジウム酸化錫)が用いちれる。Indium tin oxide (indium tin oxide) is used.

まえ、13けa−81膜で透明導電膜側からPlil!
First, Plil! from the transparent conductive film side with the 13-layer A-81 film.
.

1層、n層の積層構造圧なっている。14はアルミ電極
である。
It has a laminated structure of 1 layer and n layers. 14 is an aluminum electrode.

光は矢印ムの方向から・照射され、太陽電、池の、電気
的出力は、透明電極12と金属電接14とから増り出す
Light is emitted from the direction of the arrow, and the electrical output of the solar cell increases from the transparent electrode 12 and the metal contact 14.

製造方法は通常のプラズマCVD法が一般に用いられる
。“すなわち透明導電膜12のついたガラス基板11を
真空容器に入れ250〜300℃に加熱する。−この状
態で必要に応じ5IH4,PHs 、 BAH・のガス
を流しながら、高周波放電、により、p、  inの各
a−81膜−を形成する。
As a manufacturing method, a normal plasma CVD method is generally used. "That is, the glass substrate 11 with the transparent conductive film 12 is placed in a vacuum container and heated to 250 to 300°C. - In this state, while flowing 5IH4, PHs, BAH gas as necessary, p , in, each a-81 film is formed.

このあと、真空蒸着やスパッタIIIKよシアルミ電極
14がつけられる。金属電極としては、反射率が太麺い
アルiが用いちれる。これはa−B1中を透過した光を
アルミとa−81の界面でa−81中に反射させ光の利
用効析高めるためである。またアルミは蒸着ヤスバッタ
がしやすく、得られた膜の導電率が大きいなどの特徴も
備えている。
After this, a sialuminium electrode 14 is applied by vacuum evaporation or sputtering IIIK. As the metal electrode, aluminum with a thick reflectance is used. This is to improve the efficiency of light utilization by reflecting the light that has passed through a-B1 into a-81 at the interface between aluminum and a-81. Aluminum also has the characteristics of being easy to vapor-deposit, and the resulting film has high electrical conductivity.

第1図では、電極の一方に透明導電膜を用いた場合につ
いて述べたが、両電極を金属にして、光を入射する方の
電極を半透明にする構造も可能である。この場合にも半
透明電極としてアルミが用いられる。
In FIG. 1, a case is described in which a transparent conductive film is used for one of the electrodes, but a structure in which both electrodes are made of metal and the electrode on which light is incident is made semitransparent is also possible. Also in this case, aluminum is used as the semitransparent electrode.

このよりにアルζは電極として利用しやすい材料である
、反面、大きな欠点を有している。
Because of this, Alζ is a material that is easy to use as an electrode, but on the other hand, it has major drawbacks.

それは、アルミが低い1ift(百方数十℃)で81と
共晶になることであり、さらに−一ε1中に鉱赦しやす
いことである。スパッタや真空蒸着時に充分な熱エネル
ギーをもっ九アルミの原子がa−81表1fiK飛んで
くると、その原子はたやす(a−Si中に拡散する。ま
た場合によってけアルミと共晶をつくり、a−81を局
部的に奪い去るためピンホールを生ずる。
The reason for this is that aluminum becomes eutectic with 81 at a low temperature of 1ift (several tens of degrees Celsius), and furthermore, it is easy to form a mineral in −1ε1. When atoms of aluminum fly with sufficient thermal energy during sputtering or vacuum evaporation, they easily (diffuse into a-Si. In some cases, they form eutectic with aluminum. , a-81 is locally removed, creating a pinhole.

このような現象が起こるため大降電池はリー。Due to this phenomenon, the battery is prone to heavy rain.

電流が増加したり、あるいはピンホールに起因する両電
椿間のシ目−ト状慈が生じ、光電性能の低下、ならびに
歩留妙の低下をもたらす。
The current increases or a seam-to-toe pattern occurs between the two electrodes due to pinholes, resulting in a decrease in photoelectric performance and a decrease in yield quality.

また、このよつな構造を有するアルミ電極のもつ欠点を
補う方法として、a−8iとアルミ電極との間に高融点
金属、たとえば9r、Mo、  丁a、Hf岬の薄い膜
を形成する方法も提案されている。
In addition, as a method to compensate for the drawbacks of aluminum electrodes having such a structure, there is a method of forming a thin film of a high melting point metal such as 9r, Mo, Dina, or Hf cape between the a-8i and the aluminum electrode. has also been proposed.

しかし、a−8iとこれらの高融点金属薄膜は密着性が
悪く、微妙な作製条件の差などKより、膜がはがれる場
合がある、これは薄嗅太陽電池の信頼性を悪くし、一つ
の欠点である。
However, the adhesion between a-8i and these high-melting point metal thin films is poor, and due to subtle differences in manufacturing conditions, the film may peel off. This is a drawback.

本発明はかかる欠点を除去したものであって、その目的
とするところは、ア)pH電極のもつ導電性の良さをい
かしつつ、薄嗅太陽電池の光電性能ならびに歩留妙の向
上をはかることにある。窟らに他の目的は、薄模太陽電
池の信頼性を向上させることKある。
The present invention eliminates such drawbacks, and its purpose is to: a) improve the photoelectric performance and yield quality of a thin-skinned solar cell while taking advantage of the good conductivity of the pH electrode; It is in. Another objective of the group is to improve the reliability of thin-mimetic solar cells.

第2図は本発明の断面構造を示したものである。FIG. 2 shows a cross-sectional structure of the present invention.

同図において、21はガラス、22は透明導電膜、23
はa−St膜で透明導電膜儒から、それぞれ、po  
1e  nの積層構造になりている。24は薄い絶#I
k層で50〜10010810冨、810.ま九は81
1膜番である。さらに25けアルミ電極である。
In the figure, 21 is glass, 22 is a transparent conductive film, and 23 is glass.
are a-St film and transparent conductive film, respectively.
It has a laminated structure of 1e n. 24 is thin absolute #I
50-10010810 richness in k layer, 810. Maku is 81
It is film number 1. Furthermore, there are 25 aluminum electrodes.

光は矢印Bの方向から照射される。Light is emitted from the direction of arrow B.

本発明の製造方法の中で透明導電膜220ついたガラス
基@21の上にa−8i Ill 2 Sをつ社る工程
までは従来の方法と同じである。a−81膜23の上に
薄い絶縁層24を形成するがその製造方法については以
下に実施例をもって説明する。
In the manufacturing method of the present invention, the steps up to the step of laying a-8i Ill 2 S on the glass substrate @21 with the transparent conductive film 220 attached are the same as the conventional method. A thin insulating layer 24 is formed on the A-81 film 23, and its manufacturing method will be explained below using examples.

実施例1(sio驚の場合)。Example 1 (sio surprise case).

プラズマOVD法によ抄、a−81膜2Sを形成した徒
、ひきつづき、モノシラy(81H4)と酸素を流しプ
ラズマ放電させる。作製条件は装置O形状に依存するが
、20国φの平行平板型の電極をもつプラズマOVD装
會の場合について述べる。
After forming the a-81 film 2S by the plasma OVD method, monosilicone y (81H4) and oxygen were subsequently flowed to cause plasma discharge. The manufacturing conditions depend on the O shape of the device, but we will discuss the case of a plasma OVD device having parallel plate type electrodes with a diameter of 20 mm.

基板温度を5(10℃とし、高周波出力40W、lit
ベースの101Elillk、50OPPMのPHi、
  500PPMのB!H・を用いて、 pan構造の
アモルファスシリコン層を約6ooo&デポジシ曹ンし
たのち、真空容器内を一担排気する。約5分排気し、真
空度−11X 10’ Torrに達したところで、H
!ペースの10481H+を200cc/m1n 、水
素で希釈した500 PPMのOxを50 cc/mi
n流し、高周波出力40Wで3分間プラズマ放電させる
。この工11により約80λのEliOt膜がa=si
上に形成される。
The substrate temperature is 5 (10℃, high frequency output 40W, lit
Bass 101Elillk, 50OPPM PHi,
500PPM B! After the amorphous silicon layer with the pan structure is deposited for about 600 mL using H., the inside of the vacuum container is evacuated. Evacuate for about 5 minutes and when the vacuum level reaches -11X 10' Torr, turn off the H
! Pace's 10481H+ at 200cc/ml, 500 PPM Ox diluted with hydrogen at 50cc/mi
plasma discharge with a high frequency output of 40 W for 3 minutes. Through this process 11, an EliOt film of approximately 80λ is formed with a = si
formed on top.

実施例2  (Sia’M4) 実施例1と同じ条件でa−81膜を形成した稜、真空容
器内を約5分排気する。真空度がI X 10=’ro
rr  に達したところで、Htペースの101Eli
H4を200cc/mlnとN!ガス10 ac/mi
n を流し、40Wのパワーで約2分グロー放電をおこ
す、この工程により約801の81sH4膜がa−8i
上に形成される。
Example 2 (Sia'M4) The a-81 film was formed on the edge under the same conditions as in Example 1, and the inside of the vacuum container was evacuated for about 5 minutes. Degree of vacuum is I x 10='ro
When reaching rr, 101Eli of Ht pace
H4 at 200cc/mln! Gas 10ac/mi
Through this process, approximately 801 81sH4 films are a-8i
formed on top.

実施例s  (81oの場合) 実施例1と同じ方法でa−81膜を形成したあと真空容
゛器から取り出し、真空蒸着機の中で電子ビーム蒸着に
より約80゛スの810膜をa−8i上に形成した。
Example s (In the case of 81o) After forming the a-81 film in the same manner as in Example 1, it was taken out of the vacuum container, and about 80° of the 810 film was formed by electron beam evaporation in a vacuum evaporator. 8i.

以上の実施例の中で述べたいずれかの方法により、a−
E!1嘆上に絶縁膜を形成したのち、真空蒸着あるいは
スパッタによりフルξ+(L5〜toIIImつける。
By any of the methods described in the above embodiments, a-
E! After forming an insulating film on the first layer, a full ξ+(L5 to IIIm) is applied by vacuum evaporation or sputtering.

このような構造にすることにより、従来のもののようK
a−81が局部的にアルミ中へ1い去られることも、a
−81中へのアルミの拡散をも防ぐことかで#え。
With this structure, K
It is also possible that a-81 is locally removed into the aluminum.
Is it also to prevent aluminum from diffusing into -81?

絶縁膜についてはB10 、 810諺、 811M+
ノイずれを用いた場合も太陽電池の性能化は大きな差が
認められなかった。
Regarding insulating films, B10, 810 proverbs, 811M+
Even when noise deviation was used, there was no significant difference in solar cell performance.

実施例1から実施例3で述べ九方法で作製した太陽電池
忙ついて光電特性と歩留りを調べてみるといずれも従来
のものに比べかなりの向上がみられた。
When we investigated the photoelectric properties and yield of solar cells produced by the nine methods described in Examples 1 to 3, we found that they were all considerably improved compared to conventional ones.

たとえば、実施例1で述べた方法によって、a−81層
と絶縁層とを形成した太陽電池と従来の構造の太陽電池
とを約100個の素子について比較した。
For example, a solar cell in which an A-81 layer and an insulating layer were formed using the method described in Example 1 was compared with a solar cell having a conventional structure for about 100 devices.

この場合、シ諺−ト状襲となって光起電力が11v以下
の素子がで−る確率は従来のものでは約30−であるが
、本発明の構造の素子では8嗟であ抄、非常に歩留にか
向上した。また、200ムの螢光灯の4とで、光電特性
を測定した場合、開放電圧と曲線因子が従来の本のでは
平均値がそれぞれ、αsav、ss*であった。ところ
が本発明の構造ではそれぞれ0.61V、611となり
、それに伴ってt換効率も向上していた。
In this case, the probability of producing a device with a photovoltaic force of 11 V or less is about 30 in the conventional case, but in the case of the device with the structure of the present invention, the probability of producing an element with a photovoltaic force of 11 V or less is about 8. The yield was greatly improved. Furthermore, when the photoelectric characteristics were measured using a 200 μm fluorescent lamp, the average values of the open circuit voltage and fill factor in the conventional book were αsav and ss*, respectively. However, in the structure of the present invention, the voltages were 0.61V and 611V, respectively, and the t conversion efficiency was improved accordingly.

以上の説明かられかるように、本発明はa−I111薄
膜太陽電池の光電性能、ならびに歩留りを向上させる上
で非常に有効なものである。
As can be seen from the above description, the present invention is very effective in improving the photoelectric performance and yield of a-I111 thin film solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のa −Si薄膜太陽電池の断面図、第2
図は本発明の断面図である。 21・・・・・・ガラス 22・・・・・・透明導電膜 23・・・・・・a−81膜 24・・・・・・薄い絶縁層 25・・・・・・アルミ電極 以  上 出願人 株式会社 −訪精工舎 代理人 弁理士 最上 務 第1図 )「 第2図
Figure 1 is a cross-sectional view of a conventional a-Si thin film solar cell;
The figure is a sectional view of the invention. 21...Glass 22...Transparent conductive film 23...A-81 film 24...Thin insulating layer 25...Aluminum electrode or more Applicant: Hoseikosha Co., Ltd. Representative Patent Attorney: Mutsumi Mogami Figure 1) Figure 2

Claims (1)

【特許請求の範囲】 1) 少なく七も一方の電1iKアルミを用いたアモル
ファスシリコン薄膜太陽電池において、アルミ電極とア
モルファスシリコンとの間に、薄い絶縁層を入れたこと
を特徴とする薄膜太陽電池。 2)絶#層として、810. 810冨、  815M
+の少なくとも一つを用いたことを特徴とする特許請求
間同第1項記載の薄膜太陽電池。
[Claims] 1) An amorphous silicon thin film solar cell using at least 1iK aluminum, characterized in that a thin insulating layer is inserted between the aluminum electrode and the amorphous silicon. . 2) As an absolute layer, 810. 810tomi, 815M
1. A thin film solar cell according to claim 1, characterized in that at least one of + is used.
JP56214728A 1981-12-24 1981-12-24 Thin-film solar cell Pending JPS58111379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56214728A JPS58111379A (en) 1981-12-24 1981-12-24 Thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56214728A JPS58111379A (en) 1981-12-24 1981-12-24 Thin-film solar cell

Publications (1)

Publication Number Publication Date
JPS58111379A true JPS58111379A (en) 1983-07-02

Family

ID=16660626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56214728A Pending JPS58111379A (en) 1981-12-24 1981-12-24 Thin-film solar cell

Country Status (1)

Country Link
JP (1) JPS58111379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120315A (en) * 1984-07-02 1986-01-29 イーストマン コダツク カンパニー Semiconductor device substrate
JPS63138843U (en) * 1987-03-04 1988-09-13
JPH0221668A (en) * 1988-07-08 1990-01-24 Kanegafuchi Chem Ind Co Ltd Amorphous silicon base photoelectromotive force element and manufacture thereof
JPH02288369A (en) * 1989-04-28 1990-11-28 Matsushita Electric Ind Co Ltd Solar cell
WO2009131212A1 (en) * 2008-04-25 2009-10-29 株式会社アルバック Solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121685A (en) * 1979-03-12 1980-09-18 Sanyo Electric Co Ltd Manufacture of photovoltaic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121685A (en) * 1979-03-12 1980-09-18 Sanyo Electric Co Ltd Manufacture of photovoltaic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120315A (en) * 1984-07-02 1986-01-29 イーストマン コダツク カンパニー Semiconductor device substrate
JPS63138843U (en) * 1987-03-04 1988-09-13
JPH0221668A (en) * 1988-07-08 1990-01-24 Kanegafuchi Chem Ind Co Ltd Amorphous silicon base photoelectromotive force element and manufacture thereof
JPH02288369A (en) * 1989-04-28 1990-11-28 Matsushita Electric Ind Co Ltd Solar cell
WO2009131212A1 (en) * 2008-04-25 2009-10-29 株式会社アルバック Solar cell
JPWO2009131212A1 (en) * 2008-04-25 2011-08-25 株式会社アルバック Solar cell

Similar Documents

Publication Publication Date Title
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
US4528082A (en) Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers
US4338482A (en) Photovoltaic cell
JPS6091627A (en) Method of producing pin semiconductor device
JPH06163955A (en) Solar cell substrate and solar cell
JP2009117463A (en) Thin-film photoelectric conversion device
JPS58111379A (en) Thin-film solar cell
JPS58101469A (en) Thin film solar battery
JPS5878473A (en) Thin film solar battery
JPH0473305B2 (en)
JPS5892281A (en) Thin film solar cell
JPH0424878B2 (en)
JPH0364973A (en) Photovoltaic element
JPH022183A (en) Photocell applicable at low light level
JPS5975679A (en) Photoelectromotive force generating device
WO2019197893A1 (en) Optimization of the metal/metal electrical contact in a thin-film semitransparent photovoltaic device
JPH09129903A (en) Integrated thin film tandem solar battery and manufacture thereof
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JPH06244440A (en) Solar battery
JP3063326B2 (en) Solar cell and manufacturing method thereof
JP3049889B2 (en) Solar cell and manufacturing method thereof
JP3064658B2 (en) Solar cell and manufacturing method thereof
JP2815688B2 (en) Manufacturing method of thin film solar cell
JP3061338B2 (en) Solar cell and method of manufacturing the same
JPH055194B2 (en)