JPH08288529A - Photoelectric conversion device and manufacture thereof - Google Patents

Photoelectric conversion device and manufacture thereof

Info

Publication number
JPH08288529A
JPH08288529A JP7111141A JP11114195A JPH08288529A JP H08288529 A JPH08288529 A JP H08288529A JP 7111141 A JP7111141 A JP 7111141A JP 11114195 A JP11114195 A JP 11114195A JP H08288529 A JPH08288529 A JP H08288529A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
electrode layer
conversion device
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7111141A
Other languages
Japanese (ja)
Other versions
JP3609147B2 (en
Inventor
Masayuki Tanda
真之 反田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11114195A priority Critical patent/JP3609147B2/en
Publication of JPH08288529A publication Critical patent/JPH08288529A/en
Application granted granted Critical
Publication of JP3609147B2 publication Critical patent/JP3609147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To prevent electrodes from being separated by a method wherein a roughened surface is formed on the form of the surface of the lower electrode layer of a photoelectric conversion device of a structure, wherein the lower electrode layer, a photoelectic conversion semiconductor layer and a transparent upper electrode layer are laminated in order on a flexible and insulative substrate, and the mean thickness of the roughened surface and the mean interval between the roughened mountaines of the roughened surface are formed within a prescribed value. CONSTITUTION: Ag is subjected to DC sputtering in Ar gas on an insulative and flexible substrate 1 to form a lower electrode layer 2. A substrate temperature at the time of the sputtering of the Ag is controlled at 200 to 400 deg.C to form a roughened surface 8, which has a mean film-forming thickness of 250μm or thinner, the mean interval of 150 to 1000nm between roughened mountains and a difference of altitude of 50 to 150nm. After an N-type a-Si layer 3, an I-type a-Si layer 4, an I-type u-SiO layer 5 and a P-type u-SiO later 6 are deposited in order on the layer 2 by a chemical vapor deposition method, the layer 6 is subjected to RF sputtering to deposit an indium-tin oxide on the layer 6 and a transparent upper electrode layer 7 is formed. Thereby, separation of the electrodes and a short-circuit between the electrodes are prevented from being generated and the characteristics of a photoelectric conversion device are improved by a light scattering effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体薄膜を光電変換
層に用いた光電変換装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device using a semiconductor thin film as a photoelectric conversion layer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】原料ガスをプラズマCVD法、光CVD
法あるいは熱CVD法によって分解することにより形成
されるアモルファスシリコン (以下a−Siと記す) 等
を主成分とする半導体薄膜を用いた光電変換装置は、大
面積化が容易という特長をもっており、低コスト太陽電
池などとして期待されている。このような光電変換装置
では、半導体薄膜からなる光電変換層に上面の透明電極
層を介して直接入射する光のほかに、半導体薄膜の基板
側に設けられる下部電極層の表面で反射して光電変換層
に入射する光も発電に寄与する。この電極層の表面が平
坦でなく、凹凸の表面形状を有すると、それにより光の
散乱が生じ、光路長が増加するため、光電変換効率が向
上することが知られている。このような表面形状をもつ
電極を基板上に形成する方法としては、特開昭56−1
52276号、特開昭58−180069号、特開平1
−119074号等の公報に記載されているように電極
を支持する基体の表面を凹凸化する方法や、特開昭59
−61973号、特開平3−94173号、特開平3−
99477号、特開平3−99478号、特開平4−2
18977号、特開平4−334069号等の公報に記
載されているように平坦な基体上に凹凸を有する電極を
形成する方法があった。凹凸電極を形成する方法として
は、多結晶金属を用いる方法 (特開平3−99477
号) 、金属電極を蒸着・熱処理後スパッタエッチングす
る方法 (特開平3−99478号) 、金属二層構造を用
いる方法 (特開平4−218977号) 、AlやAg等
の金属合金あるいはこれらとSiの合金を用いる方法
(特開平4−334069号) 等が開示されている。
2. Description of the Related Art A raw material gas is a plasma CVD method or an optical CVD method.
A photoelectric conversion device using a semiconductor thin film containing amorphous silicon (hereinafter referred to as a-Si) or the like as a main component formed by decomposing by a CVD method or a thermal CVD method has a feature that a large area can be easily achieved, Expected as a cost solar cell. In such a photoelectric conversion device, in addition to the light directly incident on the photoelectric conversion layer made of a semiconductor thin film through the transparent electrode layer on the upper surface, the light is reflected by the surface of the lower electrode layer provided on the substrate side of the semiconductor thin film and photoelectrically converted. Light incident on the conversion layer also contributes to power generation. It is known that if the surface of the electrode layer is not flat and has an uneven surface shape, light scattering is caused thereby and the optical path length is increased, so that the photoelectric conversion efficiency is improved. A method for forming an electrode having such a surface shape on a substrate is disclosed in Japanese Patent Laid-Open No. 56-1.
52276, JP-A-58-180069, JP-A-1
No. 119,074, etc., a method for making the surface of a substrate supporting an electrode uneven, and JP-A-59-59.
-61973, JP-A-3-94173, and JP-A-3-94173.
99477, JP-A-3-99478, JP-A4-2.
There is a method of forming an electrode having irregularities on a flat substrate as described in Japanese Patent Application Laid-Open No. 18977 and Japanese Patent Application Laid-Open No. 4-334069. As a method for forming the uneven electrode, a method using a polycrystalline metal (Japanese Patent Laid-Open No. 3-99477)
No.), a method of vapor-depositing and heat-treating a metal electrode (JP-A-3-99478), a method of using a metal two-layer structure (JP-A-4-218977), a metal alloy such as Al or Ag, or Si with these. Method of using alloy
(JP-A-4-334069) and the like are disclosed.

【0003】[0003]

【発明が解決しようとする課題】前者の基体表面を凹凸
化する方法においては次のような問題がある。第一に、
基体材料によっては光の散乱に適当な大きさの凹凸を得
るのが困難な場合がある。例えば、高分子材料では分子
が形作る構造の大きさが光電変換を高めるのに必要な凹
凸の大きさに比べて小さく、適当な凹凸は形成しにく
い。第二に、基体表面を凹凸化する工程が機械的プロセ
スやウェットプロセスを含む場合、その上への光電変換
素子形成工程に移行する際に削り屑や水分によって欠陥
が生じる。第三に、基体を加工する工程が加わることに
より光電変換装置製造工程が複雑化する。
The former method of making the surface of the base body uneven has the following problems. Primarily,
Depending on the substrate material, it may be difficult to obtain unevenness of an appropriate size for light scattering. For example, in a polymer material, the size of the structure formed by molecules is smaller than the size of the unevenness required to enhance photoelectric conversion, and it is difficult to form appropriate unevenness. Secondly, when the step of making the surface of the base body uneven includes a mechanical process or a wet process, defects are caused by shavings and moisture when the step of forming a photoelectric conversion element thereon is performed. Thirdly, the process of manufacturing the photoelectric conversion device is complicated due to the addition of the process of processing the substrate.

【0004】後者の平坦な基体上に凹凸電極を形成する
方法においては、従来の凹凸電極はガラス板、ステンレ
ス鋼板、半導体ウエーハ等の固くて厚い基体を前提とし
ていた。このため、凹凸の大きさ、すなわち山谷の高低
差、山谷の間隔等については詳細な研究がなされていた
が、電極の厚さについては事実上、適当な凹凸を得るの
に必要な厚さが記述してあるだけのものがほとんどであ
った。これらの凹凸電極を可撓性基板に適用すると、可
撓性基板は熱膨脹係数が大きいため、素子形成中の熱応
力に起因する電極剥離やそれに伴う短絡など光電変換装
置の特性劣化を生じていた。また可撓性基板として高分
子材料を用いると、高分子材料に含まれた水に起因する
電極剥離が生じることがあった。
In the latter method of forming the uneven electrode on the flat substrate, the conventional uneven electrode is premised on a hard and thick substrate such as a glass plate, a stainless steel plate or a semiconductor wafer. For this reason, detailed studies have been conducted on the size of the unevenness, that is, the height difference of the ridges and valleys, the distance between the ridges and valleys, but the thickness of the electrode is practically the thickness required to obtain the appropriate ridges and valleys. Most of them were just described. When these concavo-convex electrodes are applied to the flexible substrate, the flexible substrate has a large coefficient of thermal expansion, so that the characteristics of the photoelectric conversion device are deteriorated such as electrode peeling caused by thermal stress during element formation and accompanying short circuit. . Further, when a polymer material is used as the flexible substrate, electrode peeling may occur due to water contained in the polymer material.

【0005】本発明は、上記の問題を解決し、光の散乱
に最適の表面形状をもち、可撓性基板を用いても電極剥
離の生じない光電変換装置およびその製造方法を提供す
ることにある。
The present invention solves the above-mentioned problems, and provides a photoelectric conversion device having a surface shape optimal for light scattering and in which electrode separation does not occur even when a flexible substrate is used, and a manufacturing method thereof. is there.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、可撓性で絶縁性の基板上に下部電極
層、光電変換半導体層および透明上部電極層が順次積層
された光電変換装置において、下部電極層の表面形状が
凹凸であり、その平均厚さが250μm以下であるもの
とする。光電変換層がa−Si系材料よりなる場合、下
部電極層表面層の凹凸の山の平均間隔が150nm以上
1000nm以下であることが良く、凹凸の山谷の高低
差が50nm以上150nm以下であることが良い。下
部電極層の基板側の層が導電性酸化物薄膜より、表面層
が金属薄膜よりなることが良く、その場合導電性酸化物
薄膜の厚さが30nm以下であるのが良い。そして下部
電極層の表面形状の凹凸が、金属薄膜によって得られる
凹凸であることが有効である。また本発明は、可撓性で
絶縁性基板上に下部電極層、a−Si系材料よりなる光
電変換層および透明上部電極層を順次積層する工程を備
えた上記の光電変換装置の製造方法において、下部電極
層の少なくとも表面層を形成するために、基板温度30
0℃以上450℃以下で金属薄膜を成膜する工程を含む
ものとする。
In order to achieve the above object, the present invention comprises a lower electrode layer, a photoelectric conversion semiconductor layer and a transparent upper electrode layer which are sequentially laminated on a flexible and insulating substrate. In the photoelectric conversion device, the surface shape of the lower electrode layer is uneven, and the average thickness thereof is 250 μm or less. When the photoelectric conversion layer is made of an a-Si-based material, it is preferable that the average interval of the uneven peaks of the lower electrode layer surface layer is 150 nm or more and 1000 nm or less, and the height difference between the uneven peaks is 50 nm or more and 150 nm or less. Is good. It is preferable that the substrate-side layer of the lower electrode layer is made of a conductive oxide thin film and the surface layer is made of a metal thin film. In that case, the thickness of the conductive oxide thin film is preferably 30 nm or less. Then, it is effective that the unevenness of the surface shape of the lower electrode layer is the unevenness obtained by the metal thin film. The present invention also provides the above-mentioned method for manufacturing a photoelectric conversion device, which comprises a step of sequentially laminating a lower electrode layer, a photoelectric conversion layer made of an a-Si-based material, and a transparent upper electrode layer on an insulating substrate. A substrate temperature of 30 to form at least the surface layer of the lower electrode layer.
A step of forming a metal thin film at 0 ° C. or higher and 450 ° C. or lower is included.

【0007】[0007]

【作用】可撓性基板を用いた光電変換装置の特性劣化の
要因である熱応力の大きさは、使用材料の熱膨脹係数と
膜厚に依存する。従来数百nmあるいは数μmあった凹
凸の表面形状をもつ下部電極の平均厚さを250nm以
下とすることにより応力が緩和され、可撓性基板を用い
た光電変換装置の特性劣化が抑制される。下部電極層表
面の凹凸形状の山の平均間隔は、入射する光の波長の1
/2であるとき、光の散乱に有効に働くことは公知であ
る。従って、光電変換層がa−Si系材料よりなる場
合、a−Si系材料が吸収する300nmないし200
0nmの波長の1/2の150nm以上1000nm以
下に山の平均間隔を調整することが有効である。また、
下部電極層表面の凹凸形状の山谷高低差は、光を散乱す
ることのできる光の波長の下限を規制することも公知で
ある。従って、光電変換層がa−Si系材料よりなる場
合、300nmの1/2の150nm以下に山谷高低差
を調整する。しかし、50nm未満になると光散乱の効
果がなくなるので50nm以上にする。これらのような
表面形状は、少なくとも表面層を基板温度300℃以上
450℃以下で成膜する金属薄膜によって形成すること
により得られる。可撓性基板として高分子材料を用いた
場合、基板上に導電性酸化物薄膜が存在すると、高分子
材料に含まれた水分を吸収して金属薄膜に影響を及ぼす
のを防ぐ効果がある。しかし、この導電性酸化物が厚く
なると、基板の可撓性を損なうこと、基板との間に応力
が生じ基板からの剥離が起きたり、金属薄膜との間に剥
離が起きたりすることがあるので30nm以下とする。
The magnitude of the thermal stress, which is a factor of the characteristic deterioration of the photoelectric conversion device using the flexible substrate, depends on the thermal expansion coefficient and the film thickness of the material used. By lowering the average thickness of the lower electrode having a concavo-convex surface shape, which has been conventionally several hundreds nm or several μm, to 250 nm or less, stress is relieved and deterioration of characteristics of the photoelectric conversion device using the flexible substrate is suppressed. . The average interval of the uneven peaks on the surface of the lower electrode layer is 1 of the wavelength of the incident light.
It is known that // 2 effectively works for light scattering. Therefore, when the photoelectric conversion layer is made of an a-Si material, the a-Si material absorbs 300 nm to 200 nm.
It is effective to adjust the average spacing of the peaks to 150 nm or more and 1000 nm or less, which is ½ of the wavelength of 0 nm. Also,
It is also known that the unevenness of the unevenness on the surface of the lower electrode layer regulates the lower limit of the wavelength of light that can scatter light. Therefore, when the photoelectric conversion layer is made of an a-Si-based material, the peak-valley height difference is adjusted to 150 nm or less, which is 1/2 of 300 nm. However, if the thickness is less than 50 nm, the effect of light scattering is lost, so the thickness is set to 50 nm or more. Such surface shapes can be obtained by forming at least the surface layer from a metal thin film formed at a substrate temperature of 300 ° C. or higher and 450 ° C. or lower. When a polymer material is used as the flexible substrate, the presence of the conductive oxide thin film on the substrate has an effect of absorbing moisture contained in the polymer material and preventing the metal thin film from being affected. However, if this conductive oxide becomes thick, the flexibility of the substrate may be impaired, stress may be generated between the substrate and the film, and the film may be separated from the metal thin film. Therefore, it is set to 30 nm or less.

【0008】[0008]

【実施例】図1に本発明の一実施例の太陽電池の断面図
を示す。絶縁性かつ可撓性を有する基板1として厚さ5
0μmのポリイミドシートを用いた。この基体は、同様
な絶縁性および可撓性を有するものであれば何でもよ
く、PES、PEN、PET、アラミドなど他の絶縁性
プラスチックフィルム等が考えられる。この基板上に2.
0×10-3TorrのArガス中でAgをDCスパッタする
ことにより導電層を形成して電極層2とした。電極層2
のスパッタ前に基板1表面にZnOを基板温度200℃
でRFスパッタ法により30nm程度の厚さに堆積して
おいてプラスチックフィルムからの水分を吸収させるこ
ともよい。この電極層2を下部電極として、その上にR
Fグロー放電によるプラズマCVD法 (化学気相蒸着
法) を用いて、SiH4 、H2 、PH4 を反応ガスとし
てn形a−Si層3、SiH4 、H2 を反応ガスとして
i質a−Si層4、SiH4 、CO2 、H2 を反応ガス
としてi質微結晶SiO (以下μ−SiOと記す)) 層
5、SiH4 、CO2 、H2、B2 6 を反応ガスとし
てp形μ−SiO層6を順次堆積後、RFスパッタ法に
よりITO (インジウム・すず酸化物) を堆積して透明
上部電極層7とした。
EXAMPLE FIG. 1 is a sectional view of a solar cell according to an example of the present invention. Insulating and flexible substrate 1 having a thickness of 5
A 0 μm polyimide sheet was used. The base may be any as long as it has similar insulating properties and flexibility, and other insulating plastic films such as PES, PEN, PET, and aramid can be considered. On this board 2.
A conductive layer was formed by DC sputtering of Ag in an Ar gas of 0 × 10 −3 Torr to form an electrode layer 2. Electrode layer 2
ZnO on the surface of the substrate 1 before the sputtering of the substrate temperature 200 ℃
It is also possible to deposit water to a thickness of about 30 nm by the RF sputtering method and absorb moisture from the plastic film. This electrode layer 2 is used as a lower electrode, and R is formed on the lower electrode.
Using a plasma CVD method (chemical vapor deposition method) with F glow discharge, SiH 4 , H 2 , and PH 4 are used as reaction gases, and the n-type a-Si layer 3, SiH 4 , and H 2 are used as reaction gases, and i-type a -Si layer 4, SiH 4 , CO 2 , H 2 as reaction gas, i-quality microcrystalline SiO (hereinafter referred to as μ-SiO)) layer 5, SiH 4 , CO 2 , H 2 , B 2 H 6 as reaction gas After that, a p-type μ-SiO layer 6 was sequentially deposited, and then ITO (indium tin oxide) was deposited by RF sputtering to form a transparent upper electrode layer 7.

【0009】電極層2形成のためのAgスパッタ時の基
板温度を200〜400℃の範囲で変え、成膜平均厚さ
を100〜600μmの範囲で変えたときの電極層2の
表面のSEM (走査型電子顕微鏡) による写真を図3に
示す。このように形成温度と膜厚により表面形状が制御
でき、300℃〜400℃では平均膜厚100nmでも
図1に図式的に示すような凹凸表面8をもつ電極を形成
できることが分かった。そこで、電極層2の成膜温度を
400℃に固定し、平均膜厚を100nmから600n
mまで変えて、次の方法で図1に示す構造の太陽電池各
20個ずつを作製した。作製した太陽電池のうち、短絡
していないものの割合を図2に示す。このように、高い
歩留まりを得るためには平均膜厚250nm以下、望ま
しくは100nm程度がよいことが分かった。また平均
膜厚100nmで、基板温度200℃で形成した凹凸の
小さい平坦電極と、温度400℃で形成した凹凸電極を
用いた太陽電池の分光感度 (100mW/cm2 、AM
1.5) を図4に点線41、実線42でそれぞれ示す。凹
凸電極を用いたものは波長600〜750nmの領域で
分光感度が上昇して短絡電流の増加により表1に示すよ
うに太陽電池特性が向上している。
The SEM of the surface of the electrode layer 2 when the substrate temperature during Ag sputtering for forming the electrode layer 2 was changed in the range of 200 to 400 ° C. and the average film thickness was changed in the range of 100 to 600 μm ( A photograph taken by a scanning electron microscope) is shown in FIG. As described above, it was found that the surface shape can be controlled by the formation temperature and the film thickness, and that the electrode having the uneven surface 8 as schematically shown in FIG. 1 can be formed even at an average film thickness of 100 nm at 300 ° C. to 400 ° C. Therefore, the film formation temperature of the electrode layer 2 is fixed at 400 ° C., and the average film thickness is 100 nm to 600 n.
By changing to m, 20 solar cells each having the structure shown in FIG. 1 were manufactured by the following method. FIG. 2 shows the proportion of the solar cells that were not short-circuited. Thus, it was found that the average film thickness is 250 nm or less, preferably about 100 nm in order to obtain a high yield. In addition, the spectral sensitivity (100 mW / cm 2 , AM of a solar cell using a flat electrode having an average film thickness of 100 nm and a small unevenness formed at a substrate temperature of 200 ° C. and an uneven electrode formed at a temperature of 400 ° C. (100 mW / cm 2 , AM
(1.5) is shown in FIG. 4 by a dotted line 41 and a solid line 42, respectively. In the case of using the uneven electrode, the spectral sensitivity is increased in the wavelength range of 600 to 750 nm, and the solar cell characteristics are improved as shown in Table 1 due to the increase in the short-circuit current.

【0010】[0010]

【表1】 電極表面の凹凸は、光の散乱に有効となる入射する光の
波長の1/2程度である山の平均間隔をもつときである
から、例えばa−Siの収集効率の最高である波長55
0nmの1/2の275nm付近の山の平均間隔は、平
均膜厚250μm以下でも図3から基板温度300℃以
上のときに得られることがわかる。しかし、可撓性基板
の耐熱性から最高基板温度は450℃に抑えられる。
[Table 1] Since the unevenness of the electrode surface has an average interval of peaks that is about ½ of the wavelength of incident light, which is effective for light scattering, for example, the wavelength 55 at which the collection efficiency of a-Si is the highest.
It can be seen from FIG. 3 that the average spacing of peaks near 275 nm, which is 1/2 of 0 nm, is obtained when the substrate temperature is 300 ° C. or higher even when the average film thickness is 250 μm or less. However, due to the heat resistance of the flexible substrate, the maximum substrate temperature can be suppressed to 450 ° C.

【0011】[0011]

【発明の効果】本発明によれば、光電変換装置の基板上
の凹凸表面形状を有する下部電極の平均厚さを従来より
薄い250nm以下とすることにより、可撓性基板上で
も、熱応力に起因する電極剥離やそれに伴う短絡などの
特性劣化を生ずることなく、光の散乱効果による特性向
上を示す光電変換装置を実現できた。また、可撓性基板
上に基体温度300℃以上450℃以下で金属薄膜を形
成するという、工業的に見て現実的かつ簡便な方法で、
平均厚さ250nm以下でも光の散乱効果を有する凹凸
電極が実際に形成することが可能になった。すなわち可
撓性基板上に凹凸電極をもつ光電変換装置の実用化に至
った。
According to the present invention, by setting the average thickness of the lower electrode having the uneven surface shape on the substrate of the photoelectric conversion device to be 250 nm or less, which is thinner than the conventional one, the thermal stress can be obtained even on the flexible substrate. It has been possible to realize a photoelectric conversion device exhibiting improved characteristics due to the light scattering effect without causing characteristic deterioration such as electrode peeling or short circuit caused thereby. In addition, a metal thin film is formed on a flexible substrate at a base temperature of 300 ° C. or higher and 450 ° C. or lower, which is an industrially realistic and simple method.
It has become possible to actually form a concavo-convex electrode having a light scattering effect even when the average thickness is 250 nm or less. That is, a photoelectric conversion device having an uneven electrode on a flexible substrate has been put into practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の太陽電池の断面図FIG. 1 is a sectional view of a solar cell according to an embodiment of the present invention.

【図2】太陽電池歩留まりと下部電極平均膜厚との関係
線図
FIG. 2 is a relationship diagram between the yield of solar cells and the average film thickness of the lower electrode.

【図3】基板温度および膜厚を変えて成膜した電極の表
面金属組織を示す写真
FIG. 3 is a photograph showing the surface metallographic structure of an electrode formed by changing the substrate temperature and the film thickness.

【図4】本発明の実施例と比較例の太陽電池の分光感度
特性線図
FIG. 4 is a spectral sensitivity characteristic diagram of solar cells of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 下部電極層 3 n形a−Si層 4 i質a−Si層 5 i質μ−SiO層 6 p形μ−SiO層 7 透明電極層 8 凹凸表面 1 substrate 2 lower electrode layer 3 n-type a-Si layer 4 i-type a-Si layer 5 i-type μ-SiO layer 6 p-type μ-SiO layer 7 transparent electrode layer 8 uneven surface

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】可撓性で絶縁性の基板上に下部電極層、光
電変換半導体層および透明上部電極層が順次積層された
光電変換装置において、下部電極層の表面形状が凹凸で
あり、その平均厚さが250μm以下であることを特徴
とする光電変換装置。
1. A photoelectric conversion device in which a lower electrode layer, a photoelectric conversion semiconductor layer, and a transparent upper electrode layer are sequentially laminated on a flexible and insulating substrate, and the surface shape of the lower electrode layer is uneven. A photoelectric conversion device having an average thickness of 250 μm or less.
【請求項2】光電変換層がアモルファスシリコン系材料
よりなり、下部電極層表面の凹凸の山の平均間隔が15
0nm以上1000nm以下である請求項1記載の光電
変換装置。
2. The photoelectric conversion layer is made of an amorphous silicon-based material, and the average interval of the uneven peaks on the surface of the lower electrode layer is 15.
The photoelectric conversion device according to claim 1, which is 0 nm or more and 1000 nm or less.
【請求項3】光電変換層がアモルファスシリコン系材料
よりなり、下部電極層表面の凹凸の山谷の高低差が50
nm以上150nm以下である請求項1あるいは2記載
の光電変換装置。
3. The photoelectric conversion layer is made of an amorphous silicon material, and the height difference between the peaks and valleys of the irregularities on the surface of the lower electrode layer is 50.
The photoelectric conversion device according to claim 1 or 2, wherein the photoelectric conversion device has a wavelength of not less than 150 nm and not more than 150 nm.
【請求項4】下部電極層の基板側の層が導電性酸化物薄
膜より、表面層が金属薄膜よりなる請求項1ないし3の
いずれかに記載の光電変換装置。
4. The photoelectric conversion device according to claim 1, wherein the layer of the lower electrode layer on the substrate side is made of a conductive oxide thin film, and the surface layer is made of a metal thin film.
【請求項5】導電性酸化物薄膜の厚さが30nm以下で
ある請求項4記載の光電変換装置。
5. The photoelectric conversion device according to claim 4, wherein the conductive oxide thin film has a thickness of 30 nm or less.
【請求項6】下部電極層表面形状の凹凸が、金属薄膜に
よって得られた凹凸である請求項4あるいは5記載の光
電変換装置。
6. The photoelectric conversion device according to claim 4, wherein the unevenness of the surface shape of the lower electrode layer is unevenness obtained by a metal thin film.
【請求項7】可撓性で絶縁性の基板上に下部電極層、ア
モルファスシリコン系材料よりなる光電変換層および透
明上部電極層を順次積層する工程を備えた請求項1ない
し6のいずれかに記載の光電変換装置の製造方法におい
て、下部電極層の少なくとも表面層を形成するために、
基板温度300℃以上450℃以下で金属薄膜により成
膜する工程を含むことを特徴とする光電変換装置の製造
方法。
7. The method according to claim 1, further comprising a step of sequentially laminating a lower electrode layer, a photoelectric conversion layer made of an amorphous silicon material and a transparent upper electrode layer on a flexible and insulating substrate. In the method for manufacturing a photoelectric conversion device described, in order to form at least the surface layer of the lower electrode layer,
A method of manufacturing a photoelectric conversion device, comprising a step of forming a metal thin film at a substrate temperature of 300 ° C. or higher and 450 ° C. or lower.
JP11114195A 1995-04-12 1995-04-12 Photoelectric conversion device Expired - Lifetime JP3609147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11114195A JP3609147B2 (en) 1995-04-12 1995-04-12 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11114195A JP3609147B2 (en) 1995-04-12 1995-04-12 Photoelectric conversion device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002263089A Division JP3907563B2 (en) 2002-09-09 2002-09-09 Photoelectric conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08288529A true JPH08288529A (en) 1996-11-01
JP3609147B2 JP3609147B2 (en) 2005-01-12

Family

ID=14553505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11114195A Expired - Lifetime JP3609147B2 (en) 1995-04-12 1995-04-12 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP3609147B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277855A (en) * 2001-03-15 2002-09-25 Sharp Corp FORMING METHOD FOR Ag ALLOY THIN FILM, AND INFORMATION DISPLAY ELEMENT
WO2003061018A1 (en) * 2002-01-10 2003-07-24 Tdk Corporation Photovoltaic device
JP2005347304A (en) * 2004-05-31 2005-12-15 Nippon Electric Glass Co Ltd Thin film forming device and its manufacturing method, and masking member used for its manufacture
US7007616B2 (en) * 1998-08-21 2006-03-07 Nathaniel Energy Corporation Oxygen-based biomass combustion system and method
DE102011012921A1 (en) 2010-03-16 2011-12-15 Fuji Electric Co., Ltd Thin-film solar cell and process for its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007616B2 (en) * 1998-08-21 2006-03-07 Nathaniel Energy Corporation Oxygen-based biomass combustion system and method
JP2002277855A (en) * 2001-03-15 2002-09-25 Sharp Corp FORMING METHOD FOR Ag ALLOY THIN FILM, AND INFORMATION DISPLAY ELEMENT
WO2003061018A1 (en) * 2002-01-10 2003-07-24 Tdk Corporation Photovoltaic device
JP2005347304A (en) * 2004-05-31 2005-12-15 Nippon Electric Glass Co Ltd Thin film forming device and its manufacturing method, and masking member used for its manufacture
DE102011012921A1 (en) 2010-03-16 2011-12-15 Fuji Electric Co., Ltd Thin-film solar cell and process for its production

Also Published As

Publication number Publication date
JP3609147B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP2908067B2 (en) Substrate for solar cell and solar cell
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
EP2110859B1 (en) Laminate type photoelectric converter and method for fabricating the same
WO1999063600A1 (en) Silicon-base thin-film photoelectric device
JP2000252498A (en) Manufacture of thin-film photoelectric conversion device
JP2003069061A (en) Laminated photovoltaic transducer device
KR20080074127A (en) Method of manufacturing n-type multicrystalline silicon solar cells
JP3819632B2 (en) Photoelectric conversion element and manufacturing method thereof
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
JP2000058892A (en) Silicon based thin film photoelectric converter
JP3609147B2 (en) Photoelectric conversion device
JP2692964B2 (en) Solar cell
TWI447919B (en) Silicon based solar cell with a heterojunction structure and the manufacturing method thereof
JP3776606B2 (en) Method for producing transparent electrode substrate
CN1407603A (en) Crystal silicon film semiconductor device and its manufacture, and photoelectric device
JPH05283727A (en) Solar cell module
JP4412766B2 (en) Thin film polycrystalline Si solar cell
JP3907563B2 (en) Photoelectric conversion device and manufacturing method thereof
JPH07254721A (en) Production of thin film solar cell
JP4105811B2 (en) Method for forming polycrystalline silicon film
JPH0750794B2 (en) Method for manufacturing photoelectric conversion element
JPS58111379A (en) Thin-film solar cell
JPH03160763A (en) Manufacture of photovoltaic device
JP2002222969A (en) Laminated solar battery
JP3253449B2 (en) Method for manufacturing photovoltaic device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term