JP4412766B2 - Thin film polycrystalline Si solar cell - Google Patents

Thin film polycrystalline Si solar cell Download PDF

Info

Publication number
JP4412766B2
JP4412766B2 JP21592999A JP21592999A JP4412766B2 JP 4412766 B2 JP4412766 B2 JP 4412766B2 JP 21592999 A JP21592999 A JP 21592999A JP 21592999 A JP21592999 A JP 21592999A JP 4412766 B2 JP4412766 B2 JP 4412766B2
Authority
JP
Japan
Prior art keywords
layer
film
polycrystalline
solar cell
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21592999A
Other languages
Japanese (ja)
Other versions
JP2001044468A (en
Inventor
浩一郎 新楽
英樹 白間
学 古茂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21592999A priority Critical patent/JP4412766B2/en
Publication of JP2001044468A publication Critical patent/JP2001044468A/en
Application granted granted Critical
Publication of JP4412766B2 publication Critical patent/JP4412766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜多結晶Si太陽電池に関する。
【0002】
【従来技術とその課題】
近年になり、低コスト且つ高効率な次世代太陽電池の研究開発が国内外で活発に進められてきている。コスト、変換効率、資源問題、環境問題などを総合的に考慮すると、Siを主材料とした薄膜多結晶Si太陽電池が次世代太陽電池として最も有力であると考えられている。
【0003】
高効率な薄膜多結晶Si太陽電池を形成するには、充分高品質な光活性層を形成することが最も重要である。この光活性層の品質を最大限活かしきるには、その他の様々な点についても、その品質や特性を向上させる必要がある。例えば各膜間の界面準位密度をできるだけ低減させなければならない。
【0004】
薄膜多結晶Si太陽電池は多層膜構造であるため、各膜間には必然的に界面が存在する。薄膜多結晶Si太陽電池のような薄膜デバイスでは、膜の体積に対する膜間の界面の面積の比率が高くなるため、界面特性の優劣が素子特性に大きく影響する。
【0005】
各膜間の界面準位の密度の問題は、薄膜太陽電池においては、界面での暗電流の発生と光励起キャリアの再結合による消失の2つが主な問題となる。暗電流の発生は直接的には開放電圧Vocの低下に関係し、また光励起キャリアの再結合消失は直接的には光電流の低減となって短絡電流密度Jscの低下に関係し、最終的には素子特性全体の特性低下につながる。
【0006】
この問題を解決する方法として、各膜の結晶配向特性をそろえて膜界面の結晶構造の不整合を減少させ、これによって界面準位密度を減らすという方法がある。
【0007】
従来の薄膜多結晶Si太陽電池では、多結晶Siから成る下地層上に多結晶Siから成る光活性層を堆積させる場合、例えばプラズマCVD法に代表される製膜方法のように、ガラス基板やSUS基板を使用できる600℃程度以下の低温プロセスでも、下地層と光活性層とを同一の結晶配向特性で連続堆積させることが望まれていたが、それを実現する下地層の形成方法や光活性層の形成方法は知られていなかった。例えば、Proc. of 1st WCPEC (1994), p.1575 には、レーザーアニール法による(111)配向の下地層上に、(110)配向の光活性層をプラズマCVD法で形成することが述べられている。
【0008】
本発明はこのような背景のもとになされたものであり、各膜間の大きな界面準位密度の存在によって特性が劣化するという従来の問題点を解消した薄膜多結晶Si太陽電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る薄膜多結晶Si太陽電池は、基板上に、Ti膜、TiN膜、多結晶Siから成る第1のSi層、該第1のSi層と同じ導電型の多結晶Siから成る第2のSi層、および前記第1のSi層とは異なる導電型の非単結晶Siから成る第3のSi層を順次積層して成り、かつ前記第1のSi層と前記第2のSi層がともに(111)面の結晶配向特性を有することを特徴とする。
【0011】
【作用】
上記のように、(111)配向した多結晶Siから成る第1のSi層(下地層)上に、同じく(111)配向した多結晶もしくは微結晶Siから成る第2のSi層(光活性層)を形成することで、下地層−光活性層間の界面準位密度を低減させ、薄膜多結晶Si太陽電池に代表される薄膜多結晶Si素子の特性の向上を可能とする。
【0012】
具体的には、多結晶Siから成る第1のSi層(下地層)はフラックス法により主に(111)面に配向した膜形成を行い、多結晶もしくは微結晶Siから成る第2のSi層(光活性層)は触媒CVD法によって(111)配向した膜形成を行う。第1のSi層(下地層)と第2のSi層(光活性層)の配向特性が一致することによって、膜界面の欠陥準位密度が大幅に低減され、素子特性の向上が可能となる。第2のSi層(光活性層)の第1のSi層(下地層)上への成長は、理想的にはエピタキシャル成長となる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について、薄膜多結晶Si太陽電池を例に図面に基づいて詳細に説明する。
【0014】
なお、基板としてガラスを用いた例について説明するが、SUS基板などに置き換えてもよい。
【0015】
図1に示す薄膜半導体装置は、ガラス基板1上に、Ti、Ni、W、Mo、Cu、Ag、またはAlのうちの少なくとも1種からなる金属膜、またはその窒化膜あるいはシリサイド膜2で形成される裏電極、Siと共融系を成す1種以上の金属元素を含むp+ 〜p++型の多結晶Siから成る第1のSi層(下地層)3、p型もしくはi型の多結晶もしくは微結晶Siから成る第2のSi層(光活性層)4、n型の非単結晶Siから成る第3のSi層5、および受光面電極層を兼ねた導電性の反射防止膜6を順次積層して成る。同図中の7は反射防止膜6の上面に形成された表取り出し電極であり、8は多結晶Siから成る第1のSi層(下地層)3の上面に形成された裏取り出し電極である。
【0016】
このような光電変換装置の製造にあたっては、まず、ガラス基板1上に裏電極2を電子ビーム蒸着法、スパッタリング法などの真空製膜法によりシート抵抗が1Ω/□程度以下となるように適当な膜厚に堆積する。具体的には、Ti膜を1μm成膜し、この上にTiN膜を0.2μm成膜するとシート抵抗0.6Ω/□が実現される。なお、Ti膜は以下の工程で問題ない限り他の金属に置き換えてもよい。また、TiN膜は、次に述べるフラックス法に用いるAlなどのフラックス金属とTiN膜下にある金属膜およびガラス基板との反応を防止するバリア層として機能するものであるが、同等の機能を有する他の膜があればそれに置き換えることができる。
【0017】
次に、フラックス法で多結晶Siから成る第1のSi層(下地層)3を裏電極2上に形成する。具体的には、裏電極2上に、Alなどを含んだフラックスとなる金属薄膜層を電子ビーム蒸着法、スパッタリング法などの真空製膜法により、2μm程度以下の膜厚に成膜し、さらにこの金属薄膜層上に、プラズマCVD法、スパッタリング法などの薄膜形成技術にて膜厚2μm以下の非晶質または微晶質Si層を形成する。この基体を480〜570℃の比較的低温下で数分〜1時間程度熱処理すると、金属フラックスとSiとが反応し、裏電極2上に基板1に平行な方向に1μm以上の結晶粒径を持つ、主に(111)面に選択配向した多結晶Siから成る第1のSi層(下地層)3が得られる。フラックス残さについてはHClなどの酸液やNaOHなどのアルカリ液で除去すればよい。
【0018】
なお、第1のSi層(下地層)3の形成において、成膜時の温度を480〜570℃とすれば、成膜と同時に多結晶Siから成る第1のSi層(下地層)3を裏電極2上へ形成することも可能である。
【0019】
ここで、フラックス金属にAlを用いれば自動的にAlが1×1018〜1020/cm3 程度含まれたp+ 型の多結晶Siから成る第1のSi層(下地層)3を得ることができるが、さらにBが1×1018〜1022/cm3 程度含まれた多結晶Siから成る第1のSi層(下地層)3を得たい場合は、Si膜成膜時にB2 6 ガスを所定量供給すればよい。これによって高効率太陽電池に必須のBSF機能を有する下地層を得ることができる。
【0020】
次に、第1のSi層(下地層)3上に同層と同一導電型(すなわちp型)の第2のSi層(光活性層)4となる多結晶あるいは微結晶Si層を、触媒CVD法によって厚さ1μm〜30μm程度に形成する。このとき、例えば、基板温度を100℃〜500℃、直径0.5mmのW(タングステン)触媒体への投入電圧を30〜45V/m、触媒体―基板間距離を5cm前後、SiH4 ガス流量を5〜20sccm(好適には10sccm)、H2 ガス流量を100sccm、成膜圧力を7Pa前後にすると、(111)配向した多結晶Si膜を得ることができる。
【0021】
ここで、第1のSi層(下地層)3は第2のSi層(光活性層)4の下地として機能し、第2のSi層(光活性層)4の結晶粒径の拡大、結晶品質の向上を促進することができ、成膜条件を最適化すればエピタキシャル成長をさせることも可能である。
【0022】
以上により、第1のSi層(下地層)3と第2のSi層(光活性層)4の結晶配向性がともに(111)にそろい、欠陥準位密度の小さい界面を形成することができる。
【0023】
成膜圧力を7Paに設定し、シランと水素の流量(SiH4 /H2 )を3段階に変更して触媒CVD法で第2のSi層(光活性層)4を形成したときの配向特性を図2に示す。なお、基板温度を200℃に設定するともに、触媒体への投入電圧を77Vに設定し、触媒体−基板間距離を5cmに設定して成長させたものである。シランと水素のガス流量が5/100〜20/100のいずれの場合も第2のSi層4は(111)配向特性を示すことがわかる。
【0024】
なお、前記した成膜圧力を0.6Paとすると(220)配向した膜が得られる。
【0025】
また、第1のSi層(下地層)3が、Al(アルミニウム)またはB(ボロン)の濃度をそれぞれ1×1018〜1022/cm3 の範囲にもつp型半導体層とし、第2のSi層(光活性層)4が第1のSi層(下地層)3と導電型を同じくする場合は、その膜中のB濃度を、1×1016〜1019/cm3 の範囲にする。これによって第1のSi層(下地層)3は高効率太陽電池に必須のBSF機能を有する下地層とすることができ、第2のSi層(光活性層)4は高効率太陽電池に好適な再結合電流(暗電流)の少ない光活性層とすることができる。
【0026】
次に、第2のSi層(光活性層)4上に第1のSi層(下地層)3とは反対の導電型(すなわちn型)の非晶質、多結晶もしくは微結晶を含む非単結晶Si層から成る第3のSi層5をプラズマCVD法やスパッタ法などの真空製膜法により厚さ1μm以下に形成する。
【0027】
ここで、第2のSi層(光活性層)4と非単結晶Si層から成る第3のSi層5とで形成されるpn接合の品質によっては、第2のSi層(光活性層)4と第3のSi層5の間に、真性型(i型)の非単結晶Si層9を介在させてもよい。特に同層を水素化アモルファスSiで形成する場合は、その膜厚を2〜40nm程度にする。さらに、第3のSi層5および非単結晶Si層9を特に水素を含んだ雰囲気下で形成すると、各層の界面およびその近傍の欠陥準位を水素で終端することで不活性化でき、より品質の高いpn接合またはpin接合を得ることができる。
【0028】
なお、RIE法を用いて、素子表面に結晶Siの結晶方位に依存しない微細かつランダムな凹凸形状を形成し、光利用効率を高めて素子変換効率を向上させる場合は、pn接合を形成する前に、第2のSi層(光活性層)4に対してRIE法による処理を適用し、その後第3のSi層5を形成する。このRIE処理により、少なくとも発電に寄与する光波長400nm〜1000nmの範囲で、ベアSi表面の反射率を10%以下にすることが可能である。
【0029】
また、第1のSi層(下地層)3の膜厚を0.1〜1μmとし、第2のSi層(光活性層)4の膜厚を1〜30μmとし、さらに第3のSi層5の膜厚を1μm以下とすることが望ましい。第1のSi層(下地層)3の膜厚は、BSF機能を最大限に発揮させるのに好適な値であり、第2のSi層(光活性層)4および第3のSi層5の膜厚は、光電流を最大限生成させるのに好適な値である。
【0030】
次に、第3のSi層5上に、ITOやSnO2 などの導電性、あるいは窒化Si膜や酸化Si膜などの絶縁性の反射防止膜6を、プラズマCVD法やスパッタ法などの真空製膜法を用いて600〜1000nm程度の膜厚で製膜する。
【0031】
次に、反射防止膜6上に表取り出し電極7を、真空製膜技術、プリントおよび焼成技術、さらにメッキ技術などを用いて形成する。なお、絶縁性の反射防止膜を第3のSi層5上に成膜した場合は、バッファードフッ酸などの適当な薬液によるエッチング技術によって表取り出し電極7を形成する領域について絶縁性反射防止膜を除去して第3のSi層5を露出させ、ここに表取り出し電極7を接触させるようにすればよい。
【0032】
また、裏取り出し電極8についても、裏電極2上に真空製膜技術、プリントおよび焼成技術、さらにメッキ技術などを用いて形成することができる。
【0033】
以上によって、多結晶Siから成る第1のSi層(下地層)3と多結晶Siから成る第2のSi層(光活性層)4との界面に存在する界面準位密度が極めて小さい高効率な薄膜多結晶Si太陽電池を得ることができる。
【0034】
【発明の効果】
以上のように、請求項1に係る薄膜多結晶Si太陽電池によれば、多結晶Siから成る下地層と多結晶Si光活性層間の界面準位密度を低減でき、高効率な薄膜多結晶Si太陽電池の製造が可能となる
【図面の簡単な説明】
【図1】本発明に係る薄膜半導体装置の一実施形態を示す図である。
【図2】成膜圧力を7Paに設定して第2のSi層(光活性層)を形成したときの配向特性を示す図である。
【符号の説明】
1‥‥‥基板、2‥‥‥Ti、Ni、W、Mo、Cu、Ag、またはAlのうちの少なくとも1種からなる金属膜、またはその窒化膜あるいはシリサイド膜、3‥‥‥第1のSi層、4‥‥‥第2のSi層、5‥‥‥第3のSi層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film polycrystalline Si solar cell .
[0002]
[Prior art and its problems]
In recent years, research and development of low-cost and high-efficiency next-generation solar cells have been actively promoted in Japan and overseas. When comprehensively considering cost, conversion efficiency, resource problems, environmental problems, etc., a thin-film polycrystalline Si solar cell using Si as a main material is considered to be the most promising next-generation solar cell.
[0003]
In order to form a highly efficient thin-film polycrystalline Si solar cell, it is most important to form a sufficiently high-quality photoactive layer. In order to make full use of the quality of this photoactive layer, it is necessary to improve the quality and characteristics of various other points. For example, the interface state density between the films must be reduced as much as possible.
[0004]
Since the thin-film polycrystalline Si solar cell has a multilayer structure, an interface necessarily exists between the films. In a thin film device such as a thin film polycrystalline Si solar cell, since the ratio of the area of the interface between the films to the volume of the film becomes high, the superiority or inferiority of the interface characteristics greatly affects the element characteristics.
[0005]
There are two main problems with the density of interface states between films: the generation of dark current at the interface and the disappearance due to recombination of photoexcited carriers in the thin film solar cell. The generation of dark current is directly related to the decrease in open circuit voltage V oc , and the recombination loss of photoexcited carriers is directly related to the decrease in short circuit current density J sc due to the decrease in photocurrent. In particular, this leads to deterioration of the overall device characteristics.
[0006]
As a method for solving this problem, there is a method in which the crystal orientation characteristics of each film are aligned to reduce the crystal structure mismatch at the film interface, thereby reducing the interface state density.
[0007]
In a conventional thin film polycrystalline Si solar cell, when a photoactive layer made of polycrystalline Si is deposited on a base layer made of polycrystalline Si, for example, a glass substrate or a film forming method represented by plasma CVD is used. Even in a low-temperature process of about 600 ° C. or lower where an SUS substrate can be used, it is desired to continuously deposit the underlayer and the photoactive layer with the same crystal orientation characteristics. A method for forming the active layer has not been known. For example, Proc. Of 1st WCPEC (1994), p.1575 states that a (110) oriented photoactive layer is formed by plasma CVD on a (111) oriented underlayer by laser annealing. ing.
[0008]
The present invention has been made based on such a background, and provides a thin - film polycrystalline Si solar cell that has solved the conventional problem that characteristics deteriorate due to the presence of a large interface state density between the films. For the purpose.
[0009]
[Means for Solving the Problems]
To achieve the above object, a thin - film polycrystalline Si solar cell according to claim 1 is the same as the first Si layer on the substrate, the first Si layer comprising a Ti film, a TiN film, and polycrystalline Si. conductivity type second Si layer of polycrystalline Si, and made by sequentially stacking the third Si layer made of non-single-crystal Si of a conductivity type different from that of the first Si layer, and the first Both the Si layer and the second Si layer have a (111) plane crystal orientation characteristic.
[0011]
[Action]
As described above, the second Si layer (photoactive layer) made of the same (111) -oriented polycrystalline or microcrystalline Si on the (111) -oriented polycrystalline Si (underlying layer). ), The interface state density between the underlayer and the photoactive layer is reduced, and the characteristics of a thin film polycrystalline Si element typified by a thin film polycrystalline Si solar cell can be improved.
[0012]
Specifically, the first Si layer (underlying layer) made of polycrystalline Si forms a film oriented mainly in the (111) plane by the flux method, and the second Si layer made of polycrystalline or microcrystalline Si. The (photoactive layer) forms a (111) oriented film by catalytic CVD. Since the alignment characteristics of the first Si layer (underlying layer) and the second Si layer (photoactive layer) match, the defect level density at the film interface is greatly reduced, and the device characteristics can be improved. . The growth of the second Si layer (photoactive layer) on the first Si layer (underlayer) is ideally epitaxial growth.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, taking a thin film polycrystalline Si solar cell as an example.
[0014]
In addition, although the example using glass as a board | substrate is demonstrated, you may replace with a SUS board | substrate.
[0015]
The thin film semiconductor device shown in FIG. 1 is formed on a glass substrate 1 with a metal film made of at least one of Ti, Ni, W, Mo, Cu, Ag, or Al, or a nitride film or silicide film 2 thereof. A back electrode, a first Si layer (underlayer) 3 made of polycrystalline Si of p + to p ++ type containing one or more metal elements eutectic with Si, p-type or i-type Conductive antireflection film also serving as second Si layer (photoactive layer) 4 made of polycrystalline or microcrystalline Si, third Si layer 5 made of n-type non-single-crystal Si, and light-receiving surface electrode layer 6 are sequentially laminated. In the figure, 7 is a front extraction electrode formed on the upper surface of the antireflection film 6, and 8 is a back extraction electrode formed on the upper surface of the first Si layer (underlayer) 3 made of polycrystalline Si. .
[0016]
In manufacturing such a photoelectric conversion device, first, the back electrode 2 is appropriately formed on the glass substrate 1 by a vacuum film forming method such as an electron beam evaporation method or a sputtering method so that the sheet resistance is about 1 Ω / □ or less. Deposit to film thickness. Specifically, when a Ti film is formed to 1 μm and a TiN film is formed thereon to a thickness of 0.2 μm, a sheet resistance of 0.6Ω / □ is realized. The Ti film may be replaced with another metal as long as there is no problem in the following steps. The TiN film functions as a barrier layer that prevents reaction between a flux metal such as Al used in the flux method described below and the metal film and glass substrate under the TiN film, but has an equivalent function. Any other membrane can be substituted.
[0017]
Next, a first Si layer (underlayer) 3 made of polycrystalline Si is formed on the back electrode 2 by a flux method. Specifically, a metal thin film layer serving as a flux containing Al or the like is formed on the back electrode 2 to a film thickness of about 2 μm or less by a vacuum film forming method such as an electron beam evaporation method or a sputtering method. An amorphous or microcrystalline Si layer having a thickness of 2 μm or less is formed on the metal thin film layer by a thin film forming technique such as plasma CVD or sputtering. When this substrate is heat-treated at a relatively low temperature of 480 to 570 ° C. for several minutes to 1 hour, the metal flux reacts with Si, and a crystal grain size of 1 μm or more is formed on the back electrode 2 in a direction parallel to the substrate 1. Thus, a first Si layer (underlayer) 3 mainly made of polycrystalline Si selectively oriented in the (111) plane is obtained. The flux residue may be removed with an acid solution such as HCl or an alkali solution such as NaOH.
[0018]
In the formation of the first Si layer (underlayer) 3, if the temperature at the time of film formation is 480 to 570 ° C., the first Si layer (underlayer) 3 made of polycrystalline Si is formed simultaneously with the film formation. It is also possible to form it on the back electrode 2.
[0019]
Here, if Al is used as the flux metal, a first Si layer (underlayer) 3 made of p + type polycrystalline Si containing about 1 × 10 18 to 10 20 / cm 3 of Al is automatically obtained. However, when it is desired to obtain the first Si layer (underlayer) 3 made of polycrystalline Si containing B of about 1 × 10 18 to 10 22 / cm 3 , B 2 is formed at the time of forming the Si film. A predetermined amount of H 6 gas may be supplied. As a result, an underlayer having a BSF function essential for a high-efficiency solar cell can be obtained.
[0020]
Next, a polycrystalline or microcrystalline Si layer that becomes the second Si layer (photoactive layer) 4 of the same conductivity type (that is, p-type) as the same layer is formed on the first Si layer (underlayer) 3 as a catalyst. A thickness of about 1 μm to 30 μm is formed by CVD. At this time, for example, the substrate temperature is 100 to 500 ° C., the input voltage to the W (tungsten) catalyst body having a diameter of 0.5 mm is 30 to 45 V / m, the distance between the catalyst body and the substrate is about 5 cm, and the SiH 4 gas flow rate. Is 5 to 20 sccm (preferably 10 sccm), the H 2 gas flow rate is 100 sccm, and the deposition pressure is about 7 Pa, a (111) -oriented polycrystalline Si film can be obtained.
[0021]
Here, the first Si layer (underlying layer) 3 functions as the underside of the second Si layer (photoactive layer) 4, and the crystal grain size of the second Si layer (photoactive layer) 4 is increased. Improvement in quality can be promoted, and epitaxial growth can be achieved by optimizing the film formation conditions.
[0022]
As described above, the crystal orientations of the first Si layer (underlying layer) 3 and the second Si layer (photoactive layer) 4 are both aligned to (111), and an interface having a small defect level density can be formed. .
[0023]
Orientation characteristics when the deposition pressure is set to 7 Pa and the second Si layer (photoactive layer) 4 is formed by catalytic CVD by changing the flow rate of silane and hydrogen (SiH 4 / H 2 ) in three stages Is shown in FIG. The substrate temperature was set to 200 ° C., the input voltage to the catalyst body was set to 77 V, and the distance between the catalyst body and the substrate was set to 5 cm. It can be seen that the second Si layer 4 exhibits (111) orientation characteristics in any case where the gas flow rates of silane and hydrogen are 5/100 to 20/100.
[0024]
When the film forming pressure is 0.6 Pa, a (220) oriented film is obtained.
[0025]
Further, the first Si layer (underlayer) 3 is a p-type semiconductor layer having a concentration of Al (aluminum) or B (boron) in the range of 1 × 10 18 to 10 22 / cm 3 , respectively. When the Si layer (photoactive layer) 4 has the same conductivity type as the first Si layer (underlying layer) 3, the B concentration in the film is set in the range of 1 × 10 16 to 10 19 / cm 3. . As a result, the first Si layer (underlayer) 3 can be an underlayer having a BSF function essential for high-efficiency solar cells, and the second Si layer (photoactive layer) 4 is suitable for high-efficiency solar cells. Thus, a photoactive layer with a small recombination current (dark current) can be obtained.
[0026]
Next, on the second Si layer (photoactive layer) 4, non-conductivity including amorphous, polycrystalline or microcrystalline of the conductivity type (that is, n-type) opposite to that of the first Si layer (underlayer) 3. A third Si layer 5 made of a single crystal Si layer is formed to a thickness of 1 μm or less by a vacuum film forming method such as a plasma CVD method or a sputtering method.
[0027]
Here, depending on the quality of the pn junction formed by the second Si layer (photoactive layer) 4 and the third Si layer 5 made of a non-single-crystal Si layer, the second Si layer (photoactive layer) An intrinsic (i-type) non-single-crystal Si layer 9 may be interposed between the fourth Si layer 5 and the third Si layer 5. In particular, when the same layer is formed of hydrogenated amorphous Si, the film thickness is set to about 2 to 40 nm. Further, when the third Si layer 5 and the non-single-crystal Si layer 9 are formed particularly in an atmosphere containing hydrogen, the interface between each layer and the defect level in the vicinity thereof can be deactivated by terminating with hydrogen. A high-quality pn junction or pin junction can be obtained.
[0028]
In the case where a fine and random uneven shape not depending on the crystal orientation of crystal Si is formed on the surface of the element by using the RIE method, and the light conversion efficiency is improved to improve the element conversion efficiency, before the pn junction is formed. In addition, the second Si layer (photoactive layer) 4 is subjected to processing by the RIE method, and then the third Si layer 5 is formed. By this RIE treatment, it is possible to reduce the reflectance of the bare Si surface to 10% or less at least in the light wavelength range of 400 nm to 1000 nm that contributes to power generation.
[0029]
The first Si layer (underlying layer) 3 has a thickness of 0.1 to 1 μm, the second Si layer (photoactive layer) 4 has a thickness of 1 to 30 μm, and the third Si layer 5 The film thickness is desirably 1 μm or less. The film thickness of the first Si layer (underlying layer) 3 is a value suitable for maximizing the BSF function, and the second Si layer (photoactive layer) 4 and the third Si layer 5 The film thickness is a value suitable for generating the maximum photocurrent.
[0030]
Next, a conductive antireflective film 6 such as ITO or SnO 2 or an insulating antireflective film 6 such as a silicon nitride film or a silicon oxide film is formed on the third Si layer 5 by a vacuum such as plasma CVD or sputtering. A film is formed with a film thickness of about 600 to 1000 nm using a film method.
[0031]
Next, the front extraction electrode 7 is formed on the antireflection film 6 by using a vacuum film forming technique, a printing and baking technique, and a plating technique. When an insulating antireflection film is formed on the third Si layer 5, the insulating antireflection film is formed in a region where the front extraction electrode 7 is formed by an etching technique using an appropriate chemical such as buffered hydrofluoric acid. Is removed to expose the third Si layer 5, and the front extraction electrode 7 is brought into contact therewith.
[0032]
The back extraction electrode 8 can also be formed on the back electrode 2 by using a vacuum film forming technique, a printing and baking technique, and a plating technique.
[0033]
As described above, the interface state density existing at the interface between the first Si layer (underlying layer) 3 made of polycrystalline Si and the second Si layer (photoactive layer) 4 made of polycrystalline Si has a very low efficiency. Thin-film polycrystalline Si solar cells can be obtained.
[0034]
【The invention's effect】
As described above, according to the thin film polycrystalline Si solar cell according to claim 1, the interface state density between the base layer made of polycrystalline Si and the polycrystalline Si photoactive layer can be reduced, and the highly efficient thin film polycrystalline Si solar cell can be reduced. A solar cell can be manufactured .
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a thin film semiconductor device according to the present invention.
FIG. 2 is a diagram showing alignment characteristics when a second Si layer (photoactive layer) is formed with a deposition pressure set to 7 Pa.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Metal film which consists of at least 1 sort (s) of Ti, Ni, W, Mo, Cu, Ag, or Al, its nitride film, or silicide film, 3 ... 1st Si layer, 4 ... 2nd Si layer, 5 ... 3rd Si layer

Claims (4)

基板上に、Ti膜、TiN膜、多結晶Siから成る第1のSi層、該第1のSi層と同じ導電型の多結晶Siから成る第2のSi層、および前記第1のSi層とは異なる導電型の非単結晶Siから成る第3のSi層を順次積層して成り、かつ前記第1のSi層と前記第2のSi層がともに(111)面の結晶配向特性を有することを特徴とする薄膜多結晶Si太陽電池On the substrate, a Ti film, a TiN film, a first Si layer made of polycrystalline Si, a second Si layer made of polycrystalline Si having the same conductivity type as the first Si layer, and the first Si layer And a third Si layer made of non-single-crystal Si having a different conductivity type from each other, and both the first Si layer and the second Si layer have (111) plane crystal orientation characteristics. A thin - film polycrystalline Si solar cell characterized by the above. 前記第1のSi層は、Alを含んだ金属薄膜層とSiとを反応させて形成したものであることを特徴とする請求項1に記載の薄膜多結晶Si太陽電池2. The thin - film polycrystalline Si solar cell according to claim 1, wherein the first Si layer is formed by reacting a metal thin film layer containing Al with Si. 前記第1のSi層がAlまたはBを1×1018〜1022atoms/cm含有したp型半導体層であり、前記第2のSi層がBを1×1016〜1019atoms/cm含有したp型半導体層であることを特徴とする請求項1に記載の薄膜多結晶Si太陽電池The first Si layer is a p-type semiconductor layer containing Al or B of 1 × 10 18 to 10 22 atoms / cm 3 , and the second Si layer is B of 1 × 10 16 to 10 19 atoms / cm 3. The thin film polycrystalline Si solar cell according to claim 1, which is a p-type semiconductor layer containing 3 . 前記第1のSi層の膜厚が0.1〜1μmであり、前記第2のSi層の膜厚が1〜30μmであり、前記第3のSi層の膜厚が1μm以下であることを特徴とする請求項1に記載の薄膜多結晶Si太陽電池The thickness of the first Si layer is 0.1 to 1 μm, the thickness of the second Si layer is 1 to 30 μm, and the thickness of the third Si layer is 1 μm or less. The thin film polycrystalline Si solar cell according to claim 1, wherein
JP21592999A 1999-07-29 1999-07-29 Thin film polycrystalline Si solar cell Expired - Fee Related JP4412766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21592999A JP4412766B2 (en) 1999-07-29 1999-07-29 Thin film polycrystalline Si solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21592999A JP4412766B2 (en) 1999-07-29 1999-07-29 Thin film polycrystalline Si solar cell

Publications (2)

Publication Number Publication Date
JP2001044468A JP2001044468A (en) 2001-02-16
JP4412766B2 true JP4412766B2 (en) 2010-02-10

Family

ID=16680609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21592999A Expired - Fee Related JP4412766B2 (en) 1999-07-29 1999-07-29 Thin film polycrystalline Si solar cell

Country Status (1)

Country Link
JP (1) JP4412766B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061360A1 (en) * 2004-12-21 2006-07-13 Forschungszentrum Jülich GmbH Process for producing a thin-film solar cell with microcrystalline silicon and layer sequence
JP5675031B2 (en) * 2006-11-28 2015-02-25 三洋電機株式会社 Method for producing p-type amorphous silicon thin film, photovoltaic device and method for producing photovoltaic device
KR100927428B1 (en) * 2007-07-31 2009-11-19 주식회사 티지솔라 Solar cell and manufacturing method
JP5123830B2 (en) * 2008-11-26 2013-01-23 ルネサスエレクトロニクス株式会社 Antireflection film, method for manufacturing antireflection film, and semiconductor device using antireflection film
JP5334664B2 (en) * 2009-04-22 2013-11-06 株式会社 セルバック Method for manufacturing photoelectric conversion device and photoelectric conversion device
JP2010258103A (en) * 2009-04-22 2010-11-11 Serubakku:Kk Method and apparatus for manufacturing photoelectric conversion device

Also Published As

Publication number Publication date
JP2001044468A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
US9130074B2 (en) High-efficiency solar cell structures and methods of manufacture
US20100059117A1 (en) Hybrid silicon solar cells and method of fabricating same
US20130180585A1 (en) Method of manufacturing solar cell, and solar cell
US20080174028A1 (en) Method and Apparatus For A Semiconductor Structure Forming At Least One Via
WO2022142343A1 (en) Solar cell and preparation method therefor
US11251325B2 (en) Photovoltaic device and method for manufacturing the same
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
CN210200743U (en) Solar cell
CN116230798A (en) High-efficiency heterojunction solar cell and manufacturing method thereof
JP2004260014A (en) Multilayer type thin film photoelectric converter
JP2019033201A (en) Crystalline silicon type solar cell
JP4412766B2 (en) Thin film polycrystalline Si solar cell
CN106887483A (en) Silicon substrate heterojunction solar cell and preparation method thereof
JP2001028452A (en) Photoelectric conversion device
CN112259631B (en) Silicon carbide cell
US11430904B2 (en) Solar cell and method of manufacturing solar cell
CN114361281A (en) Double-sided heterojunction solar cell and photovoltaic module
JP4105811B2 (en) Method for forming polycrystalline silicon film
WO2019188716A1 (en) Solar cell and manufacturing method therefor
WO2006049003A1 (en) Process for producing thin-film photoelectric converter
CN114284374B (en) Application of zinc titanate in crystalline silicon solar cell
CN117276360B (en) Novel crystalline silicon heterojunction solar cell structure and preparation method and application thereof
JP2001068709A (en) Thin-film solar battery
JP2752129B2 (en) Semiconductor device
JP2001168364A (en) Method of manufacturing amorphous silicon thin film photoelectric transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees