JPH0142428B2 - - Google Patents

Info

Publication number
JPH0142428B2
JPH0142428B2 JP57100018A JP10001882A JPH0142428B2 JP H0142428 B2 JPH0142428 B2 JP H0142428B2 JP 57100018 A JP57100018 A JP 57100018A JP 10001882 A JP10001882 A JP 10001882A JP H0142428 B2 JPH0142428 B2 JP H0142428B2
Authority
JP
Japan
Prior art keywords
image
coordinates
shape data
target object
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57100018A
Other languages
English (en)
Other versions
JPS58217084A (ja
Inventor
Hiroshi Shionoya
Takashi Uchama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57100018A priority Critical patent/JPS58217084A/ja
Publication of JPS58217084A publication Critical patent/JPS58217084A/ja
Publication of JPH0142428B2 publication Critical patent/JPH0142428B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ロボツト等の目として機能する視覚
装置であつて、2次元画像を処理対象とし、あら
かじめ教示しておいた物体の形状情報を参照して
認識対象物体を識別し、併せてロボツト作業等に
必要な位置情報等を計測するロボツト用視覚装置
に関する。
〔従来技術と問題点〕
一般にロボツト用視覚装置には、対象物体を識
別する能力に加えて、対象物体が視野内のどの位
置にどんな姿勢で置かれているのかを計測する機
能が要求されるが、従来の視覚装置は、認識対象
物体の姿勢は固定であるとして重心の座標のみを
出力するものや、或は任意の姿勢を許すとして
も、重心の座標を位置とし、慣性主軸の傾きを姿
勢として出力するもの等、装置としての計測箇所
が固定であつた。これらの情報には、形状に係る
情報がないから、重心の座標と慣性主軸の傾きが
同じであれば、例えば三角形状のものも棒状のも
のも区別できない。従つて従来の装置は、例えば
対象物体の形状に応じて特定部を掴んだり、対象
物体の特定穴に部品を挿入したり、或は対象物体
毎に掴み位置を変えるといつた多様なロボツト作
業に必要な情報を提供できなかつた。
〔発明の目的〕
本発明は、上記欠点を除去するものであつて、
視野内の任意の位置、姿勢で供給された対象物体
に対し、上記の如きロボツトの多様な作業に必要
な情報を得ることが可能なロボツト用視覚装置を
提供することを目的とするものである。
〔発明の構成〕
そのために本発明のロボツト用視覚装置は、2
次元画像を処理対象とし、あらかじめ教示してお
いた物体の形状情報を参照して認識対象物体を識
別しかつ位置等を計測する方式のロボツト用視覚
装置において、画像入力部と、教示処理部と、認
識処理部と、認識対象物体をあらかじめ教示する
場合には上記教示処理部を上記画像入力部に接続
し、認識対象物体を識別する場合には上記認識処
理部を上記画像入力部に接続する切換接続手段と
を設け、上記画像入力部は、対象物体の2次元画
像を得る撮像手段、該撮像手段により得られたア
ナログ映像信号をデイジタル画像情報に変換する
画像変換手段、上記デイジタル画像情報から対象
物体の輪郭像を求め各輪郭点の座標を抽出する輪
郭抽出手段、及び上記各輪郭点の座標を格納する
輪郭点座標格納手段を有し、上記教示処理部は、
上記輪郭点座標格納手段に格納されている輪郭点
の座標を用いて対象物体像の形状データを抽出す
る形状データ抽出手段、上記形状データを格納す
る教示形状データ格納手段、上記輪郭点の座標を
用いて対象物体像の重心座標と慣性主軸の傾きを
求める重心・傾き計算手段、上記対象物体像の重
心座標と慣性主軸の傾きを格納する座標変換係数
格納手段、上記対象物体像の重心座標と慣性主軸
の傾きから物体像固有の座標軸を決定し上記対象
物体像と物体固有の座標軸を表示すると共に該表
示された任意の点を計測点として座標入力する計
測点座標入力手段、及び入力された計測点の計測
点座標を格納する計測点座標格納手段を有し、上
記認識処理部は、上記形状データ抽出手段、該形
状データ抽出手段により抽出された形状データと
上記教示形状データ格納手段に格納されている形
状データとを比較して同じ教示物体についての判
断を行う比較手段、上記重心、傾き計算手段、上
記座標変換係数格納手段、上記比較手段により同
じ教示物体であると判断された対象物体像の計測
点の座標を上記計測点座標格納手段から読み出し
て上記座標変換係数格納手段に格納されている対
象物体像の重心座標と慣性主軸の傾きに基づいて
座標変換する計測点座標変換手段を有することを
特徴とするものである。
〔発明の実施例〕
以下、本発明を図面を参照しつつ説明する。
第1図は本発明の1実施例の概要を示す図、第
2図は本発明に用いられるシステムの概要を示す
図、第3図は本発明の画像入力部の1実施例の詳
細を示す図、第4図は本発明の教示処理部の1実
施例の詳細を示す図、第5図は本発明の認識処理
部の1実施例の詳細を示す図、第6図は対象物体
の輪郭像の例を示す図、第7図は第6図の輪郭像
の重心の位置と慣性主軸の傾きを示す図、第8図
は第6図の対象物体像固有の座標系を示す図、第
9図は第6図の対象物体像の計測点入力の際の表
示を示す図である。
図において、101は画像入力部、102は教
示処理部、103は認識処理部、104はメモ
リ、105はCPU(中央処理装置)、1は撮像装
置、2はA/D変換器、3は画像メモリ書き込み
部、4は画像メモリ・アドレス制御部、5は画像
メモリ読み取り部、6は輪郭抽出部、7は形状デ
ータ抽出部、8は重心計算部、9は傾き計算部、
10は表示部、11はグラフイツク・デイスプレ
イ、12は計測点入力部、13は比較部、14は
計測点座標変換部、Mは対象物体、swは切換ス
イツチ、aは画像メモリ、bは輪郭点座標メモ
リ、cは教示形状データ格納メモリ、dは座標変
換係数格納メモリ、eは計測点格納メモリ、fは
認識形状データ格納メモリ、Gは重心、θは慣性
主軸の傾き、A,BとCは計測点を示す。なお、
第3図ないし第5図において、点線により示した
矢印はデータの流れ又はデータを参照しているこ
とを意味し、実線枠により示した矢印は処理の流
れを意味している。
本発明は、その概要を第1図に示すように画像
入力部101と教示処理部102と認識処理部よ
り成る。選択スイツチswにより「教示」が選択
されると、教示処理部102の前段の選択スイツ
チswがオンに、認識処理部103の前段の選択
スイツチswがオフになり画像入力部101と教
示処理部102が動作する。選択スイツチswに
より「認識」が選択されると、教示処理部102
の前段の選択スイツチswがオフに認識処理部1
03の前段の選択スイツチswがオンになり画像
入力部101と認識処理部103が動作する。第
1図の各処理部を有するシステムの概要を示した
のが第2図である。対象物体Mの2次元画像は、
例えはITVカメラ等の撮像装置1によつて得ら
れる。そしてメモリ104及びCPU(中央処理装
置)105により構成される各処理部については
以下に詳細に説明する。
画像入力部101の詳細な例を第3図に示す。
対象物体Mの2次元画像が撮像装置1によつて得
られると、A/D変換器2に送られる。A/D変
換器2では、撮像装置1から送られてきたアナロ
グ映像信号をデイジタル画像に変換し、画像メモ
リ書き込み部3に送る。画像メモリ書き込み部3
では、送られてきたデイジタル画像を、画像メモ
リ・アドレス制御部4を通じて画像メモリaに格
納する。画像メモリaは、例えば256×256画素と
し、各画素値はそのアドレスを画像メモリ読み取
り部5に入力することによつて画像メモリ・アド
レス制御部を通じ読み取ることができる。輪郭抽
出部6は、画像メモリ読み取り部5を通じて画像
メモリaを走査して対象物体の輪郭像を求め、像
を構成する各輪郭点の座標を輪郭点座標メモリb
へ格納する。輪郭像の例を示したのが第6図であ
る。以下の説明において、入力画像上の座標とは
第6図に示す如き座標系で表記するものであり、
この座標は画像メモリa上のアドレスと一致して
いる。
次に教示処理部102の詳細な例を第4図に示
す。形状データ抽出部7では、輪郭点座標メモリ
6に格納されている輪郭点の座標を用いて対象物
体像を特徴付け、例えば面積、周長、周長と面積
比、穴の数等を求め、教示形状データ格納メモリ
Cに格納する。重心計算部8では、輪郭点座標よ
り対象物体像の重心Gを求め、慣性主軸傾き計算
部9では、輪郭点座標より対象物体像の慣性主軸
の傾きθを求め、それぞれの内容を座標変換係数
格納メモリdに格納する。いま、輪郭点座標を
(xk、yk)、面積をSとすると、重心の座標G
(XG、YG)は XG=1/2Nk=1 xk 2(yk+1−yk)/S YG=1/2Nk=1 yk 2(Xk+1−xk)/S で、また慣性主軸の傾きθは mxx=1/3Nk=1 yk 3(xk−xk+1)−yG 2・S myy=1/3Nk=1 xk 3(yk+1−yk)−xG 2・S mxy=1/3Nk=1 xkyk(xkyk+1−xk+1yk)−xGyG・S として θ=tan-12mxy/myy−mxx で求める。このようにして求められた重心の座標
Gと慣性主軸の傾きθとを第6図に輪郭像に加え
て示したのが第7図である。また、該重心Gと慣
性主軸より求めた対象物体像固有の座標軸を第8
図に示し、慣性主軸をx軸、慣性主軸と垂直方向
をy軸、y軸で区切られた2つの輪郭像のうち構
成する輪郭点の数が多い方をx軸の正の向きと定
める。表示部10は、輪郭像と像固有の座標軸を
第9図の如く、グラフイツク・デイスプレイ11
に表示する。グラフイツク・デイスプレイ11
は、例えばライト・ペン等の座標入力機能を有す
るものであり、その座標入力機能を用いて第9図
のA,B,C点の如き計測点の座標が指示され
る。計測点入力部12では、ライト・ペン等で指
定されたA,B,C点の如き計測点の座標を受け
取り、これを計測点格納メモリeに格納する。こ
れまでの処理をくり返して装置が処理すべき物体
を全て登録する。
次に認識処理部103の詳細な例を第5図に示
す。形状データ抽出部7では、認識対象物体像か
ら先に説明した教示処理部と同様に特徴量を抽出
し、これを認識形状データ格納メモリfに格納す
る。比較部13では、各登録物体と認識対象物体
間で、同じ特徴量についての教示形状データ格納
メモリC中の登録値と認識形状データ格納メモリ
f中の抽出値との差の全特徴量に関する和を求
め、その和が最小で且つ或る閾値以下である教示
物体と認識対象物体とが同一であると判断する。
比較部13において認識対象物体が或る教示物体
と同じであると判断した場合には、重心計算部8
と慣性主軸の傾き計算部9において先に説明した
教示処理部と同様にして物体像固有の座標系と入
力画像上の座標系との変換係数を求め、該変換係
数を座標変換係数格納メモリdに格納する。計測
点座標変換部14では、教示処理で教示した計測
点(先の教示処理部で説明したA,B,C点)の
座標を計測点格納メモリeから読み出し、座標変
換係数格納メモリdに格納された前記変換係数を
用いて入力画像上の座標に変換する。以上の処理
で得られるA,B,C点の入力画像上の座標は、
先に述べたように複雑なロボツト作業に有用な情
報であり、C点は穴位置を、A点とB点は特定部
位を掴むための位置と姿勢を供給する。その結
果、如何なる入力画像上の座標系に対しても、本
発明では常に複雑なロボツト作業に有用なA,
B,C点のような情報を得ることができる。しか
も、このような情報は教示処理によつて任意に与
えることができるものである。
なお、以上説明したようなロボツト用視覚装置
において、認識処理では先に述べた計測点のうち
の2点を抽出し、その2点の中点の座標を対象物
体の位置とし、その2点を通る直線の傾きを姿勢
として入力画像上の座標に変換して出力してもよ
い。
〔発明の効果〕
以上の説明から明らかなように、本発明によれ
ば、計測点を物体像固有の座標系で教示すること
によつて、視野内の任意の位置、姿勢で提示した
認識対象物体に対し、多様なロボツト作業に必要
な情報を得ることが可能である。
【図面の簡単な説明】
第1図は本発明の1実施例の概要を示す図、第
2図は本発明に用いられるシステムの概要を示す
図、第3図は本発明の画像入力部の1実施例の詳
細を示す図、第4図は本発明の教示処理部の1実
施例の詳細を示す図、第5図は本発明の認識処理
部の1実施例の詳細を示す図、第6図は対象物体
の輪郭像の例を示す図、第7図は第6図の輪郭像
の重心の位置と慣性主軸の傾きを示す図、第8図
は第6図の対象物体像固有の座標系を示す図、第
9図は第6図の対象物体像の計測点入力の際の表
示を示す図である。 101……画像入力部、102……教示処理
部、103……認識処理部、104……メモリ、
105……CPU(中央処理装置)、1……撮像装
置、2……A/D変換器、3……画像メモリ書き
込み部、4……画像メモリ・アドレス制御部、5
……画像メモリ読み取り部、6……輪郭抽出部、
7……形状データ抽出部、8……重心計算部、9
……傾き計算部、10……表示部、11……グラ
フイツク・デイスプレイ、12……計測点入力
部、13……比較部、14……計測点座標変換
部、M……対象物体、sw……切換スイツチ、a
……画像メモリ、b……輪郭点座標メモリ、c…
…教示形状データ格納メモリ、d……座標変換係
数格納メモリ、e……計測点格納メモリ、f……
認識形状データ格納メモリ、G……重心、θ……
慣性主軸の傾き、A,BとC……計測点。

Claims (1)

    【特許請求の範囲】
  1. 1 2次元画像を処理対象とし、あらかじめ教示
    しておいた物体の形状情報を参照して認識対象物
    体を識別しかつ位置等を計測する方式のロボツト
    用視覚装置において、画像入力部と、教示処理部
    と、認識処理部と、認識対象物体をあらかじめ教
    示する場合には上記教示処理部を上記画像入力部
    に接続し、認識対象物体を識別する場合には上記
    認識処理部を上記画像入力部に接続する切換接続
    手段とを設け、上記画像入力部は、対象物体の2
    次元画像を得る撮像手段、該撮像手段により得ら
    れたアナログ映像信号をデイジタル画像情報に変
    換する画像変換手段、上記デイジタル画像情報か
    ら対象物体の輪郭像を求め各輪郭点の座標を抽出
    する輪郭抽出手段、及び上記各輪郭点の座標を格
    納する輪郭点座標格納手段を有し、上記教示処理
    部は、上記輪郭点座標格納手段に格納されている
    輪郭点の座標を用いて対象物体像の形状データを
    抽出する形状データ抽出手段、上記形状データを
    格納する教示形状データ格納手段、上記輪郭点の
    座標を用いて対象物体像の重心座標と慣性主軸の
    傾きを求める重心・傾き計算手段、上記対象物体
    像の重心座標と慣性主軸の傾きを格納する座標変
    換係数格納手段、上記対象物体像の重心座標と慣
    性主軸の傾きから物体像固有の座標軸を決定し上
    記対象物体像と物体像固有の座標軸を表示すると
    共に該表示された任意の点を計測点として座標入
    力する計測点座標入力手段、及び入力された計測
    点の計測点座標を格納する計測点座標格納手段を
    有し、上記認識処理部は、上記形状データ抽出手
    段、該形状データ抽出手段により抽出された形状
    データと上記教示形状データ格納手段に格納され
    ている形状データとを比較して同じ教示物体につ
    いての判断を行う比較手段、上記重心、傾き計算
    手段、上記座標変換係数格納手段、上記比較手段
    により同じ教示物体であると判断された対象物体
    像の計測点の座標を上記計測点座標格納手段から
    読み出して上記座標変換係数格納手段に格納され
    ている対象物体像の重心座標と慣性主軸の傾きに
    基づいて座標変換する計測点座標変換手段を有す
    ることを特徴とするロボツト用視覚装置。
JP57100018A 1982-06-11 1982-06-11 ロボツト用視覚装置 Granted JPS58217084A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57100018A JPS58217084A (ja) 1982-06-11 1982-06-11 ロボツト用視覚装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100018A JPS58217084A (ja) 1982-06-11 1982-06-11 ロボツト用視覚装置

Publications (2)

Publication Number Publication Date
JPS58217084A JPS58217084A (ja) 1983-12-16
JPH0142428B2 true JPH0142428B2 (ja) 1989-09-12

Family

ID=14262809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100018A Granted JPS58217084A (ja) 1982-06-11 1982-06-11 ロボツト用視覚装置

Country Status (1)

Country Link
JP (1) JPS58217084A (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200385A (ja) * 1984-03-26 1985-10-09 Hitachi Ltd 姿勢判定方式
JPS615385A (ja) * 1984-06-18 1986-01-11 Omron Tateisi Electronics Co 二次元視覚認識装置
JPS615384A (ja) * 1984-06-18 1986-01-11 Omron Tateisi Electronics Co 二次元視覚認識装置
JPH0754444B2 (ja) * 1984-06-19 1995-06-07 三菱電機株式会社 視覚コントロ−ラ
JPH0724070B2 (ja) * 1984-08-10 1995-03-15 富士電機株式会社 配置判定装置
JPS61129508A (ja) * 1984-11-28 1986-06-17 Yokogawa Electric Corp ロボツト用・物体観測装置
JPS62111368A (ja) * 1985-11-09 1987-05-22 Omron Tateisi Electronics Co 主軸角検出装置
JPS62165206A (ja) * 1986-01-17 1987-07-21 Hitachi Metals Ltd ロボツト視覚装置におけるワ−ク姿勢決定方法
JPS6378006A (ja) * 1986-09-22 1988-04-08 Agency Of Ind Science & Technol 縫製部品の寸法計測方法及びその装置
JPH02195485A (ja) * 1989-01-25 1990-08-02 Omron Tateisi Electron Co 画像処理装置
JPH07113975B2 (ja) * 1989-09-11 1995-12-06 ジューキ株式会社 重心検出装置
JPH0490078A (ja) * 1990-08-02 1992-03-24 Juki Corp 重心検出装置
JP4890904B2 (ja) * 2005-07-05 2012-03-07 Juki株式会社 部品位置検出方法及び装置
CN110451045B (zh) * 2018-05-08 2021-11-02 拓卡奔马机电科技有限公司 贴标位置控制方法、控制系统、存储介质、及贴标机

Also Published As

Publication number Publication date
JPS58217084A (ja) 1983-12-16

Similar Documents

Publication Publication Date Title
JP3242108B2 (ja) ターゲットマークの認識・追跡システム及び方法
JPH0142428B2 (ja)
US10713530B2 (en) Image processing apparatus, image processing method, and image processing program
EP0714057A1 (en) Method and apparatus for displaying a cursor along a two dimensional representation of a computer generated three dimensional surface
JP2003346185A (ja) 情報表示システム及び携帯情報端末
JP2626528B2 (ja) 図形認識装置
JPH06195472A (ja) 画像処理システム
JPH07160412A (ja) 指示位置検出方法
GB2175729A (en) Manikin or animal representation
JP3192779B2 (ja) 位置・姿勢計測装置
JPH0624035B2 (ja) 走行路判別装置
JP2001194128A (ja) 焦点光源付ステレオカメラによる3次元面形状推定方法
JPH0512442A (ja) 線画像追跡方法
JP2798393B2 (ja) 物体の姿勢推定方法及びその装置
JPS61234313A (ja) 海図表示装置
US11354896B2 (en) Display device, display method, and computer program
JPH1031747A (ja) 三次元情報抽出装置および三次元情報抽出方法
JPH06147895A (ja) 物体の位置計測装置
JPH09243325A (ja) 三次元位置認識方法および装置
JPH07200828A (ja) 画像処理による位置計測装置におけるモデル画像の基準位置決定方法
CN117782030A (zh) 距离测量方法及装置、存储介质及电子设备
JPS63246604A (ja) 多角形物体の姿勢角測定法
Wingate et al. Integrating Computer Vision with a Robot Arm System.
JPS6081682A (ja) 指示装置
JPS60200381A (ja) パタ−ン認識装置