JPH01305897A - Preparation of single crystal of oxide superconductor - Google Patents

Preparation of single crystal of oxide superconductor

Info

Publication number
JPH01305897A
JPH01305897A JP63137084A JP13708488A JPH01305897A JP H01305897 A JPH01305897 A JP H01305897A JP 63137084 A JP63137084 A JP 63137084A JP 13708488 A JP13708488 A JP 13708488A JP H01305897 A JPH01305897 A JP H01305897A
Authority
JP
Japan
Prior art keywords
single crystal
barium
copper
oxide superconductor
starting materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63137084A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63137084A priority Critical patent/JPH01305897A/en
Publication of JPH01305897A publication Critical patent/JPH01305897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable to generate large sized pores in a mixture of starting materials and to obtain a large sized single crystals of a superconductor by using Y2O3, Ba(NO3)2, and CuO as starting materials for the oxide superconductor. CONSTITUTION:Y2O3, Ba(NO)3, and CuO are used as starting materials for the prepn. of a YBa2Cu3O7-x oxide superconductor consisting of Y, Ba, Cu and O. Ba(NO3)2 has a m.p. at 592 deg.C and generates gas (consisting primarily of NO2) at higher temp. than the m.p. Therefore, Ba(NO3)2 is an ideally suitable substance for forming pores because it generates gas after it is softened. Crystals having grown in the pores may have max. 10mm square size (about 0.5mm thickness). The single crystal is necessary not only for precise measurement of physical properties but also indispensible for the prepn. of a superconductor device, etc.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物高温超伝導体のYBazCu30t−x
(以下YBCOと略す)ノ単結晶の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to an oxide high temperature superconductor YBazCu30t-x
(hereinafter abbreviated as YBCO) single crystal manufacturing method.

「従来の技術」 臨界温度(Tc)が90Kにも達する高温超伝導体とし
てYBCOが発見されるやいなやその単結晶が作製され
た。
"Prior Art" Immediately after YBCO was discovered as a high-temperature superconductor with a critical temperature (Tc) of 90K, single crystals thereof were produced.

この単結晶は、主として、出発材料に過剰の酸化銅や炭
酸バリウムを加えそれらを融剤(フラックス)として混
合物の融点を下げ、結晶を成長させる、いわゆるフラツ
クス性によって作製されている。
This single crystal is mainly produced by a so-called flux process in which an excess of copper oxide or barium carbonate is added to the starting material and used as a flux to lower the melting point of the mixture and grow the crystal.

通常の半導体等の作製に用いられる単結晶はチョコラル
スキー法等により作製されている。しかしながらYBC
Oの単結晶の作製にチョコラルスキー法は使われていな
い、その理由は、YBCOは1000°C以上では非超
伝導体相(YtBa Cu Os)になってしまうため
、融液からの直接成長ができないためである。
Single crystals used in the production of ordinary semiconductors are produced by the Czochralski method or the like. However, YBC
The Czochralski method is not used to produce O single crystals because YBCO becomes a non-superconducting phase (YtBa Cu Os) at temperatures above 1000°C, so direct growth from a melt is not possible. This is because it cannot be done.

一方フラックス法によるYBCO単結晶の成長では、1
1.Katayma−Yoshida et al(J
pnj。
On the other hand, in the growth of YBCO single crystal by flux method, 1
1. Katayama-Yoshida et al (J
pnj.

Appl、Phys、26(1987)L2007)が
、混合物内にできる空孔において比較的大きなYBCO
単結晶(5ミリ角程度)が得られると報告している。
Appl, Phys, 26 (1987) L2007), YBCO is relatively large in the pores formed in the mixture.
It is reported that a single crystal (about 5 mm square) can be obtained.

「従来の問題点J H,Kataynia−Yoshida et alの
報告は、出発材料として酸化イツトリウム、炭酸バリウ
ム、酸化銅を用い、酸化銅を過剰に加えるCuOフラッ
クス法を採用して、これらの混合物を高温で反応させる
際、炭酸バリウムや酸化銅が分解して生じた二酸化炭素
や酸素が試料内に空孔を形成し、この空孔内でのみ大き
な単結晶が得られるというものである。
"Conventional Problems The report by J. H., Kataynia-Yoshida et al. used yttrium oxide, barium carbonate, and copper oxide as starting materials, adopted the CuO flux method in which copper oxide was added in excess, and heated these mixtures to high temperatures. During the reaction, carbon dioxide and oxygen produced by the decomposition of barium carbonate and copper oxide form pores within the sample, and large single crystals can only be obtained within these pores.

しかしながら、上記CuOフラックス法においては空孔
の形成は十分なものではなく、できる空孔の大きさも限
られてしまうという問題があった。なぜならば、前記の
出発材料では試料の融解と二酸化炭素等の発生がほぼ同
じ温度でおこるため、もしくは試料の融解する温度より
二酸化炭素の発生する温度の方が低いためである。
However, the CuO flux method described above has the problem that the formation of pores is not sufficient and the size of the pores that can be formed is also limited. This is because, in the above starting materials, the melting of the sample and the generation of carbon dioxide, etc. occur at approximately the same temperature, or the temperature at which carbon dioxide is generated is lower than the temperature at which the sample melts.

本発明はYBCO単結晶作製の際、混合物内にできる空
孔を大きなものとし、大きなYBCO単結晶を得ること
を目的としたものである。
The purpose of the present invention is to increase the size of pores formed in a mixture during production of a YBCO single crystal, thereby obtaining a large YBCO single crystal.

「問題を解決するための手段」 本発明は空孔を形成するのに必要なガスの発生する温度
よりも試料の軟化する温度の方が低ければより大きな空
孔が形成されることを考えこの条件を満足させるために
、炭酸バリウムの代わりに硝酸バリウムを用いることと
した。そのために、イツトリウム、バリウム、銅、酸素
からなる酸化物超伝導体のYBazcu30v−x単結
晶を得る際に、出発材料として酸化イツトリウム(y、
o、) 、硝酸バリウム(Ba(NOl)2)、酸化1
i(CuO)を用いることとしたものである。
"Means for Solving the Problem" The present invention takes into consideration that larger pores will be formed if the softening temperature of the sample is lower than the temperature at which the gas necessary to form pores is generated. In order to satisfy the conditions, it was decided to use barium nitrate instead of barium carbonate. For this purpose, when obtaining a YBazcu30v-x single crystal of an oxide superconductor consisting of yttrium, barium, copper, and oxygen, yttrium oxide (y,
o, ), barium nitrate (Ba(NOl)2), oxide 1
i(CuO) was used.

化学大辞典(井守出版)によれば、硝酸バリウムは融点
が 592°Cで、それより高温では分解してガス(主
として二酸化窒素)を発生する。したがって、試料が軟
化してからガスが発生し、空孔を形成するのには理想的
である。実際、硝酸バリウムを用いたほうが、炭酸バリ
ウムを用いるよりもはるかに大きな空孔(内径10ミリ
以上)が得られた。また、この空孔内に成長した結晶も
最大で10ミリ角(厚さ約0.5ミリ)のものが得られ
た。以下、実施例を示し、さらに本発明を説明する。
According to the Chemical Encyclopedia (Imori Publishing), barium nitrate has a melting point of 592°C, and at higher temperatures it decomposes and generates gas (mainly nitrogen dioxide). Therefore, gas is generated after the sample softens, which is ideal for forming pores. In fact, much larger pores (inner diameter of 10 mm or more) were obtained by using barium nitrate than by using barium carbonate. Furthermore, crystals grown within the pores were up to 10 mm square (approximately 0.5 mm thick). EXAMPLES Hereinafter, the present invention will be further explained by showing examples.

「実施例1」 原料として酸化イツトリウム、硝酸バリウム、酸化銅粉
末(いずれも、純度は99.9パーセント)を用いた。
"Example 1" Yttrium oxide, barium nitrate, and copper oxide powder (all with a purity of 99.9%) were used as raw materials.

これらの粉末を、イツトリウム、バリウム、銅のモル比
がそれぞれ1:4:6となるようにはかりとり、十分に
混合した。この混合物約10グラムをアルミするつぼに
いれ、第1図の温度プログラムに示す温度条件で、酸素
気流中で焼成した。
These powders were weighed and thoroughly mixed so that the molar ratio of yttrium, barium, and copper was 1:4:6, respectively. Approximately 10 grams of this mixture was placed in an aluminum crucible and fired in an oxygen stream under the temperature conditions shown in the temperature program shown in FIG.

混合物内には内径約15ミリの空孔ができていた。空孔
内には5ミリ角でいどのYB C0単結晶が10枚程度
できていた。さらにこれらのYBCO単結晶が超伝導性
を持つようにするため、酸素雰囲気900°Cでのアニ
ールおよびその後の徐冷(冷却速度60°C/時)を行
なった。その結果第2図に示すような超伝導性を示すY
BCO単結晶を得ることができた。
Pores with an inner diameter of approximately 15 mm were formed within the mixture. Approximately 10 YB CO single crystals of 5 mm square were formed inside the hole. Furthermore, in order to make these YBCO single crystals have superconductivity, annealing in an oxygen atmosphere at 900°C and subsequent slow cooling (cooling rate of 60°C/hour) were performed. As a result, Y exhibits superconductivity as shown in Figure 2.
A BCO single crystal could be obtained.

「実施例2j 原料として酸化イツトリウム、硝酸バリウム、酸化銅粉
末(いずれも、純度は99.9パーセント)を用いた。
"Example 2j Yttrium oxide, barium nitrate, and copper oxide powder (all with a purity of 99.9%) were used as raw materials.

これらの粉末を、イツトリウム、バリウム、銅のモル比
がそれぞれ1:4:6となるようにはかりとり、十分に
混合した。この混合物約10グラムをアルミするつぼに
いれ、酸素雰囲気1150”Cで1時間焼成したあと室
温まで急冷した。その後、再び、酸素雰囲気中970°
Cに加熱して7日間焼成した。試料内には内径約15ミ
リの空孔ができていた。空孔内には5ミリ角ていどのY
BCO単結晶が10枚程度できていた。さらにこれらの
YBCo単結晶が超伝導性を持つようにするため酸素雰
囲気900°Cでのアニールおよびその後の徐冷(冷却
速度60°C/時)を行なった。その結果第3図に示す
ような超伝導性を示すYBCO単結晶を得ることができ
た。
These powders were weighed and thoroughly mixed so that the molar ratio of yttrium, barium, and copper was 1:4:6, respectively. Approximately 10 grams of this mixture was placed in an aluminum crucible, baked in an oxygen atmosphere at 1150"C for 1 hour, and then rapidly cooled to room temperature. Thereafter, it was heated again in an oxygen atmosphere at 970"C.
C. and baked for 7 days. A hole with an inner diameter of approximately 15 mm was formed within the sample. There is a 5 mm square Y inside the hole.
About 10 BCO single crystals were formed. Further, in order to make these YBCo single crystals have superconductivity, annealing in an oxygen atmosphere at 900°C and subsequent slow cooling (cooling rate of 60°C/hour) were performed. As a result, a YBCO single crystal exhibiting superconductivity as shown in FIG. 3 could be obtained.

「効果」 本発明よって、出発材料として酸化イツトリウム(Y2
O,)、硝酸バリウム(Ba(NO8)t)、酸化銅(
Cub)を用いることによってYBCO単結晶が成長す
るために必要な空孔を上記の出発材料混合物中に確実に
形成されることができ、その結果比較的大きなYBCO
単結晶を確実にしかも効率よく得られるようになった。
"Effect" According to the present invention, yttrium oxide (Y2
O,), barium nitrate (Ba(NO8)t), copper oxide (
By using the above-mentioned starting material mixture, the holes necessary for the growth of YBCO single crystals can be reliably formed in the above starting material mixture, resulting in a relatively large YBCO
Single crystals can now be obtained reliably and efficiently.

単結晶は精密な物性測定に必要であるばかりでなく、超
伝導体デバイス等の作製にも不可欠なものと考えられる
Single crystals are not only necessary for precise physical property measurements, but are also considered essential for the production of superconductor devices.

したがって、本発明は工業上有益なものである。Therefore, the present invention is industrially useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単結晶製造の温度プログラムを示す図。 (a)は加熱速度300°C/時の領域(b)は等温時
間2時間の領域 (c)は冷却速度6°C/時の領域 (d)は冷却速度300°C/時の領域をそれぞれ示し
ている 第2図及び第3図は単結晶の抵抗−温度曲線の関係を示
す図。 (e)は酸素アニール前 (f)は酸素アニール後を示している。
FIG. 1 is a diagram showing a temperature program for producing a single crystal. (a) is a heating rate of 300°C/hour (b) is an isothermal time of 2 hours (c) is a cooling rate of 6°C/hour (d) is a cooling rate of 300°C/hour FIGS. 2 and 3, respectively, are diagrams showing the relationship between the resistance-temperature curve of a single crystal. (e) shows before oxygen annealing and (f) shows after oxygen annealing.

Claims (4)

【特許請求の範囲】[Claims] 1.イットリウム、バリウム、銅、酸素からなる酸化物
超伝導体のYBa_2Cu_3O_7_−_x単結晶を
得るために、出発材料として酸化イットリウム(Y_2
O_3)、硝酸バリウム(Ba(NO_3)_2)、酸
化銅(CuO)を用いることを特徴とする酸化物超伝導
体単結晶の作製方法。
1. Yttrium oxide (Y_2
A method for producing an oxide superconductor single crystal, characterized in that it uses barium nitrate (Ba(NO_3)_2), and copper oxide (CuO).
2.特許請求の範囲第1項において、YBa_2Cu_
3O_7_−_xの化学量論的組成(すなわち、モル比
で、イットリウム:バリウム:銅=1:2:3)に比べ
、バリウムと銅が過剰になるよう出発材料を混合し、こ
の混合物を空気中もしくは酸素中1000℃〜1250
℃(望ましくは1100〜1200℃)で加熱し、その
後、毎時10℃以下の冷却速度で極めてゆっくりと80
0〜900℃まで冷却することを特徴とする酸化物超伝
導体単結晶の作製方法。
2. In claim 1, YBa_2Cu_
The starting materials are mixed with an excess of barium and copper compared to the stoichiometric composition of 3O_7_-_x (i.e., yttrium:barium:copper = 1:2:3 in molar ratio), and the mixture is heated in air. Or 1000℃~1250℃ in oxygen
°C (preferably 1100-1200 °C) and then very slowly at a cooling rate of 10 °C or less per hour to 80 °C.
A method for producing an oxide superconductor single crystal, which comprises cooling to 0 to 900°C.
3.特許請求の範囲第1項において、YBa_2Cu_
3O_7_−_xYBCOの化学量論的組成(すなわち
、モル比で、イットリウム:バリウム:銅=1:2:3
)に比べ、バリウムと銅が過剰になるよう出発材料を混
合し、この混合物を空気中もしくは酸素中1000℃〜
1250℃(望ましくは1100〜1200℃)で数時
間加熱し、その後、室温まで急冷し、さらに、再び、空
気中もしくは酸素中900〜1000℃で100時間以
上加熱することによって単結晶を成長させることを特徴
とする酸化物超伝導体単結晶の作製方法。
3. In claim 1, YBa_2Cu_
3O_7_-_xYBCO stoichiometric composition (i.e., in molar ratio, yttrium: barium: copper = 1:2:3
), the starting materials are mixed so that barium and copper are in excess compared to
Growing a single crystal by heating at 1250°C (preferably 1100 to 1200°C) for several hours, then rapidly cooling to room temperature, and heating again at 900 to 1000°C in air or oxygen for 100 hours or more. A method for producing an oxide superconductor single crystal characterized by:
4.特許請求の範囲第1項、第2項または第3項におい
て出発材料の混合比(モル比)はイットリウムを1とし
たとき、バリウムが2〜9、銅が4〜12の値をとるこ
とを特徴とする酸化物超伝導体単結晶の作製方法。
4. In claim 1, 2, or 3, the mixing ratio (molar ratio) of the starting materials is such that when yttrium is 1, barium is 2 to 9, and copper is 4 to 12. Characteristic method for producing oxide superconductor single crystals.
JP63137084A 1988-06-02 1988-06-02 Preparation of single crystal of oxide superconductor Pending JPH01305897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137084A JPH01305897A (en) 1988-06-02 1988-06-02 Preparation of single crystal of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137084A JPH01305897A (en) 1988-06-02 1988-06-02 Preparation of single crystal of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01305897A true JPH01305897A (en) 1989-12-11

Family

ID=15190515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137084A Pending JPH01305897A (en) 1988-06-02 1988-06-02 Preparation of single crystal of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01305897A (en)

Similar Documents

Publication Publication Date Title
Chen et al. 2223 phase formation in Bi (Pb)─ Sr─ C─ a─ Cu─ O: II, the role of temperature—reaction mechanism
JPH01305897A (en) Preparation of single crystal of oxide superconductor
JP2672533B2 (en) Method for producing oxide superconductor crystal
Miao et al. Phase formation and microstructure of laser floating zone grown BSCCO fibers: reactivity aspects
JPH059059A (en) Production of oxide superconductor
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JPH01226735A (en) Production of superconducting material
JP3906359B2 (en) Method for producing P-type semiconductor SrCu2O2 single crystal
JPH02275799A (en) Oxide superconductor and its production
Bhargava et al. On the stability of superconducting Y1Ba2Cu3O6+ δ in a borate glass-ceramic matrix
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPH01301590A (en) Process for producing oxide superconductive single crystal
JPH09157097A (en) Production of superconducting fibrous crystal
RU1515789C (en) Method of growing high-temperature superconducting monocrystals on base of rbq2 cu3 o7-delta
JPH04182394A (en) Production of single crystal superconductor
JPH02229787A (en) Production of oxide superconductor
JPH09255335A (en) Production of bulk-oxide superconductor
JPH03199159A (en) Production of bismuth-based superconductor
JPH03271156A (en) Production of oxide superconductor bulk
JPH02124719A (en) Production of oxide superconductor
JPH01275493A (en) Method for growing oxide superconductor single crystal
JPH01131098A (en) Production of oxide superconductor crystal
JPH01148794A (en) Production of oxide superconductor crystal
JPH01203257A (en) Production of superconductor