JPH09255335A - Production of bulk-oxide superconductor - Google Patents

Production of bulk-oxide superconductor

Info

Publication number
JPH09255335A
JPH09255335A JP8065981A JP6598196A JPH09255335A JP H09255335 A JPH09255335 A JP H09255335A JP 8065981 A JP8065981 A JP 8065981A JP 6598196 A JP6598196 A JP 6598196A JP H09255335 A JPH09255335 A JP H09255335A
Authority
JP
Japan
Prior art keywords
bulk
oxide superconductor
superconductor
atmosphere
bulk oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8065981A
Other languages
Japanese (ja)
Inventor
Tadashi Mochida
正 持田
Sounin Riyuu
相任 劉
Naomichi Sakai
直道 坂井
Masahito Murakami
雅人 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Railway Technical Research Institute
Tokyo Gas Co Ltd
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Railway Technical Research Institute
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Railway Technical Research Institute, Tokyo Gas Co Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP8065981A priority Critical patent/JPH09255335A/en
Publication of JPH09255335A publication Critical patent/JPH09255335A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an oxide superconductor having satisfactory superconducting characteristics by using an atmosphere of oxygen as an atmosphere at the time of growing a crystal when an RE-Ba-Cu-O bulky superconductor is produced by a half melting method. SOLUTION: An atmosphere of oxygen is used as an atmosphere at the time of growing a crystal of REBa2 Cu3 O7-x [(x) is the deficiency of oxygen and is 0-0.5 and RE is lanthanoids including Y] when an REBa2 Cu3 O7-x bulk superconductor is produced by a half melting method (melt processing method). A powdery material mixture is heated to 1,010-1,050 deg.C to form RE2 BaCuO5 and a liq. phase and then slow cooling to 1,000-930 deg.C is carried out at 0.1-10 deg.C/hr cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半溶融法(メルト
プロセス法)でREBa2Cu37-x(xは酸素欠損量
で0〜0.5、REはイットリウムを含むランタノイド
元素)系のバルク酸化物超電導体を製造する製造方法に
関し、特に、酸化物超電導体のバルク体を用いた磁気浮
上装置、磁気シールド、超電導バルクマグネットの製造
技術に適用して有効な技術に関するものである。
TECHNICAL FIELD The present invention relates to a REBa 2 Cu 3 O 7-x (x is an oxygen deficiency amount of 0 to 0.5, RE is a lanthanoid element containing yttrium) system by a semi-melting method (melt process method). The present invention relates to a manufacturing method for manufacturing a bulk oxide superconductor, and particularly to a technology effectively applied to a manufacturing technology of a magnetic levitation device, a magnetic shield, and a superconducting bulk magnet using a bulk body of an oxide superconductor.

【0002】[0002]

【従来の技術】特開平7−111213号公報に記載さ
れるように、溶融法でREBa2Cu37-x(xは酸素
欠損量)(以下、RE123と称する)系の超電導バル
ク体内のピンニングセンタに磁場を捕捉するバルク酸化
物超電導体を用いた超電導磁石が開示されている。
2. Description of the Related Art As described in JP-A-7-111213, in a superconducting bulk body of REBa 2 Cu 3 O 7-x (x is an oxygen deficiency amount) (hereinafter referred to as RE123) system by a melting method. A superconducting magnet using a bulk oxide superconductor for capturing a magnetic field in a pinning center is disclosed.

【0003】優れた特性を示すRE123系バルク酸化
物超電導体として、超電導相中に微細な常電導相を分散
させたバルク酸化物超電導材料は、半溶融法(メルトプ
ロセス法:Melt process法)により製造される。この
半溶融法には、MTG(Melt-Txture-Growth proces
s)法、MPMG(Melt-Powder-Melt-Growth process)
法(“Melt processed high-temperature superconducto
rs",World Scientific,Editor.Masato Murakami参
照)、OCMG(Oxygen-Controlled-Melt-Growthpro
cess)法(応用物理、第64巻、第4号、1995、p368-371参
照)などが知られている。
A bulk oxide superconducting material in which a fine normal-conducting phase is dispersed in a superconducting phase as a RE123-based bulk oxide superconducting material exhibiting excellent characteristics is obtained by a semi-melting method (melt process method). Manufactured. This semi-melting method includes MTG (Melt-Txture-Growth processes)
s) method, MPMG (Melt-Powder-Melt-Growth process)
Law (“Melt processed high-temperature superconducto
rs ", World Scientific, Editor. Masato Murakami), OCMG (Oxygen-Controlled-Melt-Growthpro)
cess) method (Applied Physics, Volume 64, No. 4, 1995, p368-371) and the like are known.

【0004】従来の半溶融法の結晶成長雰囲気は大気中
を基本とするもの(MTG法、MPMG法)、もしくは
低酸素分圧を基本とするもの(OCMG法)であった。
The crystal growth atmosphere of the conventional semi-melting method is based on the atmosphere (MTG method, MPMG method) or low oxygen partial pressure (OCMG method).

【0005】特に、後者の方法においては、純酸素中で
の半溶融法では良質の超電導体はできないとされている
(応用物理、第64巻、第4号、1995、p368-371参照)。
Particularly, in the latter method, it is said that a high-quality superconductor cannot be obtained by the semi-melting method in pure oxygen.
(See Applied Physics, Volume 64, No. 4, 1995, p368-371).

【0006】一方、低融点のYb123の合成法におい
て、酸素分圧が0.01〜0.2気圧の雰囲気中で多結晶
線材を熱処理して合成する方法(特開平6−18784
8号公報参照)、多結晶を酸素中で熱処理してYb12
3の単相を得る方法(特開昭64−14149号公報参
照)などが知られている。しかし、これらの手法は前述
のバルク酸化物超電導体を製造するものではない。
On the other hand, in a method of synthesizing Yb123 having a low melting point, a method of synthesizing a polycrystalline wire by heat-treating it in an atmosphere having an oxygen partial pressure of 0.01 to 0.2 atm (Japanese Patent Laid-Open No. 6-18784).
No. 8), the polycrystal is heat treated in oxygen, and Yb12
A method for obtaining a single phase of No. 3 (refer to Japanese Patent Laid-Open No. 64-14149) is known. However, these methods do not produce the above-mentioned bulk oxide superconductor.

【0007】[0007]

【発明が解決しようとする課題】本発明者は、前記従来
の半溶融法を検討した結果、以下の問題点を見いだし
た。
The present inventor has found the following problems as a result of examining the conventional semi-melting method.

【0008】前述した従来の半溶融法は、融点の低いR
E123のバルク超電導体(Yb123、Tm123、
Er123など)の合成には有効でなかった。実際に、
Yb123の半溶融法を実施したところ、Yb123バ
ルクは容易に成長せず、そのサイズは数百μm以下であ
った。
The above-mentioned conventional semi-melting method uses R having a low melting point.
Bulk superconductor of E123 (Yb123, Tm123,
Er123 etc.) was not effective. actually,
When the semi-melting method of Yb123 was carried out, the Yb123 bulk did not grow easily and its size was several hundreds μm or less.

【0009】結晶をよく観察したところ、Yb123と
BaCuO2が双晶の如く析出しており、両者が同時期
に析出したことを示唆していた(図5)。
When the crystals were observed carefully, Yb123 and BaCuO 2 were precipitated as twins, suggesting that both were precipitated at the same time (FIG. 5).

【0010】また、TG-DTA(Thermo Gravimetry
-Differential Thermal Analysis:熱重量測定及び
示差熱測定)による研究から、Yb123とBaCuO
2の晶出温度がそれぞれ930℃と910℃と非常に近
く、Yb123だけを優先的に成長させるには両者の晶
出温度の温度差が不十分であることが判明した。
In addition, TG-DTA (Thermo Gravimetry)
-Differential Thermal Analysis: Thermogravimetric and differential calorimetry studies show that Yb123 and BaCuO
It was found that the crystallization temperatures of 2 were very close to 930 ° C. and 910 ° C., respectively, and the temperature difference between the two crystallization temperatures was insufficient for preferentially growing only Yb123.

【0011】本発明の目的は、超電導特性のよいバルク
酸化物超電導体の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a bulk oxide superconductor having good superconducting properties.

【0012】本発明の他の目的は、強い磁場を発生する
ことができるバルク酸化物超電導体の製造方法を提供す
ることにある。
Another object of the present invention is to provide a method for manufacturing a bulk oxide superconductor which can generate a strong magnetic field.

【0013】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かにする。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0014】[0014]

【課題を解決するための手段】本願によって開示される
発明のうち代表的なものの概要を簡単に説明すれば、以
下のとおりである。
The following is a brief description of an outline of a typical invention among the inventions disclosed by the present application.

【0015】発明者は、日々の研究の結果、純酸素雰囲
気下ではYbBa2Cu37-xとBaCuO2の晶出温度
がそれぞれ980℃と940℃であり、両者の温度差が
相対的に大きく、大気中に比べて結晶成長が容易にでき
ることを発見した。
As a result of daily research, the inventor has found that the crystallization temperatures of YbBa 2 Cu 3 O 7-x and BaCuO 2 are 980 ° C. and 940 ° C., respectively, in a pure oxygen atmosphere, and the temperature difference between the two is relatively large. It has been found that the size of the crystal is large and that crystal growth is easier than in the atmosphere.

【0016】本発明は、純酸素雰囲気下で半溶融法を行
って融点の低いRE123のバルク酸化物超電導体(例
えば、Yb123、Tm123、Er123など)を合
成する製造方法である。すなわち、 (1)半溶融法(メルトプロセス法)でREBa2Cu3
7-x(xは酸素欠損量で0〜0.5、REはイットリウ
ムを含むランタノイド元素)系のバルク超電導体を製造
するバルク酸化物超電導体の製造方法であって、前記R
EBa2Cu37-xの結晶成長時の雰囲気を酸素雰囲気
としたものである。
The present invention is a manufacturing method for synthesizing a bulk oxide superconductor of RE123 having a low melting point (for example, Yb123, Tm123, Er123, etc.) by performing a semi-melting method in a pure oxygen atmosphere. That is, (1) REBa 2 Cu 3 by the semi-melting method (melt process method)
A method for producing a bulk oxide superconductor for producing an O 7-x (x is an oxygen deficiency amount of 0 to 0.5, RE is a lanthanoid element containing yttrium) -based bulk superconductor, comprising:
The atmosphere during crystal growth of EBa 2 Cu 3 O 7-x was an oxygen atmosphere.

【0017】(2)前記(1)のバルク酸化物超電導体
の製造方法において、前記REとしてYbを用いたもの
である。
(2) In the method for manufacturing a bulk oxide superconductor according to (1), Yb is used as RE.

【0018】(3)前記(1)又は(2)のバルク酸化
物超電導体の製造方法において、YbBa2Cu37-x
とYb2BaCuO5の配合比を1.0:0.0から1.
0:0.4までとしたものである。
(3) In the method for producing a bulk oxide superconductor according to (1) or (2) above, YbBa 2 Cu 3 O 7-x is used.
And Yb 2 BaCuO 5 in the mixing ratio of 1.0: 0.0 to 1.
It is set to 0: 0.4.

【0019】(4)前記(1)乃至(3)のいずれか1
つのバルク酸化物超電導体の製造方法において、材料粉
混合体を1010℃〜1050℃の温度領域に加熱して
RE2BaCuO5と液相とを形成し、しかる後に100
0℃から930℃まで徐冷するものである。
(4) Any one of (1) to (3) above
In one method for manufacturing a bulk oxide superconductor, the material powder mixture is heated to a temperature range of 1010 ° C to 1050 ° C to form RE 2 BaCuO 5 and a liquid phase, and then 100
The temperature is gradually cooled from 0 ° C to 930 ° C.

【0020】(5)前記(1)乃至(4)のいずれか1
つのバルク酸化物超電導体の製造方法において、毎時
0.1℃〜毎時10℃の徐冷速度としたものである。
(5) Any one of (1) to (4) above
In one method for manufacturing a bulk oxide superconductor, the slow cooling rate is 0.1 ° C./hour to 10 ° C./hour.

【0021】(6)前記(1)乃至(5)のいずれか1
つのバルク酸化物超電導体の製造方法において、材料粉
混合体表面に種結晶を置き、結晶成長させるものであ
る。
(6) Any one of (1) to (5) above
In one method for manufacturing a bulk oxide superconductor, a seed crystal is placed on the surface of a material powder mixture to grow crystals.

【0022】以下に本発明に係るバルク酸化物超電導体
の製造方法の処理手順を説明する。
The processing procedure of the method for producing a bulk oxide superconductor according to the present invention will be described below.

【0023】工程1(Yb123の原料粉の混合) Yb23、BaCO3、CuOを出発原料とし、この3
つの原料をモル比で1:4:6の割合で配合し、乳鉢で
よく混合する。この混合時間は原料粉が十分混ざり合う
よう自動乳鉢を使い3時間混合しYbBa2Cu37-x
(Yb123)の原料粉とする。
Step 1 (mixing of Yb123 raw material powder) Yb 2 O 3 , BaCO 3 , and CuO are used as starting materials, and these 3
The two raw materials are mixed in a molar ratio of 1: 4: 6 and mixed well in a mortar. For this mixing time, use an automatic mortar to mix the raw material powders for 3 hours, and mix with YbBa 2 Cu 3 O 7-x.
The raw material powder of (Yb123) is used.

【0024】工程2(Yb123仮焼粉の合成) 前記工程1で得られた原料粉10〜30gを20〜30
φのペレットに成形した後、大気中880℃で48時間
焼成する(1回目仮焼成)。この仮焼成後のペレットを
砕き、自動乳鉢で3時間混合し、ペレットに形成したの
ち、大気中890℃で48時間焼成する(2回目仮焼
成)。さらに、このペレットを砕き、自動乳鉢で3時間
かけて混合し、ペレットに形成した後、大気中890℃
で24時間仮焼成する(3回目仮焼成)。これらの処理
によりYb123の原料粉はYb123、Yb2BaC
uO5(以下、Yb211と称する)、BaCuO2、C
uOの4つの混合体となる。このようにして得られた粉
(ペレット)を以後Yb123の仮焼粉(ペレット)と
呼ぶ。
Step 2 (synthesis of Yb123 calcined powder) 20 to 30 g of the raw material powder obtained in the above step 1
After being formed into φ pellets, it is fired at 880 ° C. for 48 hours in the atmosphere (first temporary firing). The pellets after the calcination are crushed, mixed in an automatic mortar for 3 hours to form pellets, and then calcinated in the air at 890 ° C. for 48 hours (second calcination). Further, the pellets are crushed and mixed in an automatic mortar for 3 hours to form pellets, and then the pellets are placed in air at 890 ° C.
Calcination is performed for 24 hours (third calcination). By these treatments, the raw material powder of Yb123 is Yb123, Yb 2 BaC.
uO 5 (hereinafter referred to as Yb211), BaCuO 2 , C
It is a mixture of four uO. The powder (pellet) thus obtained is hereinafter referred to as a Yb123 calcined powder (pellet).

【0025】工程3(Yb123単相の合成) 前記工程2で得られたYb123の仮焼粉を砕き、自動
乳鉢で1時間かけて混合し、ペレットに形成した後、純
酸素雰囲気中960℃で48時間焼成する(1回目本焼
成)。自動乳鉢で混合する時間を1時間としたのは、大
気中に含まれる水分によるYb123の分解を防ぐため
である。また、純酸素雰囲気中で焼成するのはYb12
3単相を得るためである。
Step 3 (Synthesis of Yb123 Single Phase) The calcined powder of Yb123 obtained in the above Step 2 is crushed, mixed in an automatic mortar for 1 hour, and formed into pellets, and then at 960 ° C. in a pure oxygen atmosphere. Bake for 48 hours (first main firing). The mixing time in the automatic mortar was set to 1 hour in order to prevent decomposition of Yb123 due to water contained in the atmosphere. Also, firing in a pure oxygen atmosphere is Yb12.
This is to obtain 3 single phases.

【0026】前記焼成(1回目本焼成)後のペレットを
砕き、自動乳鉢で1時間かけて混合し、ペレットに形成
したのち、純酸素雰囲気中960℃で48時間焼成する
(2回目本焼成)。さらに、このペレットを砕き、自動
乳鉢で1時間かけて混合し、ペレットに形成した後、純
酸素雰囲気中960℃で24時間焼成する(3回目本焼
成)。これらの処理により前記Yb123の仮焼粉はY
b123単相となる。本工程3で得られた粉(ペレッ
ト)を以後Yb123単相粉(ペレット)と呼ぶ。
The pellets after the above firing (first firing) are crushed and mixed in an automatic mortar for 1 hour to form pellets, which are then fired in a pure oxygen atmosphere at 960 ° C. for 48 hours (second firing). . Further, the pellets are crushed and mixed in an automatic mortar for 1 hour to form pellets, which are then fired in a pure oxygen atmosphere at 960 ° C. for 24 hours (third main firing). By these treatments, the calcined powder of Yb123 becomes Y.
It becomes a single phase of b123. The powder (pellet) obtained in this step 3 is hereinafter referred to as Yb123 single-phase powder (pellet).

【0027】なお、このYb123単相粉(ペレット)
は空気中の水分によって分解しやすいため、デシケータ
中や真空パック中などにより保存する必要がある。
This Yb123 single-phase powder (pellet)
Since is easily decomposed by moisture in the air, it must be stored in a desiccator or in a vacuum pack.

【0028】工程4(Yb211原料粉の混合) Yb23、BaCO3、CuOを出発原料とし、この3
つの原料をモル比で1:1:1の割合で配合し、以後工
程1と同様の作業を経てYb211の原料粉とする。
Step 4 (Mixing of Yb211 raw material powder) Yb 2 O 3 , BaCO 3 and CuO were used as starting materials, and these 3
The two raw materials are mixed at a molar ratio of 1: 1: 1, and thereafter, the same operation as in step 1 is performed to obtain a raw material powder of Yb211.

【0029】工程5(Yb211単相の合成) 前記工程4で得られたYb211の原料粉を10〜30
gを20〜30φのペレットに成形した後、大気中88
0℃で24時間焼成する(1回目本焼成)。この焼成さ
れたペレットを砕き、自動乳鉢で3時間かけて混合し、
ペレットに形成した後、大気中890℃で24時間焼成
する(2回目本焼成)。これらの作業によりYb211
単相が得られる。
Step 5 (Synthesis of Yb211 Single Phase) The raw powder of Yb211 obtained in the above Step 4 is used in an amount of 10 to 30.
After molding g into pellets of 20 to 30φ, 88 in air
Bake at 0 ° C. for 24 hours (first main firing). Crush the baked pellets and mix in an automatic mortar for 3 hours,
After forming into pellets, it is fired in the air at 890 ° C. for 24 hours (second firing). By these operations, Yb211
A single phase is obtained.

【0030】工程6(結晶成長用ペレットの混合) このようにして得られたYb123単相とYb211単
相を用いて半溶融法用の原料を配合する。配合はモル比
で行い、Yb123:Yb211が1.0:0.0(=Y
b1.0)、1.0:0.2(=Yb1.4)、1.0:0.
4(=Yb1.8)、1.0:0.6(=Yb2.2)、
1.0:0.8(=Yb2.6)、1.0:1.0(=Yb
3.0)等の配合が考えられる。
Step 6 (Mixing of pellets for crystal growth) Using the Yb123 single phase and the Yb211 single phase thus obtained, the raw materials for the semi-melting method are blended. The compounding was performed in a molar ratio, and Yb123: Yb211 was 1.0: 0.0 (= Y
b1.0), 1.0: 0.2 (= Yb1.4), 1.0: 0.
4 (= Yb1.8), 1.0: 0.6 (= Yb2.2),
1.0: 0.8 (= Yb2.6), 1.0: 1.0 (= Yb
3.0) etc. can be considered.

【0031】それぞれはめのう製の乳鉢で1時間混合し
た後、約10gを20φの金型で一軸形成した後等方加
圧(CIP)を施し、結晶成長用のペレットとする。
After mixing in a mortar made of agate for 1 hour, about 10 g is uniaxially formed with a 20φ mold and isotropically pressurized (CIP) to give pellets for crystal growth.

【0032】工程7(種結晶) 次に、前記ペレット表面に種結晶を置く。この種結晶は
Yb123の融点より高いREBa2Cu37の単結晶
であればよいが、望ましくは最も融点の高いNdBa2
Cu37(Nd123)の単結晶がYb123に対する
汚染の心配がないため最適である。このとき種結晶の方
位は特に制限されるものではないが、ab面を接するよ
うに置くのが置き易い。
Step 7 (Seed Crystal) Next, a seed crystal is placed on the surface of the pellet. This seed crystal may be a single crystal of REBa 2 Cu 3 O 7 having a melting point higher than that of Yb123, but is preferably NdBa 2 having the highest melting point.
A single crystal of Cu 3 O 7 (Nd123) is most suitable because there is no risk of contamination with Yb123. At this time, the orientation of the seed crystal is not particularly limited, but it is easy to place it so that the ab plane is in contact.

【0033】工程8(雰囲気制御) 種結晶を置いたペレットを気密性のある環状炉中に置
き、純酸素を流通させ、純酸素雰囲気とする。このとき
の酸素純度は99%以上であればよいが、工業的に普及
している純度を用いるのが現実的であり、99.0〜9
9.9995%の純度が用いられる。流量は炉の温度制
御が可能であり、かつ、炉内の雰囲気を純酸素雰囲気に
保てる程度であれば制限は無いが、両者の兼ね合いか
ら、望ましくは300cc/分(min)程度がよい。
Step 8 (Control of Atmosphere) The pellet on which the seed crystal is placed is placed in an airtight annular furnace, and pure oxygen is circulated to obtain a pure oxygen atmosphere. The oxygen purity at this time may be 99% or more, but it is realistic to use the industrially-preferred purity.
A purity of 9.9995% is used. The flow rate is not limited as long as the temperature of the furnace can be controlled and the atmosphere in the furnace can be maintained as a pure oxygen atmosphere, but from the balance of both, it is preferably about 300 cc / min (min).

【0034】なお、炉が対応できる範囲で酸素分圧を大
気圧以上とする方法も可能である。このとき10気圧以
上とすると、炉の設計を大幅に変更することになるの
で、1〜10atmの条件での合成が可能である。
It is also possible to use a method in which the oxygen partial pressure is higher than atmospheric pressure within a range that the furnace can handle. At this time, if the pressure is 10 atm or more, the design of the furnace is significantly changed, so that the synthesis can be performed under the condition of 1 to 10 atm.

【0035】工程9(結晶成長) 半溶融法による結晶成長の温度パターンを以下に示す。
なお、以下に示す結晶成長は、純酸素流通下で行う。
Step 9 (Crystal Growth) The temperature pattern of crystal growth by the semi-melting method is shown below.
The crystal growth shown below is performed under pure oxygen flow.

【0036】まず、900℃まで300℃/h(時間)
で昇温し、ついでYb211相+液相となる温度領域
(980〜1050℃)までは100℃/hで昇温す
る。ただし、Yb123が分解して液相が出始める温度
(980℃)までの昇温速度は特に制限されるものでは
なく、ペレットが割れや発泡を起こさない程度であれ
ば、これより速く昇温させてもよい。
First, up to 900 ° C., 300 ° C./h (hour)
Then, the temperature is raised at 100 ° C./h until the temperature range (980 to 1050 ° C.) in which the Yb211 phase + liquid phase is reached. However, the temperature rising rate up to the temperature (980 ° C.) at which Yb123 decomposes and the liquid phase begins to appear is not particularly limited, and if the pellet does not crack or foam, the temperature is raised faster than this. May be.

【0037】また、逆に液相が出始める温度の数℃〜2
0℃低い温度で1〜24時間保持し、ペレットの密度を
上げることも可能である。なお、液相が出始める温度以
上での昇温速度が前記以下であると、Yb211相の粗
大化や液相の流失等により結晶成長に支障をきたすおそ
れがある。
On the contrary, the temperature at which the liquid phase begins to emerge is several degrees Celsius to 2
It is also possible to increase the density of pellets by holding at a temperature of 0 ° C. lower for 1 to 24 hours. If the rate of temperature increase above the temperature at which the liquid phase begins to appear is lower than the above, crystal growth may be hindered due to coarsening of the Yb211 phase, flow-out of the liquid phase, and the like.

【0038】次に、Yb211相+液相となる温度領域
に10〜60分(min)保持する。これはペレットに
含まれる原料を完全にYb211+液相とするためであ
る。つまり、次の数1の式に示す反応を完了するためで
ある。
Next, the temperature range of Yb211 phase + liquid phase is maintained for 10 to 60 minutes (min). This is because the raw material contained in the pellets is completely Yb211 + liquid phase. That is, the reason is to complete the reaction represented by the following formula (1).

【0039】[0039]

【数1】YbBa2Cu37(固相)→Yb2BaCuO
5(固相)+BaCuO2(液相)+CuO(液相) このときの保持時間が短すぎると、前記反応が不完全と
なる。また、長すぎると、Yb211相の粗大化や液相
の流失等により結晶成長に支障をきたすおそれがある。
[Formula 1] YbBa 2 Cu 3 O 7 (solid phase) → Yb 2 BaCuO
5 (solid phase) + BaCuO 2 (liquid phase) + CuO (liquid phase) If the holding time at this time is too short, the above reaction becomes incomplete. On the other hand, if it is too long, crystal growth may be hindered due to coarsening of the Yb211 phase, loss of the liquid phase, and the like.

【0040】ペレットがYb211相+液相となった
後、結晶成長を開始させる温度(1000℃)まで冷却
速度は炉が過冷却を起こさない範囲内であれば速いほど
よい。このときの冷却速度が遅いとYb211相の粗大
化や液相の流失等を起こすおそれがある。望ましくは1
00℃/h程度である。
After the pellet becomes the Yb211 phase + liquid phase, the cooling rate is preferably as high as possible within the range where the furnace does not undergo supercooling up to the temperature (1000 ° C.) at which crystal growth is started. If the cooling rate at this time is slow, the Yb211 phase may become coarse and the liquid phase may be washed away. Preferably 1
It is about 00 ° C / h.

【0041】そして、結晶成長は1000℃から930
℃までの範囲で徐冷する。これはYb123の晶出温度
(980℃)とBaCuO2の晶出温度(940℃)に
安全のための温度マージンを上乗せしたためである。冷
却速度は10〜0.1℃/hである。この徐冷速度は1
0℃/hより遅い程よいが、0.1℃/h以下では時間
がかかりすぎて非現実的である。
Crystal growth is from 1000 ° C. to 930
Slowly cool down to ℃. This is because a temperature margin for safety was added to the crystallization temperature of Yb123 (980 ° C.) and the crystallization temperature of BaCuO 2 (940 ° C.). The cooling rate is 10 to 0.1 ° C./h. This slow cooling rate is 1
It is better to be slower than 0 ° C / h, but it is unrealistic at 0.1 ° C / h or less because it takes too much time.

【0042】最後に、930〜900℃では10℃/
h、900℃から室温までは炉冷で冷却する。なお、炉
が室温まで冷えるまで純酸素は流し続ける。
Finally, at 930 to 900 ° C, 10 ° C /
h, cooling from 900 ° C. to room temperature by furnace cooling. In addition, pure oxygen continues to flow until the furnace cools to room temperature.

【0043】前記のプロセスにより、種結晶の下にYb
123バルク超電導体が成長する。このサイズは合成条
件により異なるが、おおよそ3×3×0.5mm程度で
ある。
According to the above process, Yb is formed under the seed crystal.
123 bulk superconductor grows. This size is about 3 × 3 × 0.5 mm, though it varies depending on the synthesis conditions.

【0044】工程10(Yb123バルク超電導体の切
り出し) 合成されたYb123バルク超電導体は、ワイヤーソー
等で所定のサイズに切り出す。
Step 10 (Cutting of Yb123 Bulk Superconductor) The synthesized Yb123 bulk superconductor is cut into a predetermined size with a wire saw or the like.

【0045】工程11(酸素アニール) 前記工程10で切り出したYb123バルク超電導体
は、純酸素気流中(300cc/min)で300℃、
48時間保持し、酸素アニールを行った。なお、この酸
素アニールは前記工程9の室温冷却過程において施すこ
とも可能である。
Step 11 (oxygen anneal) The Yb123 bulk superconductor cut out in the step 10 is 300 ° C. in a pure oxygen stream (300 cc / min).
After holding for 48 hours, oxygen annealing was performed. It should be noted that this oxygen annealing can be performed in the room temperature cooling process of the step 9.

【0046】以上の説明からわかるように、本発明のバ
ルク酸化物超電導体の製造方法によれば、微細なRE2
11相が分散した臨界電流密度の高いRE123バルク
超電導体を合成することができる。
As can be seen from the above description, according to the method for manufacturing a bulk oxide superconductor of the present invention, fine RE2
It is possible to synthesize an RE123 bulk superconductor in which 11 phases are dispersed and which has a high critical current density.

【0047】[0047]

【発明の実施の形態】以下、本発明についてその実施形
態(実施例)とともに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below along with its embodiments (examples).

【0048】(実施形態1)前述の工程1〜6を経て合
成したYb123及びYb211を用い、モル比でYb
123:Yb211を1.0:0.4の割合で配合した原
料(=Yb1.8Ba2.4Cu3.49(以下、Yb1.8と
称する)10gを用いて、工程7の処理を経て10mm
φの結晶成長用ペレットを形成した。このペレット表面
にはNd123の単結晶を置いて種結晶とした。
(Embodiment 1) Yb123 and Yb211 synthesized through the above steps 1 to 6 were used, and Yb was used in a molar ratio.
123: Yb211 1.0:... Raw materials blended at a ratio of 0.4 (= Yb 1 8 Ba 2 4 Cu 3 4 O 9 ( hereinafter, referred to as Yb1.8) with 10 g, of Step 7 10mm after processing
A φ crystal growth pellet was formed. A single crystal of Nd123 was placed on the surface of this pellet to form a seed crystal.

【0049】ペレットを炉に配置した後、99.9%の
純酸素を300cc/minの流量で流して純酸素雰囲
気とした。雰囲気圧力は大気圧より若干高め(20mm
2O)とした。結晶成長の温度パターンは以下に示す
ようにした。
After placing the pellets in the furnace, 99.9% pure oxygen was flowed at a flow rate of 300 cc / min to create a pure oxygen atmosphere. Atmospheric pressure is slightly higher than atmospheric pressure (20 mm
H 2 O). The temperature pattern of crystal growth was as shown below.

【0050】まず、900℃までは300℃/h、90
0〜1030℃までは100℃/hで昇温した。103
0℃で30分(min)保持してYb211+液相の状
態にした。次に、1030〜1010℃までは60℃/
hで1010〜1000℃までは20℃/hで冷却し
た。次に、1000〜930℃までを1℃/hで徐冷し
て結晶成長させた。続いて930〜900℃までは10
℃/h、900℃からは炉冷で冷却した。
First, up to 900 ° C., 300 ° C./h, 90
The temperature was raised at 100 ° C / h from 0 to 1030 ° C. 103
It was kept at 0 ° C. for 30 minutes (min) to be in a state of Yb211 + liquid phase. Next, 60 ° C / up to 1030-1010 ° C
It cooled at 20 degreeC / h to 1010-1000 degreeC by h. Next, the crystal was grown by gradually cooling from 1000 to 930 ° C. at 1 ° C./h. Then 10 up to 930-900 ℃
After 900 ° C./h and 900 ° C., the furnace was cooled.

【0051】以上の処理により、種結晶の下に3×3×
0.5mm大のYb123バルク超電導体が成長した。
また、走査型電子顕微鏡(SEM)の観察から、Yb1
23相中に1〜10μmのYb211相が分散している
ことが確認された(図1:走査型電子顕微鏡(SEM)
写真の概要をトレースした模式図)。
By the above processing, 3 × 3 × is formed under the seed crystal.
A 0.5 mm-sized Yb123 bulk superconductor grew.
In addition, from the observation with a scanning electron microscope (SEM), Yb1
It was confirmed that 1 to 10 μm of Yb211 phase was dispersed in 23 phases (FIG. 1: Scanning electron microscope (SEM)).
(A schematic diagram tracing the outline of the photograph).

【0052】前記成長したYb123バルク超電導体を
1.0×3.0×0.3mm大に切り出し、酸素アニール
(300℃で48時間)を施した。
The grown Yb123 bulk superconductor was cut into a size of 1.0 × 3.0 × 0.3 mm and subjected to oxygen annealing (300 ° C. for 48 hours).

【0053】以上のようにして得られた超電導体の特性
をSQUID(超電導量子干渉計)磁力計で評価したと
ころ、Tc(ゼロ抵抗開始温度)が91.5Kであり(図
2,図3)、臨界電流密度は77k、0テスラ(T)
(外部磁場がない場合)で50000A/cm2、1テ
スラ(T)で10000A/cm2の高い値を示した
(図4)。
When the characteristics of the superconductor obtained as described above were evaluated by a SQUID (superconducting quantum interferometer) magnetometer, Tc (zero resistance starting temperature) was 91.5K (FIGS. 2 and 3). , Critical current density is 77k, 0 Tesla (T)
It showed high values of 50,000 A / cm 2 (without external magnetic field) and 10,000 A / cm 2 at 1 Tesla (T) (FIG. 4).

【0054】(実施形態2)前述の工程1〜6を経て合
成したYb123及びYb211を用い、モル比でYb
123:Yb211を1.0:0.2の割合で配合した原
料(=Yb1.4Ba2.2Cu3.28.0、以下、Yb1.4
と称する)10gを用いて、工程7の処理を経て10m
mφの結晶成長用ペレットを形成した。このペレットを
用いて前記実施形態1と同様の工程で結晶成長を行った
結果、種結晶の下に2.5×2.5×0.5mmのYb1
23バルク超電導体が成長した。
(Embodiment 2) Yb123 and Yb211 synthesized through the above steps 1 to 6 were used, and Yb was used in a molar ratio.
123: Yb211 1.0:.... Raw materials blended at a ratio of 0.2 (= Yb 1 4 Ba 2 2 Cu 3 2 O 8 0, below, Yb1.4
10g through 10g after using the process of step 7
A pellet for crystal growth of mφ was formed. As a result of crystal growth using the pellets in the same process as in the first embodiment, Yb1 of 2.5 × 2.5 × 0.5 mm is formed under the seed crystal.
23 bulk superconductors have grown.

【0055】(比較形態1)前述の工程1〜6を経て合
成したYb123及びYb211を用い、モル比でYb
123:Yb211を1.0:0.4の割合で配合したY
b1.8を10g用いて、工程7の処理を経て10mm
φの結晶成長用ペレットを形成した。このペレット表面
にはNd123の単結晶を置いて種結晶とした。
(Comparative Example 1) Yb123 and Yb211 synthesized through the above steps 1 to 6 were used, and Yb was used in a molar ratio.
Y: 123: Yb211 mixed in a ratio of 1.0: 0.4
Using 10g of b1.8, 10mm after step 7
A φ crystal growth pellet was formed. A single crystal of Nd123 was placed on the surface of this pellet to form a seed crystal.

【0056】ペレットを前記実施形態1との比較のた
め、大気中で結晶成長を試みた。ただし、大気中ではY
b123及びBaCuO2の晶出温度はそれぞれ930
℃、910℃に低下する。そのためYb211+液相の
状態にする温度を980℃、結晶成長のための徐冷温度
範囲を950〜900℃、1℃/hとした。それ以外の
工程及びパラメータは実施形態1に準じて行った。その
結果、Yb123バルク超電導体の成長は起こらなっ
た。
For comparison of the pellet with the first embodiment, crystal growth was tried in the atmosphere. However, in the atmosphere Y
The crystallization temperatures of b123 and BaCuO 2 are 930, respectively.
And 910 ° C. Therefore, the temperature of Yb211 + liquid phase was set to 980 ° C, and the slow cooling temperature range for crystal growth was set to 950 to 900 ° C and 1 ° C / h. Other steps and parameters were performed according to the first embodiment. As a result, the growth of the Yb123 bulk superconductor did not occur.

【0057】すなわち、空気中でYb123バルクの成
長を試みたときの微細構造は、図5のようになる。これ
は、Yb123とBaCuO2の晶出温度が近いため、
両者が成長する。そのため反応しきれないYb2BaC
uO5(Yb211)相とCuO相も析出する(数
2)。
That is, the fine structure of the Yb123 bulk growth attempted in air is as shown in FIG. This is because the crystallization temperatures of Yb123 and BaCuO 2 are close to each other,
Both grow. Therefore, Yb 2 BaC that cannot react completely
The uO 5 (Yb211) phase and the CuO phase also precipitate (Equation 2).

【0058】[0058]

【数2】Yb2BaCuO5(固相)+BaCuO2(液
相)+CuO(液相)→Yb2BaCuO5(固相)+Y
bBa2Cu37-x(固相)+BaCuO2(固相)+C
uO(固相) これに対して、本実施形態1のように純酸素雰囲気中で
Yb123バルクの成長を試みたときの微細構造は、図
1のようになる。これは、Yb123とBaCuO2
晶出温度差が大きくなるので、Yb123を優先的に成
長するからである。すなわち、数3の式で示す包晶反応
が進み、Yb123中にYb211が微細に分散したバ
ルク超導体ができる。
[Formula 2] Yb 2 BaCuO 5 (solid phase) + BaCuO 2 (liquid phase) + CuO (liquid phase) → Yb 2 BaCuO 5 (solid phase) + Y
bBa 2 Cu 3 O 7-x (solid phase) + BaCuO 2 (solid phase) + C
uO (solid phase) On the other hand, the microstructure when attempting to grow the Yb123 bulk in the pure oxygen atmosphere as in Embodiment 1 is as shown in FIG. This is because the crystallization temperature difference between Yb123 and BaCuO 2 becomes large, so that Yb123 is preferentially grown. That is, the peritectic reaction represented by the equation of Formula 3 proceeds, and a bulk superconductor in which Yb211 is finely dispersed in Yb123 is formed.

【0059】[0059]

【数3】Yb2BaCuO5(固相)+BaCuO2(液
相)+CuO(液相)→YbBa2Cu37-x(固相) (比較形態2)前述の工程1〜6を経て合成したYb1
23及びYb211を用い、モル比でYb123:Yb
211を1.0:0.4の割合で配合したYb1.8を1
0g用いて、工程7の処理を経て10mmφの結晶成長
用ペレットを形成した。
[Formula 3] Yb 2 BaCuO 5 (solid phase) + BaCuO 2 (liquid phase) + CuO (liquid phase) → YbBa 2 Cu 3 O 7-x (solid phase) (Comparative form 2) Synthesized through steps 1 to 6 described above. Yb1
23 and Yb211 in a molar ratio of Yb123: Yb
Yb1.8 containing 211 in a ratio of 1.0: 0.4 is 1
0 g was used to go through the treatment of step 7 to form a 10 mmφ crystal growth pellet.

【0060】前記実施形態1との比較のため、種結晶を
置かずに結晶成長を試みた。その結果、ペレット表面付
近に0.4×0.4×0.05mm程度のYb123バル
ク超電導体が成長したが、実施形態1に見られるような
大きさの結晶は見られなかった。
For comparison with the first embodiment, a crystal growth was tried without placing a seed crystal. As a result, a Yb123 bulk superconductor having a size of about 0.4 × 0.4 × 0.05 mm grew near the surface of the pellet, but no crystal having the size as in Embodiment 1 was observed.

【0061】(実施形態3)前述した実施形態1,2に
準じてRE123の量を変えた場合やREをTm、E
r、Hoに変えた場合のRE123系バルク酸化物超電
導体の結晶成長を試みた。その結果、1.0×1.0×
0.1mm大以上の結果の成否を以下の表1に示す。
(Embodiment 3) When the amount of RE 123 is changed in accordance with Embodiments 1 and 2 described above, or when RE is Tm, E
An attempt was made to grow crystals of the RE123-based bulk oxide superconductor when changing to r and Ho. As a result, 1.0 x 1.0 x
The success or failure of the results of 0.1 mm or more is shown in Table 1 below.

【0062】[0062]

【表1】 [Table 1]

【0063】以上、本発明者がなされた発明を実施形態
(実施例)に基づき具体的に説明したが、本発明は、前
記実施形態(実施例)に限定されるものではなく、その
要旨を逸脱しない範囲において種々変更し得ることはい
うまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments (examples), the present invention is not limited to the above-mentioned embodiments (examples), and its gist is not limited. It goes without saying that various changes can be made without departing from the scope.

【0064】[0064]

【発明の効果】本願によって開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、以
下のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0065】(1)BaCuO2がRE123の結晶成
長を阻害することなく、微細なRE211相が分散した
臨界電流密度の高いRE123バルク超電導体を合成す
ることができる。
(1) It is possible to synthesize an RE123 bulk superconductor having a high critical current density in which fine RE211 phases are dispersed without BaCuO 2 inhibiting the crystal growth of RE123.

【0066】(2)RE123バルクの結晶成長が10
00℃以下の低温でも可能である。
(2) Crystal growth of RE123 bulk is 10
It is possible even at a low temperature of 00 ° C or less.

【0067】(3)前記(1)及び(2)により、超電
導特性のよい強い磁場を得るバルク超電導体を製造する
ことができる。
(3) According to the above (1) and (2), it is possible to manufacture a bulk superconductor having a superconducting characteristic and a strong magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態1のバルク酸化物超電導体の
走査型電子顕微鏡(SEM)写真の概略構成をトレース
した図である。
FIG. 1 is a diagram tracing a schematic configuration of a scanning electron microscope (SEM) photograph of a bulk oxide superconductor according to a first embodiment of the present invention.

【図2】本実施形態1のバルク酸化物超電導体の磁化温
度特性を示す図である。
FIG. 2 is a diagram showing magnetization temperature characteristics of the bulk oxide superconductor according to the first embodiment.

【図3】図2の要部の拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2;

【図4】本実施形態1のバルク酸化物超電導体の臨界電
流密度を示す図である。
FIG. 4 is a diagram showing the critical current density of the bulk oxide superconductor of the first embodiment.

【図5】従来のバルク酸化物超電導体の走査型電子顕微
鏡(SEM)写真の概要構成をトレースした図である。
FIG. 5 is a diagram tracing a schematic configuration of a scanning electron microscope (SEM) photograph of a conventional bulk oxide superconductor.

【符号の説明】[Explanation of symbols]

1…Yb123、2…Yb211、3…BaCuO2
4…CuO。
1 ... Yb123, 2 ... Yb211, 3 ... BaCuO 2 ,
4 ... CuO.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 持田 正 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 劉 相任 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 坂井 直道 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 村上 雅人 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Mochida 1-14-3 Shinonome, Koto-ku, Tokyo Inside the Institute for Superconductivity Engineering, International Superconductivity Research Center (72) Inventor Liu, Koto-ku, Tokyo 1-14-3 Shinonome International Superconductivity Industrial Technology Research Center Superconductivity Engineering Laboratory (72) Inventor Naomichi Sakai 1-14-3 Shinonome Koto-ku Tokyo Metropolitan Superconductivity Engineering Research Center Superconductivity Engineering Research In-house (72) Inventor Masato Murakami 1-14-3 Shinonome, Koto-ku, Tokyo International Superconducting Industrial Technology Research Center Superconducting Engineering Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半溶融法(メルトプロセス法)でREB
2Cu37-x(xは酸素欠損量で0〜0.5、REはイ
ットリウムを含むランタノイド元素)系のバルク超電導
体を製造するバルク酸化物超電導体の製造方法であっ
て、前記REBa2Cu37-xの結晶成長時の雰囲気を
酸素雰囲気としたことを特徴とするバルク酸化物超電導
体の製造方法。
1. REB by a semi-melting method (melt process method)
A method for producing a bulk oxide superconductor for producing an a 2 Cu 3 O 7-x (x is an oxygen deficiency amount of 0 to 0.5, RE is a lanthanoid element containing yttrium) -based bulk superconductor, comprising: A method for producing a bulk oxide superconductor, characterized in that an oxygen atmosphere is used as an atmosphere during crystal growth of REBa 2 Cu 3 O 7-x .
【請求項2】 請求項1に記載されるバルク酸化物超電
導体の製造方法において、前記REとしてYbを用いた
ことを特徴とするバルク酸化物超電導体の製造方法。
2. The method for manufacturing a bulk oxide superconductor according to claim 1, wherein Yb is used as the RE.
【請求項3】 請求項1又は2に記載されるバルク酸化
物超電導体の製造方法において、YbBa2Cu37-x
とYb2BaCuO5の配合比を1.0:0.0から1.
0:0.4までとしたことを特徴とするバルク酸化物超
電導体の製造方法。
3. The method for producing a bulk oxide superconductor according to claim 1, wherein YbBa 2 Cu 3 O 7-x is used.
And Yb 2 BaCuO 5 in the mixing ratio of 1.0: 0.0 to 1.
A method for producing a bulk oxide superconductor, characterized in that it is set to 0: 0.4.
【請求項4】 請求項1乃至3のいずれか1項に記載さ
れるバルク酸化物超電導体の製造方法において、材料粉
混合体を1010℃〜1050℃の温度領域に加熱して
RE2BaCuO5と液相とを形成し、しかる後に100
0℃から930℃まで徐冷することを特徴とするバルク
酸化物超電導体の製造方法。
4. The method for manufacturing a bulk oxide superconductor according to claim 1, wherein the raw material powder mixture is heated to a temperature range of 1010 ° C. to 1050 ° C. and RE 2 BaCuO 5 is added. And a liquid phase are formed, and then 100
A method for producing a bulk oxide superconductor, which comprises gradually cooling from 0 ° C to 930 ° C.
【請求項5】 請求項1乃至4のいずれか1項に記載さ
れるバルク酸化物超電導体の製造方法において、毎時
0.1℃〜毎時10℃の徐冷速度としたことを特徴とす
るバルク酸化物超電導体の製造方法。
5. The bulk oxide superconductor manufacturing method according to claim 1, wherein the slow cooling rate is 0.1 ° C./hour to 10 ° C./hour. Manufacturing method of oxide superconductor.
【請求項6】 請求項1乃至5のいずれか1項に記載さ
れるバルク酸化物超電導体の製造方法において、材料粉
混合体表面に種結晶を置き、結晶成長させることを特徴
とするバルク酸化物超電導体の製造方法。
6. The bulk oxidation method according to claim 1, wherein a seed crystal is placed on the surface of the material powder mixture and the crystal is grown. Method for manufacturing superconductors.
JP8065981A 1996-03-22 1996-03-22 Production of bulk-oxide superconductor Pending JPH09255335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8065981A JPH09255335A (en) 1996-03-22 1996-03-22 Production of bulk-oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8065981A JPH09255335A (en) 1996-03-22 1996-03-22 Production of bulk-oxide superconductor

Publications (1)

Publication Number Publication Date
JPH09255335A true JPH09255335A (en) 1997-09-30

Family

ID=13302702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8065981A Pending JPH09255335A (en) 1996-03-22 1996-03-22 Production of bulk-oxide superconductor

Country Status (1)

Country Link
JP (1) JPH09255335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065303A1 (en) * 2003-01-23 2004-08-05 International Superconductivity Technology Center, The Juridical Foundation Process for producing oxide superconductor, oxide superconductor and substrate for supporting precursor thereof
JP2013136815A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Target for laser abrasion, method for manufacturing oxide superconductive wire material using the same, and oxide superconductive wire material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065303A1 (en) * 2003-01-23 2004-08-05 International Superconductivity Technology Center, The Juridical Foundation Process for producing oxide superconductor, oxide superconductor and substrate for supporting precursor thereof
US7718573B2 (en) 2003-01-23 2010-05-18 Origin Electric Company, Ltd Method for producing oxide superconductor, oxide superconductor and substrate material for supporting precursor of the same
JP2013136815A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Target for laser abrasion, method for manufacturing oxide superconductive wire material using the same, and oxide superconductive wire material

Similar Documents

Publication Publication Date Title
Marinel et al. Effect of and doping on the microstructure and superconducting properties of melt textured zone
Bloom et al. Solid state synthesis of Bi2Sr2CaCu2Ox superconductor
Holloway et al. Texture development due to preferential grain growth of Ho–Ba–Cu–O in 1.6-T magnetic field
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
JPH09255335A (en) Production of bulk-oxide superconductor
Nagaya et al. Rapid solidification of high-T/sub c/oxide superconductors by a laser zone melting method
Shieh et al. Low-temperature synthesis of YBa2Cu3O7− x powders from citrate and nitrate precursors
Xu et al. A new seeding approach to the melt texture growth of a large YBCO single domain with diameter above 53 mm
JP3989167B2 (en) Method for producing single crystal oxide thin film
Dembinsky et al. YBa2Cu3O7− x single-crystal growth by a new “Y2O3 consumable crucible” technique
JP3155333B2 (en) Method for producing oxide superconductor having high critical current density
Nakanishi et al. Effect of growth temperature on properties of bulk GdBa2Cu3Oy superconductors grown by IG process
Dimesso et al. Preparation and characterization of NdBa2Cu3Oy thick films in the Nd Ba Cu O system
Babu et al. Large single grain (RE)-Ba-Cu-O superconductors with nano-phase inclusions
Macho et al. Synthesis of high phase pure cuprate superconductors via xerogel precursors
Alamgir et al. Effects of Pb doping on the microstructure and superconductivity of bulk BSCCO 2212
Golden et al. The formation of YBa2Cu3O7− x in melt-texture heat treatments
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP2875684B2 (en) Method for producing coarse crystals of RE-based superconducting oxide
Lee et al. Effects of Melt Chemistry and Platinum Doping in the Refinement of Y2 Ba1Cu1Oy Particles for the System Y‐Ba‐Cu‐O
Reddy et al. Melt processing of Ba2CuO3: Textured precursor for the fabrication of HgBa2CuOy superconductor
Raina et al. Phase analysis of BiCaSrCuO superconducting films at different growth temperatures from KCl supercooled solutions
JP3159764B2 (en) Manufacturing method of rare earth superconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403