JP2875684B2 - Method for producing coarse crystals of RE-based superconducting oxide - Google Patents

Method for producing coarse crystals of RE-based superconducting oxide

Info

Publication number
JP2875684B2
JP2875684B2 JP4161202A JP16120292A JP2875684B2 JP 2875684 B2 JP2875684 B2 JP 2875684B2 JP 4161202 A JP4161202 A JP 4161202A JP 16120292 A JP16120292 A JP 16120292A JP 2875684 B2 JP2875684 B2 JP 2875684B2
Authority
JP
Japan
Prior art keywords
phase
crystal
precursor
based superconducting
superconducting oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4161202A
Other languages
Japanese (ja)
Other versions
JPH061697A (en
Inventor
輝郎 和泉
敢視 大津
容士 山田
雄一 中村
健吾 石毛
融 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
IHI Corp
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Railway Technical Research Institute
IHI Corp
Kawasaki Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Railway Technical Research Institute, IHI Corp, Kawasaki Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4161202A priority Critical patent/JP2875684B2/en
Publication of JPH061697A publication Critical patent/JPH061697A/en
Application granted granted Critical
Publication of JP2875684B2 publication Critical patent/JP2875684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、RE系超電導酸化
物、例えば Y-Ba-Cu-O系超電導物質の粗大結晶を製造す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a RE-based superconducting oxide, for example, a coarse crystal of a Y-Ba-Cu-O-based superconducting material.

【0002】[0002]

【従来の技術】RE系超電導酸化物においては、結晶粒
界が超電導電流を妨げるため、実用化に必要な高特性超
電導体の作製のためには結晶粒ができるだけ粗大である
ことが必要とされる。
2. Description of the Related Art In RE-based superconducting oxides, crystal grains are required to be as coarse as possible in order to produce a high-performance superconductor required for practical use, because crystal grain boundaries impede superconducting current. You.

【0003】Y系酸化物超電導物質を例にすれば、従来
その粗大結晶作製のために、次の〜からなるプロセ
スが採られていた。なお、図4は Y-Ba-Cu-O系の状態図
の一部であり、図示のYBa2Cu3Oy が超電導性を示すもの
で、これを 123相と呼ぶ。
[0003] Taking a Y-based oxide superconducting material as an example, the following process has conventionally been employed for producing a coarse crystal. Note that FIG. 4 is a part of a phase diagram of the Y—Ba—Cu—O system, in which YBa 2 Cu 3 O y shown shows superconductivity and is called a 123 phase.

【0004】 原料(Y2O3、BaCO3 、CuO)をY:Ba:
Cuの比がおよそ1:2:3となるように配合し、空気中
で仮焼する。
The raw materials (Y 2 O 3 , BaCO 3 , CuO) are converted to Y: Ba:
It is blended so that the ratio of Cu is about 1: 2: 3, and calcined in the air.

【0005】 得られた仮焼粉末を Y2O3 と液相の共
存域(図4の (イ)の点)に加熱し半溶融状態とする。
The obtained calcined powder is heated to a coexistence region of Y 2 O 3 and a liquid phase (point (a) in FIG. 4) to be in a semi-molten state.

【0006】 半溶融状態から急冷し、 Y2O3 が析出
した組織にする。
[0006] The alloy is rapidly cooled from a semi-molten state to a structure in which Y 2 O 3 is precipitated.

【0007】 粉砕して粉末 (前駆体という) を作
る。
[0007] Pulverization produces a powder (called a precursor).

【0008】 上記の前駆体を成形し、一旦Y2BaCuO5
(211 相と呼ばれる非超電導相) と液相の共存域(図4
の (ロ)の点)まで急速加熱し、次いで徐冷して結晶を粗
大に成長させる。
[0008] The above precursor is molded, and once Y 2 BaCuO 5
(The non-superconducting phase called the 211 phase) and the liquid phase (Fig. 4
(B) point), and then slowly cooled to grow the crystal coarsely.

【0009】上記のような工程を経ていたのは、123 相
の結晶中に 211相を微細に分散させるためであるが、こ
のプロセスでは前駆体を得るまでに上記のからまで
の4工程が必要である。
The reason for passing through the above steps is to finely disperse the 211 phase in the crystals of the 123 phase. In this process, the above four steps are necessary until the precursor is obtained. It is.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、RE
系超電導酸化物の粗大結晶を製造するに際し、その予備
工程である前駆体の製造工程を簡素化することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an
An object of the present invention is to simplify a precursor manufacturing process which is a preliminary process when manufacturing a coarse crystal of a system superconducting oxide.

【0011】[0011]

【課題を解決するための手段】本発明は、下記の工程か
らなるRE系超電導酸化物の粗大結晶の製造方法を要旨
とする。
The gist of the present invention is to provide a method for producing coarse crystals of RE-based superconducting oxide comprising the following steps.

【0012】(1) 原料を所定の組成になるように配合
し、酸素分圧が10-3Torr. 以下の低酸素分圧雰囲気下で
800〜1000℃の温度で1時間以上加熱して仮焼する。
(1) The raw materials are blended so as to have a predetermined composition, and in a low oxygen partial pressure atmosphere having an oxygen partial pressure of 10 −3 Torr or less.
Heat at a temperature of 800 to 1000 ° C for 1 hour or more and calcine.

【0013】(2) 仮焼物を粉砕し、前駆体とする。(2) The calcined product is pulverized into a precursor.

【0014】(3) 上記の前駆体を成形し、一旦 211相と
液相の共存域まで急速加熱し、次いで徐冷して結晶を粗
大に成長させる。
(3) The above precursor is molded, heated rapidly to the coexistence region of the 211 phase and the liquid phase, and then gradually cooled to grow the crystal coarsely.

【0015】[0015]

【作用】上記のように本発明方法では、仮焼を酸素分圧
が10-3Torr. 以下の雰囲気、即ち、酸素分圧の著しく低
い雰囲気で行う。これによって、前駆体中の 123相の生
成を防ぐことが可能になり、その生成物は主に 211相と
BaCu2O2 から成るものとなる。
As described above, in the method of the present invention, the calcination is performed in an atmosphere having an oxygen partial pressure of 10 −3 Torr or less, that is, an atmosphere having an extremely low oxygen partial pressure. This makes it possible to prevent the formation of the 123 phase in the precursor and the product is mainly composed of the 211 phase
It consists of BaCu 2 O 2 .

【0016】仮焼の雰囲気を酸素分圧が10-3Torr. 以下
の雰囲気とするのは、これよりも酸素分圧が高いと仮焼
中に粗大な 123相の結晶が生成してしまい、その後の半
溶融処理の工程で 123相が 211相と液相とに分解しきれ
ずに残存して徐冷中に核として働き、最終組織の 123相
が微細になってしまうからである。また、仮焼の温度を
800〜1000℃とするのは、800 ℃よりも低温での仮焼で
は 123相が生成してしまい、1000℃よりも高温では半溶
融状態になってしまうからである。
The reason why the calcining atmosphere is an atmosphere having an oxygen partial pressure of 10 −3 Torr. Or less is that if the oxygen partial pressure is higher than this, coarse 123 phase crystals are generated during the calcining, This is because in the subsequent semi-solid treatment step, the 123 phase remains without being completely decomposed into the 211 phase and the liquid phase and acts as a nucleus during slow cooling, and the 123 phase of the final structure becomes fine. Also, the temperature of calcination
The reason for setting the temperature to 800 to 1000 ° C. is that calcination at a temperature lower than 800 ° C. results in the formation of a 123 phase, and a temperature higher than 1000 ° C. results in a semi-molten state.

【0017】(3)の結晶粒を粗大に成長させる工程は、
従来の工程 (前記の工程) と実質的に変わりはない。
この工程では、溶質の拡散が容易な半溶融状態から徐冷
することにによって、結晶を成長させて粗大化させる。
The step (3) of growing the crystal grains coarsely includes:
It is not substantially different from the conventional process (the above process).
In this step, the crystal is grown and coarsened by gradually cooling from a semi-molten state where the solute is easily diffused.

【0018】[0018]

【実施例】Y2O3、BaCO3 およびCuO を原料とし、これら
をY:Ba:Cu= 1.2: 2.1: 3.1となるように配合し、
次の2方法で前駆体を作製した。
EXAMPLE Y 2 O 3 , BaCO 3 and CuO were used as raw materials, and these were blended so that Y: Ba: Cu = 1.2: 2.1: 3.1.
A precursor was prepared by the following two methods.

【0019】第1の方法(本発明例):絶対圧力10-3To
rr. の減圧下で、900 ℃で12時間仮焼し、粉砕して前駆
体とした。
First method (Example of the present invention): Absolute pressure 10 -3 To
Under reduced pressure of rr., it was calcined at 900 ° C. for 12 hours, and pulverized to obtain a precursor.

【0020】上記の各前駆体を径20mm、高さ5mmに成形
し、1時間で1000℃まで上げ、次いで2時間で1120℃ま
で昇温し、この温度に 0.5時間保持した。その後 0.2時
間で1000℃まで冷却し、更に 200時間かけて 800℃まで
冷却する徐冷を行い、以後炉冷して室温まで冷却した。
このプロセスのヒートパターンを図1に示す。
Each of the above precursors was formed into a diameter of 20 mm and a height of 5 mm, and the temperature was raised to 1000 ° C. in 1 hour, then raised to 1120 ° C. in 2 hours, and maintained at this temperature for 0.5 hour. Thereafter, the mixture was cooled to 1000 ° C. in 0.2 hours, gradually cooled to 800 ° C. in 200 hours, and then cooled in a furnace to room temperature.
The heat pattern for this process is shown in FIG.

【0021】第2の方法(比較例):空気中で 900℃に
12時間加熱して仮焼し、粉砕して前駆体を得た。その後
の結晶粒粗大化の処理は第1の方法と同じである。
Second method (comparative example): 900 ° C. in air
The mixture was heated for 12 hours, calcined, and pulverized to obtain a precursor. Subsequent processing of crystal grain coarsening is the same as in the first method.

【0022】まず、第1方法および第2の方法で得た前
駆体に含まれる結晶相をX線回折で調査し、次いで結晶
成長処理後の 123相の結晶の大きさをマクロ顕微鏡を用
いて調べた。
First, the crystal phase contained in the precursor obtained by the first method and the second method is examined by X-ray diffraction, and then the crystal size of the 123 phase after the crystal growth treatment is determined by using a macro microscope. Examined.

【0023】図2は、前駆体のX線回折パターンで (a)
が第1の方法(本発明方法)によるもの、(b) が第2の
方法(比較例の方法)によるものである。 (a)図から明
らかなように、本発明の方法で得た前駆体は 211相とBa
Cu2O2 が主相であり、123 相は含まれていない。これに
対して、第2の方法で得た前駆体は、ほぼ 123相の単相
である。この結晶粒は、12時間の仮焼中に成長している
ものと考えられる。
FIG. 2 shows the X-ray diffraction pattern of the precursor (a)
Is based on the first method (the method of the present invention), and (b) is based on the second method (the method of the comparative example). (a) As is clear from the figure, the precursor obtained by the method of the present invention was
Cu 2 O 2 is the main phase and does not contain the 123 phase. On the other hand, the precursor obtained by the second method is a single phase having almost 123 phases. These crystal grains are considered to have grown during the calcination for 12 hours.

【0024】図3は、各前駆体を結晶成長処理した後の
マクロ組織である。 (a)が第1の方法で得た前駆体を使
用したもの(本発明例)、(b) が第2の方法で得た前駆
体を使用したもの(比較例)である。前者では表面にお
ける結晶が一つしか観察されない。一方、後者には多数
の結晶が見られる。即ち、前者の結晶粒は後者のそれに
較べて著しく大きい。
FIG. 3 shows a macrostructure after crystal growth treatment of each precursor. (a) is the one using the precursor obtained by the first method (Example of the present invention), and (b) is the one using the precursor obtained by the second method (Comparative Example). In the former, only one crystal on the surface is observed. On the other hand, the latter has many crystals. That is, the former crystal grains are significantly larger than those of the latter.

【0025】表1は、上記図3 (a)に示した結晶をEP
MAによって組成分析した結果である。マトリックスに
ついては5点を、粒状結晶については3点を分析し、そ
れらの平均を採り、Baを基準とした原子比を示した。表
示のとおり、マトリックスが123 相で、粒状結晶が 211
相である。このような組織は、微細な 211相が進入する
磁束の動きを抑制する、いわゆるピニング効果を発揮す
るから、特に高磁場中で超電導材料として使用する場合
に望ましい。
Table 1 shows that the crystal shown in FIG.
It is a result of composition analysis by MA. Five points were analyzed for the matrix and three points were analyzed for the granular crystal, and the average of those was taken to show the atomic ratio based on Ba. As shown, the matrix has 123 phases and the granular crystals are 211
Phase. Such a structure exerts a so-called pinning effect that suppresses the movement of the magnetic flux into which the fine 211 phase enters, and is therefore particularly desirable when used as a superconducting material in a high magnetic field.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明方法によれば、従来の方法に比較
してはるかに簡単なプロセスで粗大な123 相の結晶を得
ることができる。
According to the method of the present invention, coarse 123 phase crystals can be obtained by a much simpler process than the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の実施例を示すヒートパターンであ
る。
FIG. 1 is a heat pattern showing an example of the method of the present invention.

【図2】(a)は本発明の方法で得た前駆体のX線回折パ
ターン、(b) は比較例で得た前駆体のX線回折パター
ン、である。
FIG. 2 (a) is an X-ray diffraction pattern of a precursor obtained by the method of the present invention, and (b) is an X-ray diffraction pattern of a precursor obtained in a comparative example.

【図3】(a)は本発明方法で結晶粒の粗大化を行った後
のマクロ組織、(b) は比較例の前駆体に結晶粒の粗大化
処理を施した後のマクロ組織、である。
FIG. 3 (a) is a macrostructure after coarsening of crystal grains by the method of the present invention, and (b) is a macrostructure after coarsening treatment of the precursor of the comparative example. is there.

【図4】Y-Ba-Cu-O系の状態図の一部である。FIG. 4 is a part of a phase diagram of a Y—Ba—Cu—O system.

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000000044 旭硝子株式会社 東京都千代田区丸の内2丁目1番2号 (73)特許権者 000173784 財団法人鉄道総合技術研究所 東京都国分寺市光町2丁目8番地38 (73)特許権者 000000099 石川島播磨重工業株式会社 東京都千代田区大手町2丁目2番1号 (72)発明者 和泉 輝郎 東京都江東区東雲1丁目14番3 財団法 人 国際超電導産業技術研究センター 超電導工学研究所内 (72)発明者 大津 敢視 東京都江東区東雲1丁目14番3 財団法 人 国際超電導産業技術研究センター 超電導工学研究所内 (72)発明者 山田 容士 東京都江東区東雲1丁目14番3 財団法 人 国際超電導産業技術研究センター 超電導工学研究所内 (72)発明者 中村 雄一 東京都江東区東雲1丁目14番3 財団法 人 国際超電導産業技術研究センター 超電導工学研究所内 (72)発明者 石毛 健吾 東京都江東区東雲1丁目14番3 財団法 人 国際超電導産業技術研究センター 超電導工学研究所内 (72)発明者 塩原 融 東京都江東区東雲1丁目14番3 財団法 人 国際超電導技術研究センター 超電 導工学研究所内 (56)参考文献 特開 平5−24825(JP,A) (58)調査した分野(Int.Cl.6,DB名) C30B 28/00 - 35/00 C01G 1/00 C01G 3/00 ZAA CA(STN) WPI(DIALOG)──────────────────────────────────────────────────続 き Continuing on the front page (73) Patent holder 000000044 Asahi Glass Co., Ltd. 2-1-2-2 Marunouchi, Chiyoda-ku, Tokyo (73) Patent holder 000173784 Railway Technical Research Institute 2-chome Mitsumachi, Kokubunji-shi, Tokyo 8 No. 38 (73) Patent holder 000000099 Ishikawajima-Harima Heavy Industries Co., Ltd. 2-2-1 Otemachi, Chiyoda-ku, Tokyo (72) Inventor Teruo Izumi 1-1-14 Shinonome, Koto-ku, Tokyo Foundation law International Superconductivity Industry Technology Research Center, Superconductivity Engineering Research Laboratory (72) Inventor, Daisuke Otsu 1-14-3, Shinonome, Koto-ku, Tokyo Foundation: International Superconductivity Technology Research Center, Superconductivity Research Laboratory (72) Inventor: Yoji Yamada Koto-ku, Tokyo 1-14-3 Shinonome Foundation International Research Institute of Superconducting Technology, Superconducting Engineering Laboratory (72 ) Inventor Yuichi Nakamura 1-14-3 Shinonome, Koto-ku, Tokyo Foundation International Research Institute for Superconducting Technology, Superconductivity Engineering Laboratory (72) Inventor Kengo Ishige 1-14-1 Shinonome, Koto-ku, Tokyo Foundation International Kokusai Superconductivity Inside the Superconductivity Engineering Research Center, Industrial Technology Research Center (72) Inventor, Mr. Atsushi Shiohara 1-1-14 Shinonome, Koto-ku, Tokyo Foundation International Research Institute for Superconductivity Technology, Superconductivity Research Laboratory (56) References JP-A-5-24825 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C30B 28/00-35/00 C01G 1/00 C01G 3/00 ZAA CA (STN) WPI (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料を所定の組成になるように配合し、酸
素分圧が10-3Torr. 以下の低酸素分圧雰囲気下で 800〜
1000℃の温度に1時間以上加熱して仮焼し、得られた仮
焼物を粉砕して前駆体とし、その前駆体を成形し、一旦
211相と液相の共存域まで急速加熱し、次いで徐冷して
結晶を成長させることを特徴とするRE系超電導酸化物
の粗大結晶の製造方法。
A raw material is blended so as to have a predetermined composition, and has a partial pressure of oxygen of less than 10 -3 Torr.
The material is calcined by heating to a temperature of 1000 ° C. for 1 hour or more, and the obtained calcined material is pulverized into a precursor.
A method for producing a coarse crystal of an RE-based superconducting oxide, characterized by rapidly heating to a coexistence region of a 211 phase and a liquid phase, and then gradually cooling the crystal to grow the crystal.
JP4161202A 1992-06-19 1992-06-19 Method for producing coarse crystals of RE-based superconducting oxide Expired - Fee Related JP2875684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4161202A JP2875684B2 (en) 1992-06-19 1992-06-19 Method for producing coarse crystals of RE-based superconducting oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161202A JP2875684B2 (en) 1992-06-19 1992-06-19 Method for producing coarse crystals of RE-based superconducting oxide

Publications (2)

Publication Number Publication Date
JPH061697A JPH061697A (en) 1994-01-11
JP2875684B2 true JP2875684B2 (en) 1999-03-31

Family

ID=15730540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161202A Expired - Fee Related JP2875684B2 (en) 1992-06-19 1992-06-19 Method for producing coarse crystals of RE-based superconducting oxide

Country Status (1)

Country Link
JP (1) JP2875684B2 (en)

Also Published As

Publication number Publication date
JPH061697A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US5409888A (en) Process for producing a high-temperature superconductor and also shaped bodies composed thereof
JP2839415B2 (en) Method for producing rare earth superconducting composition
Hojaji et al. A comparative study of sintered and melt-grown recrystallized YBa2Cu3Ox
JPH04224111A (en) Rare earth type oxide superconductor and its production
JP2875684B2 (en) Method for producing coarse crystals of RE-based superconducting oxide
JP4628041B2 (en) Oxide superconducting material and manufacturing method thereof
US5011822A (en) Preparation of a uniform mixed metal oxide and superconductive oxides
JP3155333B2 (en) Method for producing oxide superconductor having high critical current density
Hajdová et al. Growth, microstructure, and properties of GdBCO–Ag superconductor
CA2453922C (en) Oxide high-critical temperature superconductor acicular crystal and method for producing the same
Nariki et al. Superconducting properties of (Gd, Nd)-Ba-Cu-O bulk superconductor fabricated by melt processing in air
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP3444930B2 (en) Manufacturing method of oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
Ali et al. Comparison between solid state reaction and coprecipitation method of titanium oxide addition on the yba2cu3oδ ceramics
JP3312380B2 (en) Manufacturing method of ceramic superconductor
JPH09255335A (en) Production of bulk-oxide superconductor
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP3158255B2 (en) Method for producing crystal-oriented oxide superconductor
JPH0412023A (en) Oxide superconductor
JP3115357B2 (en) Manufacturing method of oxide superconducting material
JPH03187902A (en) Manufacture of high temperature, superconducting substance
Delorme et al. Bismuth doping of top-seeding melt-texture-grown YBa2Cu3O7− δ ceramics
JPH03112810A (en) Production of oxide superconducting film
JPH026304A (en) Production of compound oxide

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees