JPH09157097A - Production of superconducting fibrous crystal - Google Patents

Production of superconducting fibrous crystal

Info

Publication number
JPH09157097A
JPH09157097A JP7345544A JP34554495A JPH09157097A JP H09157097 A JPH09157097 A JP H09157097A JP 7345544 A JP7345544 A JP 7345544A JP 34554495 A JP34554495 A JP 34554495A JP H09157097 A JPH09157097 A JP H09157097A
Authority
JP
Japan
Prior art keywords
fibrous
hours
glass precursor
superconducting
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7345544A
Other languages
Japanese (ja)
Other versions
JP2782594B2 (en
Inventor
Ichiro Matsubara
一郎 松原
Ryoji Funahashi
良次 舟橋
Toru Ogura
透 小倉
Kazuo Ueno
和夫 上野
Hiroshi Ishikawa
博 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7345544A priority Critical patent/JP2782594B2/en
Publication of JPH09157097A publication Critical patent/JPH09157097A/en
Application granted granted Critical
Publication of JP2782594B2 publication Critical patent/JP2782594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain fibrous crystals having Bi2 Sr2 CaCu2 O8 structure by rapidly cooling a melt consisting of Bi, Sr, Ca, Cu, Al and O, heat-treating and firing the resultant glass precursor under specified conditions. SOLUTION: Starting materials are mixed so as to give BiSrCaCu2 Ox and this mixture is put in an alumina crucible and heated to a high temp. By this heating, the mixture is melted and a proper amt. of Al is leached from the crucible to prepare a melt consisting of Bi, Sr, Ca, Cu, Al and O. This melt is rapidly cooled and the resultant glass precursor is heat-treated at 850-870 deg.C for 20-60hr and then fired at 840-880 deg.C for 10-500hr to obtain the objective superconducting fibrous crystals having Bi2 Sr2 CaCu2 O8 structure (2212 phase). When the crystals are used, a superconducting material having high critical current density can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高品質で大型のBi
系超電導繊維状結晶を効率的に製造する方法に関する。
TECHNICAL FIELD The present invention relates to a high quality and large size Bi.
The present invention relates to a method for efficiently producing a superconducting fibrous crystal.

【0002】[0002]

【従来の技術】超電導体の臨界温度(Tc)が液体窒素温
度を上回ることは、冷却コストが低下することを意味
し、大きな意義がある。臨界温度が液体窒素温度を上回
る酸化物超電導体としては、例えばY系、Bi系、Tl系な
どの超電導体が挙げられる。Bi系超電導体としては、Bi
2Sr2CuO6相(2201相)、Bi2Sr2CaCu2O8相(221
2相)およびBi2Sr2Ca2Cu3O10相(2223相)の3種
類の異なった結晶相が存在しており、それぞれの臨界温
度から、20K相、80K相および110K相とも呼ば
れている。これらの中2212相は、合成が比較的容易
であること、Y系に比べて粒界での弱結合の問題が少な
いこと、Tl系に比べ毒性が低いこと、などの理由によ
り、超電導線材および磁気シールド材としての実用化に
際し、最も有望な材料と考えられている。
2. Description of the Related Art The fact that the critical temperature (Tc) of a superconductor exceeds the temperature of liquid nitrogen means that cooling costs are reduced, which is of great significance. Examples of the oxide superconductor having a critical temperature higher than the temperature of liquid nitrogen include superconductors such as Y-based, Bi-based, and Tl-based superconductors. Bi-based superconductors include Bi
2 Sr 2 CuO 6 phase (2201 phase), Bi 2 Sr 2 CaCu 2 O 8 phase (221 phase)
There are three different crystalline phases, two phases) and Bi 2 Sr 2 Ca 2 Cu 3 O 10 phase (2223 phase), which are also called 20K, 80K and 110K phases from their respective critical temperatures. ing. Among these, the 2212 phase has a superconducting wire and a superconducting wire because of its relatively easy synthesis, less problem of weak bonding at grain boundaries as compared with Y-based, and lower toxicity as compared with Tl-based It is considered to be the most promising material for practical use as a magnetic shielding material.

【0003】このBi系2212相に関しては、ガラス前
駆体を酸素ガス気流下に熱処理する方法により、繊維状
結晶が得られることが報告されている(Jpn. J. Appl.
Phys.,Vol 28, L1121(1989))。この繊維状結晶は、単
結晶であるため、粒界を含んでおらず、優れた臨界電流
特性を示す。しかるに、酸化物超電導体の焼結体を得る
に際し、酸化物超電導体粉末を単に焼結させただけでは
多結晶体となり、結晶の配列方向もランダムとなるた
め、臨界電流密度が不十分となる。しかしながら、最
近、2212相超電導繊維状結晶と2212相粉末を複
合化する場合には、繊維状結晶を含まない2212粉末
のみからなるバルク体に比べて、臨界電流が約10倍向
上することが報告されている(J. Appl. Phys., Vol 7
6, 4891(1994))。この様に2212相繊維状結晶は、
線材などへのバルク応用に対して非常に有望な素材であ
るが、そのためには、繊維状結晶の大量合成技術の確
立、すなわち効率の良い繊維状結晶の作製方法の確立が
急務とされている。
With respect to this Bi-based 2212 phase, it has been reported that a fibrous crystal can be obtained by a method of heat-treating a glass precursor in an oxygen gas stream (Jpn. J. Appl.
Phys., Vol 28, L1121 (1989)). Since the fibrous crystal is a single crystal, it does not include a grain boundary and exhibits excellent critical current characteristics. However, in obtaining a sintered body of the oxide superconductor, simply sintering the oxide superconductor powder results in a polycrystalline body, and the crystal orientation direction is also random, so the critical current density is insufficient. . However, recently, it has been reported that when the 2212 phase superconducting fibrous crystal and the 2212 phase powder are compounded, the critical current is improved about 10 times as compared with a bulk body composed of only the 2212 powder containing no fibrous crystal. (J. Appl. Phys., Vol 7
6, 4891 (1994)). Thus, the 2212 phase fibrous crystal is
It is a very promising material for bulk applications such as wire rods, but for that purpose, establishment of mass synthesis technology of fibrous crystals, that is, establishment of an efficient method of producing fibrous crystals is urgently required. .

【0004】現在Bi系2212繊維状結晶は、融液を急
冷して得たガラス前駆体を酸素ガス気流下、適切な温度
で焼成することによって合成されるが、その効率は満足
すべきとはいえない。
At present, Bi-based 2212 fibrous crystals are synthesized by firing a glass precursor obtained by quenching a melt at an appropriate temperature in an oxygen gas stream, but its efficiency is not satisfactory. I can't say.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は、効
率がより高く、高収率で高品質且つ大型の繊維状結晶を
製造しうる方法を提供することを主な目的とする。
SUMMARY OF THE INVENTION Accordingly, it is a main object of the present invention to provide a method capable of producing high-quality and large-sized fibrous crystals with higher efficiency, high yield and high yield.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の課題
を達成するために種々研究を重ねた結果、2212相繊
維状結晶を高効率で与える製造方法を見出し、本発明を
完成した。
Means for Solving the Problems The present inventor has conducted various studies in order to achieve the above object, and as a result, has found a method for producing 2212-phase fibrous crystals with high efficiency, and has completed the present invention.

【0007】即ち、本発明は、下記の2212相繊維状
結晶の製造方法を提供するものである。
That is, the present invention provides the following method for producing a 2212-phase fibrous crystal.

【0008】1.Bi、Sr、Ca、Cu、AlおよびOからなる
融液を急冷して得られるガラス前駆体を850〜870℃で20
〜60時間熱処理した後、840〜880℃で10〜500時間焼成
することを特徴とする、Bi2Sr2CaCu2O8構造(2212
相)を有する超電導繊維状結晶の製造方法。
[0008] 1. A glass precursor obtained by rapidly cooling a melt composed of Bi, Sr, Ca, Cu, Al and O is heated at 850 to 870 ° C. for 20 times.
After heat treatment 60 hours, and firing 10 to 500 hours at 840~880 ℃, Bi 2 Sr 2 CaCu 2 O 8 structure (2212
A method for producing a superconducting fibrous crystal having

【0009】[0009]

【発明の実施の形態】本発明で使用するBi、Sr、Ca、C
u、AlおよびOからなる融液を急冷して得られるガラス前
駆体(以下単に融液急冷ガラス前駆体或いは前駆体とい
う)は、松原ら、Physica C, 167, 503(1990)に記載の
方法により製造できる。
BEST MODE FOR CARRYING OUT THE INVENTION Bi, Sr, Ca, C used in the present invention
A glass precursor obtained by quenching a melt composed of u, Al and O (hereinafter simply referred to as melt quenched glass precursor or precursor) is described in Matsubara et al., Physica C, 167, 503 (1990). Can be manufactured.

【0010】本発明で使用する融液急冷ガラス前駆体の
厚さは、0.5〜1mm程度である。従来技術では、この融液
急冷ガラス前駆体を100ml/min以上の酸素ガス気流下、
数十から数百時間熱処理を行うことにより、繊維状結晶
を合成していた。本発明者は、従来技術による繊維状結
晶成長過程を詳しく観察した結果、(イ)熱処理の初期
段階で成長を開始した繊維状結晶よりも、熱処理の後期
段階で成長し始めた繊維状結晶の方がより長く成長し続
けること、および(ロ)成長速度は、どちらもほぼ一定
であることなどの重要な知見を得た。この様な知見か
ら、前駆体をあらかじめ熱処理の後期段階に成長を開始
する状態にしておけば、短時間で長い繊維状結晶が得ら
れるものと推測し、さらに研究を重ねた結果、この推測
通りの結果を得ることに成功した。
The thickness of the melt quenched glass precursor used in the present invention is about 0.5 to 1 mm. In the prior art, this melt quenched glass precursor was placed under an oxygen gas flow of 100 ml / min or more,
By performing the heat treatment for several tens to several hundred hours, a fibrous crystal was synthesized. The inventor of the present invention has observed in detail the fibrous crystal growth process according to the prior art. Important observations were that both of them continue to grow longer and that (b) the growth rate is almost constant. From these findings, it was conjectured that if the precursor was set to start growing in the later stage of the heat treatment in advance, a long fibrous crystal could be obtained in a short time. Successfully obtained the result.

【0011】より詳細には、本発明では、前駆体を予め
適切な条件で熱処理に供し(以下この熱処理を前処理と
いう)、しかる後に常法と同様に酸素ガス気流下で焼成
(熱処理)して、繊維状結晶の成長を行う(以下この熱
処理を成長処理という)。
More specifically, in the present invention, the precursor is subjected to heat treatment in advance under appropriate conditions (hereinafter, this heat treatment is referred to as pretreatment), and then calcined (heat treatment) under an oxygen gas stream in the same manner as in a conventional method. Then, a fibrous crystal is grown (hereinafter, this heat treatment is referred to as growth processing).

【0012】前駆体の加熱手段は、任意の前処理および
成長処理のための加熱スケジュールが達成できるもので
あれば、特に限定されず、電気加熱炉、ガス加熱炉、光
加熱炉など任意の手段を採用し得る。
The means for heating the precursor is not particularly limited as long as a heating schedule for an arbitrary pretreatment and growth treatment can be achieved, and any means such as an electric heating furnace, a gas heating furnace, and a light heating furnace can be used. Can be adopted.

【0013】前処理における保持温度および時間は、使
用するガラス前駆体の組成比などにより異なるが、通常
850〜870℃程度で20〜60時間程度の範囲内にあり、一例
として865℃で40時間である。一般に、温度が低い場合
には、保持時間を長くする必要があるのに対し、温度が
高い場合には、保持時間を短くすることができる。
[0013] The holding temperature and time in the pretreatment vary depending on the composition ratio of the glass precursor to be used.
It is in the range of about 850 to 870 ° C. for about 20 to 60 hours, for example, 865 ° C. for 40 hours. Generally, when the temperature is low, it is necessary to lengthen the holding time, whereas when the temperature is high, the holding time can be shortened.

【0014】成長処理における保持温度および時間も、
使用するガラス前駆体の組成比などにより異なるが、通
常840〜880℃程度で10〜500時間程度の範囲内になり、
一例として870℃40時間である。この場合にも、温度が
低い場合には、保持時間を長くし、温度が高い場合に
は、保持時間を短くすることが好ましい。
The holding temperature and time in the growth process are also
Depending on the composition ratio of the glass precursor used, etc., it is usually in the range of about 840 to 880 ° C. and about 10 to 500 hours,
An example is 870 ° C. for 40 hours. Also in this case, when the temperature is low, it is preferable to lengthen the holding time, and when the temperature is high, it is preferable to shorten the holding time.

【0015】繊維状結晶は、前駆体の焼成過程でその表
面から成長するので、繊維状結晶の収量は、前駆体の単
位表面積当たりに成長した繊維状結晶の重量で評価する
のが適切である。例えば、前処理を行わない従来技術に
よる前駆体の焼成スケジュール(870℃で40時間)で
は、繊維状結晶の収量は2.6mg/cm2であるのに対し、本
発明に従って前駆体を865℃で40時間前処理し、次いで
同様の焼成を行った場合の繊維状結晶の収量は、18.0mg
/cm2となり、収量は約7倍に増加した。
Since the fibrous crystals grow from the surface of the precursor during the firing process, it is appropriate to evaluate the yield of the fibrous crystals by the weight of the fibrous crystals grown per unit surface area of the precursor. . For example, in the prior art precursor firing schedule without pretreatment (870 ° C. for 40 hours), the yield of fibrous crystals was 2.6 mg / cm 2 , whereas the precursor was heated at 865 ° C. according to the present invention. Pretreatment for 40 hours, then the same calcination yield of fibrous crystals, 18.0mg
/ cm 2 and the yield increased about 7-fold.

【0016】本発明方法において、前処理を行った後焼
成を行うことにより成長した繊維状結晶は、X線回折測
定により、Bi系2212相であることを確認した。さら
に、抵抗率および磁化率の温度依存性の測定より、得ら
れた繊維状結晶は、75〜80Kにおいて超電導状態に転移
することが確認された。これらの結晶構造および超電導
特性は、従来技術による焼成スケジュールで成長した繊
維状結晶のものと一致する。即ち、本発明によれば、前
駆体の前処理を行っておくことにより、焼成により成長
する結晶の超電導特性を損なうことなく、その収量を向
上させることが可能である。さらに前処理は、酸素ガス
を流す必要がなく、大気中で行えば良いので、大型の箱
形電気炉が使用可能であり、一度に大量の試料を前処理
することが出来る。この点でも、本発明は、繊維状結晶
の高効率合成に有用である。
In the method of the present invention, the fibrous crystal grown by firing after performing the pretreatment was confirmed to be a Bi-based 2212 phase by X-ray diffraction measurement. Further, from the measurement of the temperature dependence of the resistivity and the magnetic susceptibility, it was confirmed that the obtained fibrous crystal transitioned to a superconducting state at 75 to 80K. Their crystal structure and superconducting properties are consistent with those of fibrous crystals grown on prior art firing schedules. That is, according to the present invention, by performing the pretreatment of the precursor, the yield can be improved without impairing the superconducting characteristics of the crystal grown by firing. Furthermore, since the pretreatment does not need to flow oxygen gas and can be performed in the atmosphere, a large box-shaped electric furnace can be used, and a large amount of samples can be pretreated at one time. Also in this respect, the present invention is useful for highly efficient synthesis of fibrous crystals.

【0017】本発明において、前駆体の前処理により、
繊維状結晶の収量が向上する原因は未だ十分に解明され
ていないが、以下に示すような可能性が考えられる。
In the present invention, the pretreatment of the precursor
The cause of the increase in the yield of fibrous crystals has not yet been sufficiently elucidated, but the following possibilities are conceivable.

【0018】一般に、結晶成長は、その初期段階である
核生成と、それに引き続く成長段階に分けて考えること
ができる。核生成とは、植物における発芽にも例えられ
るものであり、核が生成し、それが成長して、初めてあ
る大きさを持つ結晶となる。本発明においては、前処理
は十分な核生成を達成するのに有効であるものと考えら
れる。即ち、前処理により、生成する核の数が、前処理
を行わない場合に比べて増加する。そして前処理に続く
焼成段階において、各々の核が成長することによって、
結果的に繊維状結晶の収量が増加するものと考えられ
る。
Generally, crystal growth can be considered in two stages: nucleation, which is the initial stage, and the subsequent growth stage. Nucleation is likened to germination in a plant. A nucleus is formed and grows to become a crystal having a certain size. In the present invention, pretreatment is believed to be effective in achieving sufficient nucleation. That is, the number of nuclei to be generated is increased by the preprocessing as compared with the case where the preprocessing is not performed. And in the firing stage following the pretreatment, each nucleus grows,
As a result, it is considered that the yield of fibrous crystals increases.

【0019】[0019]

【発明の効果】本発明によれば、Bi、Sr、Ca、Cu、Alお
よびOからなる融液急冷ガラス前駆体をあらかじめ適切
な条件で熱処理しておくことにより、Bi2Sr2CaCu2O8
造(2212相)を有する超電導繊維状結晶を高効率で
製造することが可能となり、超電導繊維状結晶の大量合
成技術が確立した。その結果、得られる繊維状結晶を用
いて高い臨界電流密度を有する超電導材の製造が可能と
なり、磁場発生用マグネット材料、電力貯蔵用及び電力
輸送用線材の特性向上に役立つものと期待される。
According to the present invention, Bi 2 Sr 2 CaCu 2 O is obtained by preliminarily heat-treating a melt quenched glass precursor comprising Bi, Sr, Ca, Cu, Al and O under appropriate conditions. Superconducting fibrous crystals having eight structures (2212 phases) can be produced with high efficiency, and a technique for mass-production of superconducting fibrous crystals has been established. As a result, it is expected that a superconducting material having a high critical current density can be produced using the obtained fibrous crystal, which is expected to be useful for improving the properties of a magnetic material for generating a magnetic field and wires for storing and transporting power.

【0020】[0020]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Examples are shown below to further clarify the features of the present invention.

【0021】実施例1 BiSrCaCu2Oxの原子組成比になる様に各原子源となる原
料を十分に混合した後、その15gをアルミナルツボに入
れ、電気炉中で1200℃30分間溶融した。次いで、室温に
おいた銅板の上に融液を流し出し、別の銅板を用いて挟
み付けることにより急冷し、ガラス前駆体とした。な
お、原料溶融中に適度の量のAlがアルミナルツボから溶
出するので、ガラス前駆体は、適度なAlを含む組成とな
る。
Example 1 After sufficiently mixing the raw materials to be the respective atomic sources so that the atomic composition ratio of BiSrCaCu 2 O x was obtained, 15 g of the raw material was placed in an alumina crucible and melted at 1200 ° C. for 30 minutes in an electric furnace. Next, the melt was poured out onto a copper plate at room temperature, and quenched by sandwiching it with another copper plate to obtain a glass precursor. In addition, since a proper amount of Al is eluted from the alumina crucible during melting of the raw materials, the glass precursor has a composition containing proper Al.

【0022】次いで、得られたガラス前駆体を環状電気
炉に収容し、酸素ガス気流下(150ml/min)で焼成した。
焼成時の保持温度は、870℃、保持時間は、40時間であ
った。焼成後に生成した繊維状結晶を回収したところ、
収量は、2.6mg/cm2であった(比較例)。
Next, the obtained glass precursor was placed in an annular electric furnace and fired under an oxygen gas stream (150 ml / min).
The holding temperature during firing was 870 ° C., and the holding time was 40 hours. After collecting the fibrous crystals generated after firing,
The yield was 2.6 mg / cm 2 (Comparative Example).

【0023】これに対し、ガラス前駆体を前処理した後
に上記と同一条件で焼成した場合の収量は、(イ)前処
理条件が855℃で40時間の場合には、2.9mg/cm2、(ロ)8
60℃で40時間の場合には、5.1mg/cm2、(ハ)865℃で40
時間の場合には、18.0mg/cm2、(ニ)870℃で40時間の場
合には、12.3mg/cm2、(ホ)875℃で40時間の場合には、
6.2mg/cm2であった。
On the other hand, when the glass precursor is pretreated and then fired under the same conditions as above, the yield is as follows: (a) When the pretreatment conditions are 855 ° C. for 40 hours, 2.9 mg / cm 2 , (B) 8
5.1 mg / cm 2 for 40 hours at 60 ° C, 40 ° C at 865 ° C
In the case of time, 18.0 mg / cm 2 , (d) In the case of 870 ° C for 40 hours, 12.3 mg / cm 2 , (e) In the case of 875 ° C for 40 hours,
It was 6.2 mg / cm 2 .

【0024】以上の結果から、繊維状結晶成長のための
焼成条件が同じであっても、適切な前処理を行うことに
より、繊維状結晶の収率は、最高約7倍まで増大した。
From the above results, even if the firing conditions for fibrous crystal growth were the same, the yield of fibrous crystals was increased up to about seven times by appropriate pretreatment.

【0025】なお、本実施例および以下の実施例で使用
した各原子源となる原料は、以下のものであった。
The raw materials used as atomic sources used in this example and the following examples were as follows.

【0026】 Bi源 酸化ビスマス(Bi2O3) Sr源 炭酸ストロンチウム(SrCO3) Ca源 炭酸カルシウム(CaCO3) Cu源 酸化銅(CuO) 実施例2 実施例1と同様にして調製したガラス前駆体を環状電気
炉に入れ、酸素ガス気流下(150ml/min)で焼成した。焼
成時の保持温度は、870℃、保持時間は、40時間であっ
た。焼成後生成した繊維状結晶を回収したところ、その
収量は2.6mg/cm2であった(比較例)。
Bi source Bismuth oxide (Bi 2 O 3 ) Sr source Strontium carbonate (SrCO 3 ) Ca source Calcium carbonate (CaCO 3 ) Cu source Copper oxide (CuO) Example 2 Glass precursor prepared in the same manner as in Example 1 The body was placed in an annular electric furnace and calcined under an oxygen gas flow (150 ml / min). The holding temperature during firing was 870 ° C., and the holding time was 40 hours. When the fibrous crystals formed after the calcination were recovered, the yield was 2.6 mg / cm 2 (Comparative Example).

【0027】これに対し、ガラス前駆体を前処理した後
に上記と同一条件で焼成した場合の収量は、(イ)前処
理条件が855℃で20時間の場合には、3.1mg/cm2、(ロ)8
60℃で20時間の場合には、4.6mg/cm2、(ハ)865℃で20
時間の場合には、14.5mg/cm2、(ニ)870℃で20時間の場
合には、10.3mg/cm2、(ホ)875℃で20時間の場合には、
3.3mg/cm2であった。
On the other hand, when the glass precursor is pretreated and calcined under the same conditions as above, the yield is as follows: (a) When the pretreatment conditions are 855 ° C. for 20 hours, the yield is 3.1 mg / cm 2 , (B) 8
4.6 mg / cm 2 at 60 ° C for 20 hours, (c) 20 mg at 865 ° C
In the case of time, 14.5 mg / cm 2 , (d) at 870 ° C for 20 hours, 10.3 mg / cm 2 , (e) at 875 ° C for 20 hours,
It was 3.3 mg / cm 2 .

【0028】実施例3 実施例1と同様にして調製したガラス前駆体を環状電気
炉に入れ、酸素ガス気流下(150ml/min)で焼成した。焼
成時の保持温度は、870℃、保持時間は、40時間であっ
た。焼成後生成した繊維状結晶を回収したところ、その
収量は2.6mg/cm2であった。
Example 3 A glass precursor prepared in the same manner as in Example 1 was placed in an annular electric furnace and fired under an oxygen gas stream (150 ml / min). The holding temperature during firing was 870 ° C., and the holding time was 40 hours. When the fibrous crystals formed after the calcination were recovered, the yield was 2.6 mg / cm 2 .

【0029】これに対し、ガラス前駆体を前処理した後
に上記と同一条件で焼成した場合の収量は、(イ)前処
理条件が855℃で60時間の場合には、5.2mg/cm2、(ロ)8
60℃で60時間の場合には、7.1mg/cm2、(ハ)865℃で60
時間の場合には、13.9mg/cm2、(ニ)870℃で60時間の場
合には、9.3mg/cm2、(ホ)875℃で60時間の場合には、
4.2mg/cm2であった。
On the other hand, when the glass precursor is pretreated and calcined under the same conditions as above, the yield is as follows: (a) When the pretreatment condition is 855 ° C. for 60 hours, 5.2 mg / cm 2 , (B) 8
7.1 mg / cm 2 at 60 ° C for 60 hours, (c) 60 ° C at 865 ° C
In the case of time, 13.9 mg / cm 2 , (d) in the case of 870 ° C for 60 hours, 9.3 mg / cm 2 , (e) in the case of 875 ° C for 60 hours,
It was 4.2 mg / cm 2 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 和夫 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 石川 博 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Ueno 1-831 Midorigaoka, Ikeda City, Osaka Prefecture Industrial Technology Institute, Osaka Institute of Industrial Technology (72) Inventor Hiroshi Ishikawa 1-8 Midorigaoka, Ikeda City, Osaka Prefecture No. 31 Industrial Technology Institute Osaka Industrial Technology Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Bi、Sr、Ca、Cu、AlおよびOからなる融液
を急冷して得られるガラス前駆体を850〜870℃で20〜60
時間熱処理した後、840〜880℃で10〜500時間焼成する
ことを特徴とする、Bi2Sr2CaCu2O8構造(2212相)
を有する超電導繊維状結晶の製造方法。
1. A glass precursor obtained by quenching a melt comprising Bi, Sr, Ca, Cu, Al and O at 850-870 ° C. for 20-60
After time heat treatment, and firing 10 to 500 hours at 840~880 ℃, Bi 2 Sr 2 CaCu 2 O 8 structure (2212)
A method for producing a superconducting fibrous crystal having:
JP7345544A 1995-12-08 1995-12-08 Method for producing superconducting fibrous crystal Expired - Lifetime JP2782594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7345544A JP2782594B2 (en) 1995-12-08 1995-12-08 Method for producing superconducting fibrous crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7345544A JP2782594B2 (en) 1995-12-08 1995-12-08 Method for producing superconducting fibrous crystal

Publications (2)

Publication Number Publication Date
JPH09157097A true JPH09157097A (en) 1997-06-17
JP2782594B2 JP2782594B2 (en) 1998-08-06

Family

ID=18377313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7345544A Expired - Lifetime JP2782594B2 (en) 1995-12-08 1995-12-08 Method for producing superconducting fibrous crystal

Country Status (1)

Country Link
JP (1) JP2782594B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154828A1 (en) * 2004-11-22 2006-07-13 Joachim Bock Precursor material for Bi-based oxide superconductor and process for preparing such material
CN107971126A (en) * 2017-12-05 2018-05-01 广东省资源综合利用研究所 One kind separated method of bismuth arsenic from high arsenic bismuth iron concentrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154828A1 (en) * 2004-11-22 2006-07-13 Joachim Bock Precursor material for Bi-based oxide superconductor and process for preparing such material
US8946126B2 (en) * 2004-11-22 2015-02-03 Nexans Precursor material for bi-based oxide superconductor and process for preparing such material
CN107971126A (en) * 2017-12-05 2018-05-01 广东省资源综合利用研究所 One kind separated method of bismuth arsenic from high arsenic bismuth iron concentrate
CN107971126B (en) * 2017-12-05 2019-07-16 广东省资源综合利用研究所 A method of bismuth arsenic separates from high arsenic bismuth iron concentrate

Also Published As

Publication number Publication date
JP2782594B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
WO1991019029A1 (en) Oxide superconductor and production thereof
Huang et al. Formation of the Liquid Phase in the System Bi‐Pb‐Sr‐Ca‐Cu‐O
JP2556401B2 (en) Oxide superconductor and method for manufacturing the same
JP2782594B2 (en) Method for producing superconducting fibrous crystal
US7655601B2 (en) Enhanced melt-textured growth
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
Emmen et al. Growth of Bi-(Sr, La)-Cu-O single crystals with the floating-zone technique
Zhang et al. Sustainable Recycling Strategy of Seed Crystal for Preparation of YBCO Bulk Superconductor
JPH02275799A (en) Oxide superconductor and its production
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPH07106906B2 (en) Oxide superconducting material containing rare earth element and method for producing the same
JP3631415B2 (en) Method for producing oxide single crystal
JPH0465395A (en) Superconducting fibrous crystal and its production
JPH05301797A (en) Production of oxide high-temperature superconductor
JPH0818910B2 (en) Method for producing oxide superconducting single crystal
JPH09255335A (en) Production of bulk-oxide superconductor
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
Kim et al. The Effects of Seeding on the Formation of High-Tc Bi-Pb-Sr-Ca-Cu-O Compounds
JPH03271156A (en) Production of oxide superconductor bulk
JPH06211519A (en) Superconductor and its production
JPH04160062A (en) Production of superconducting material
JPH06107497A (en) Superconducting fibrous crystal, single crystal and production thereof
JP2003277199A (en) METHOD FOR PRODUCING Bi-BASED OXIDE SUPERCONDUCTING WHISKER
Wong-Ng et al. X-Ray Characterization of the Crystallization Process of High-T C Superconducting Oxides in the Sr-Bi-Pb-Ca-Cu-O System

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term