JPH06107497A - Superconducting fibrous crystal, single crystal and production thereof - Google Patents

Superconducting fibrous crystal, single crystal and production thereof

Info

Publication number
JPH06107497A
JPH06107497A JP3273251A JP27325191A JPH06107497A JP H06107497 A JPH06107497 A JP H06107497A JP 3273251 A JP3273251 A JP 3273251A JP 27325191 A JP27325191 A JP 27325191A JP H06107497 A JPH06107497 A JP H06107497A
Authority
JP
Japan
Prior art keywords
phase
crystal
fibrous
powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3273251A
Other languages
Japanese (ja)
Other versions
JPH0725639B2 (en
Inventor
Ichiro Matsubara
一郎 松原
Toru Ogura
透 小倉
Hiroshi Yamashita
博志 山下
Minoru Kinoshita
実 木下
Tomoji Kawai
知二 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3273251A priority Critical patent/JPH0725639B2/en
Publication of JPH06107497A publication Critical patent/JPH06107497A/en
Publication of JPH0725639B2 publication Critical patent/JPH0725639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a superconducting fibrous crystal of Bi2Sr2Ca2Cu3O10 having high critical temp. by burying the fibrous crystal of Bi2Sr2CaCu2O8 structure or the like into an oxide powder having a specific composition containing Li and heat treating. CONSTITUTION:A fibrous crystal composed of Bi, Sr, Ca, Cu and O and having Bi2Sr2CaCu2O8 structure (2212 phase) or a fibrous crystal composed of Bi, Sr, Cu and O and having Bi2Sr2CuO6 structure (2201 phase) is prepared. Next, the fibrous crystal is buried into the oxide power having the atomic composition ratio of Bi=1, Sr=0.5-1.5, Ca=1-3, Cu=1-5, Pb=0.2-1 and Li=0.05-0.25. Next, by heat-treating at 833-845 deg.C, the superconducting fibrous crystal having the atomic composition ratio expressed by the formula (wherein 0<x<0.4, 1.4<=y<=2, 0.01<z<0.1, 1.9<w<11) and Bi2Sr2Ca2Cu3O10 structure (2223 phase) is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導繊維状結晶、単
結晶およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a superconducting fibrous crystal, a single crystal and a method for producing the same.

【0002】[0002]

【従来の技術】超電導体の臨界温度(Tc)が液体窒素
温度を超えることは、冷却コストの低下に大きな意義が
ある。臨界温度が液体窒素温度を超える酸化物超電導体
としては、例えばY系、Bi系、Tl系の超電導体が挙
げられる。これらのうちBi系では、Bi2 Sr2 Cu
6 相(2201相)、Bi2 Sr2 CaCu2 8
(2212相)及びBi2 Sr2 Ca2 Cu3 10(2
223相)の3種の異なった相が存在し、各々の臨界温
度から20K相、80K相、110K相とも呼ばれてい
る。これらのうち、臨界温度の最も高い2223相は、
Tl系に比べ毒性が少ないこと、液体窒素温度との間で
大きな温度マージンがとれることなどの理由から、超電
導繊維状結晶および単結晶の実用化に際して最も有望な
材料と考えられている。
2. Description of the Related Art When the critical temperature (Tc) of a superconductor exceeds the temperature of liquid nitrogen, it has great significance in reducing cooling costs. Examples of the oxide superconductor whose critical temperature exceeds the liquid nitrogen temperature include Y-based, Bi-based, and Tl-based superconductors. Among these, in the Bi system, Bi 2 Sr 2 Cu
O 6 phase (2201 phase), Bi 2 Sr 2 CaCu 2 O 8 phase (2212 phase) and Bi 2 Sr 2 Ca 2 Cu 3 O 10 (2
223 phase), which are different from each other, and are also called 20K phase, 80K phase, and 110K phase, depending on the critical temperature of each. Of these, the 2223 phase with the highest critical temperature is
It is considered to be the most promising material for practical application of superconducting fibrous crystals and single crystals because of its low toxicity compared to Tl system and large temperature margin with liquid nitrogen temperature.

【0003】[0003]

【発明が解決しようとする課題】2223相の生成条件
は非常にデリケートであり、生成条件が僅かに変化する
ことにより2223相と2201相または2212相と
の混合相が生成する欠点があった。
The production conditions of the 2223 phase are very delicate, and there is a drawback that a mixed phase of 2223 phase and 2201 phase or 2212 phase is produced due to a slight change in the production conditions.

【0004】そこで、本発明者は、2223相の大型単
結晶および繊維状結晶を作製する方法を開発し、その方
法を発表した(松原ら、Appl.Phys.Let
t.,58,409(1991))。この方法は、CA
P法(Conversionby Annealing
in Powder)と呼ばれる方法であり、220
1相または2212相の単結晶または繊維状結晶をB
i、Sr、Ca、CuおよびPbを含む適切な組成の酸
化物粉末中に埋め込み、これを適切な温度で熱処理する
ことにより、上記単結晶または繊維状結晶は、元の形状
を維持したまま結晶構造が2201相または2212相
から2223相に変化し、大型の2223相の単結晶お
よび繊維状結晶が作製できるという方法である。
Therefore, the present inventor has developed a method for producing large single crystals of 2223 phase and fibrous crystals, and announced the method (Matsubara et al., Appl. Phys. Let.
t. , 58, 409 (1991)). This method is
P method (Conversion by Annealing)
In Powder), the method is called 220
1 phase or 2212 phase single crystal or fibrous crystal B
The single crystal or the fibrous crystal is crystallized while maintaining its original shape by embedding it in an oxide powder having an appropriate composition containing i, Sr, Ca, Cu and Pb and heat-treating the oxide powder at an appropriate temperature. This is a method in which the structure changes from 2201 phase or 2212 phase to 2223 phase, and large-sized 2223 phase single crystals and fibrous crystals can be produced.

【0005】しかし、上記のCAP法を用いて得た22
23相の単結晶または繊維状結晶の臨界温度は、液体窒
素温度に比べ、未だ十分に高いものではなかった。
However, 22 obtained using the CAP method described above
The critical temperature of the 23-phase single crystal or fibrous crystal was not yet sufficiently higher than the liquid nitrogen temperature.

【0006】本発明は、臨界温度がより高く、実用化が
可能な2223相の超電導繊維状結晶および単結晶を提
供することを目的とする。
It is an object of the present invention to provide a 2223 phase superconducting fibrous crystal and a single crystal which have a higher critical temperature and can be put to practical use.

【0007】[0007]

【課題を解決するための手段】本発明者は、この様な目
的を達成するため種々研究を重ねた結果、2223相の
単結晶、繊維状結晶にLiを添加することにより臨界温
度を高めることができることを見出し本発明を完成し
た。
The present inventors have conducted various studies in order to achieve such an object, and as a result, increased the critical temperature by adding Li to a 2223 phase single crystal or fibrous crystal. The present invention has been completed by finding that the above can be achieved.

【0008】すなわち、本発明は、Bi、Sr、Ca、
Cu、Pb、LiおよびOからなり、その原子の組成比
がBi2-x Pbx Sry Cay Cu3 Liz w (0<
x<0.4、1.4≦y≦2.0、0.01<z<0.
1、および9.0<w<11.0)であり、且つBi2
Sr2 Ca2 Cu3 10構造(2223相)を有する超
電導繊維状結晶を提供するものである。
That is, according to the present invention, Bi, Sr, Ca,
Cu, Pb, consists Li and O, the composition ratio of the atoms Bi 2-x Pb x Sr y Ca y Cu 3 Li z O w (0 <
x <0.4, 1.4 ≦ y ≦ 2.0, 0.01 <z <0.
1 and 9.0 <w <11.0), and Bi 2
The present invention provides a superconducting fibrous crystal having a Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase).

【0009】また、本発明は、Bi、Sr、Ca、C
u、Pb、LiおよびOからなり、その原子の組成比が
Bi2-x Pbx Sry Cay Cu3 Liz w (0<x
<0.4、1.4≦y≦2.0、0.01<z<0.
1、および9.0<w<11.0)であり、且つBi2
Sr2 Ca2 Cu3 10構造(2223相)を有する超
電導単結晶を提供するものである。
The present invention is also based on Bi, Sr, Ca, C.
It consists of u, Pb, Li and O, and the composition ratio of the atoms is Bi 2-x Pb x Sr y Ca y Cu 3 Li z O w (0 <x
<0.4, 1.4 ≦ y ≦ 2.0, 0.01 <z <0.
1 and 9.0 <w <11.0), and Bi 2
The present invention provides a superconducting single crystal having a Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase).

【0010】さらに、本発明は、(a)Bi、Sr、C
a、CuおよびOからなり、Bi2 Sr2 CaCu2
8 構造(2212相)を有する繊維状結晶、またはB
i、Sr、CuおよびOからなり、Bi2 Sr2 CuO
6 構造(2201相)を有する繊維状結晶を、(b)原
子の組成比が Bi=1.0 Sr=0.5〜1.5 Ca=1.0〜3.0 Cu=1.0〜5.0 Pb=0.2〜1.0 Li=0.05〜0.25 である酸化物粉末中に埋め込み、833℃〜845℃で
熱処理することを特徴とする、原子の組成比がBi2-x
Pbx Sry Cay Cu3 Liz w (0<x<0.
4、1.4≦y≦2.0、0.01<z<0.1、およ
び9.0<w<11.0)であり、且つBi2 Sr2
2 Cu3 10構造(2223相)を有する超電導繊維
状結晶の製造方法を提供するものである。
Further, the present invention provides (a) Bi, Sr, C
a, Cu and O, Bi 2 Sr 2 CaCu 2 O
Fibrous crystals having 8 structures (2212 phases), or B
i 2 Sr 2 CuO consisting of i, Sr, Cu and O
A fibrous crystal having 6 structures (2201 phase) was used, and the composition ratio of (b) atoms was Bi = 1.0 Sr = 0.5 to 1.5 Ca = 1.0 to 3.0 Cu = 1.0 to 5.0 Pb = 0.2 to 1.0 Li = 0.05 to 0.25 embedded in oxide powder and heat treated at 833 ° C. to 845 ° C., atomic composition ratio Bi 2-x
Pb x Sr y Ca y Cu 3 Li z O w (0 <x <0.
4, 1.4 ≦ y ≦ 2.0, 0.01 <z <0.1, and 9.0 <w <11.0), and Bi 2 Sr 2 C
The present invention provides a method for producing a superconducting fibrous crystal having an a 2 Cu 3 O 10 structure (2223 phase).

【0011】さらにまた、本発明は、(a)Bi、S
r、Ca、CuおよびOからなり、Bi2 Sr2 CaC
2 8 構造(2212相)を有する単結晶、またはB
i、Sr、CuおよびOからなり、Bi2 Sr2 CuO
6 構造(2201相)を有する単結晶を、(b)原子の
組成比が Bi=1.0 Sr=0.5〜1.5 Ca=1.0〜3.0 Cu=1.0〜5.0 Pb=0.2〜1.0 Li=0.05〜0.25 である酸化物粉末中に埋め込み、833℃〜845℃で
熱処理することを特徴とする、原子の組成比がBi2-x
Pbx Sry Cay Cu3 Liz w (0<x<0.
4、1.4≦y≦2.0、0.01<z<0.1、及び
9.0<w<11.0)であり、且つBi2 Sr2 Ca
2 Cu3 10構造(2223相)を有する超電導単結晶
の製造方法を提供するものである。
Furthermore, the present invention provides (a) Bi, S
consisting of r, Ca, Cu and O, Bi 2 Sr 2 CaC
Single crystal having u 2 O 8 structure (2212 phase), or B
i 2 Sr 2 CuO consisting of i, Sr, Cu and O
A single crystal having 6 structures (2201 phase) was prepared by using (b) atom composition ratio Bi = 1.0 Sr = 0.5 to 1.5 Ca = 1.0 to 3.0 Cu = 1.0 to 5 0.0 Pb = 0.2 to 1.0 Li = 0.05 to 0.25 embedded in an oxide powder and heat treated at 833 ° C. to 845 ° C., the atomic composition ratio is Bi 2 -x
Pb x Sr y Ca y Cu 3 Li z O w (0 <x <0.
4, 1.4 ≦ y ≦ 2.0, 0.01 <z <0.1, and 9.0 <w <11.0), and Bi 2 Sr 2 Ca.
The present invention provides a method for producing a superconducting single crystal having a 2 Cu 3 O 10 structure (2223 phase).

【0012】本発明の超電導繊維状結晶および単結晶の
製造に用いる、Bi、Sr、Ca、CuおよびOからな
り、Bi2 Sr2 CaCu2 8 構造(2212相)を
有する繊維状結晶および単結晶、並びにBi、Sr、C
uおよびOからなり、Bi2Sr2 CuO6 構造(22
01相)を有する繊維状結晶および単結晶は、以下の文
献1、文献2または文献3に記載の方法により製造でき
る。
A fibrous crystal and a single crystal composed of Bi, Sr, Ca, Cu and O and having a Bi 2 Sr 2 CaCu 2 O 8 structure (2212 phase), which are used for producing the superconducting fibrous crystal and the single crystal of the present invention. Crystals, Bi, Sr, C
It consists of u and O and has a Bi 2 Sr 2 CuO 6 structure (22
The fibrous crystal and the single crystal having the (01 phase) can be produced by the method described in the following Document 1, Document 2 or Document 3.

【0013】文献1:松原ら,Jpn.J.Appl.
Phys.,28,L1121(1989) 文献2:松原ら,J.Cryst.Growth,11
,973(1991) 文献3:岸田ら,J.Cryst.Growth,
,937(1990) 本発明で使用する2212相または2201相の繊維状
結晶の長さは、3〜15mm程度であり、単結晶の大き
さは、2×2mm2 程度である。
Reference 1: Matsubara et al., Jpn. J. Appl.
Phys. , 28 , L1121 (1989) Reference 2: Matsubara et al. Cryst. Growth, 11
0 , 973 (1991) Reference 3: Kishida et al., J. Am. Cryst. Growth, 9
9 , 937 (1990) The length of the 2212 phase or 2201 phase fibrous crystal used in the present invention is about 3 to 15 mm, and the size of the single crystal is about 2 × 2 mm 2 .

【0014】上記の2212相または2201相の繊維
状結晶あるいは単結晶を埋め込むための粉末は、原子組
成比で、Bi=1.0として、Sr=0.5〜1.5、
Ca=1.0〜3.0,Cu=1.0〜5.0,Pb=
0.2〜1.0,Li=0.05〜0.25となるよう
に原料物質を混合した後、焼成することにより作製す
る。原料物質は、焼成により酸化物を形成し得るもので
あれば、特に限定されず、金属単体、酸化物、各種の化
合物(炭酸塩など)が使用できる。原料物質としては、
上記の原子を2種以上含む化合物を使用しても良い。焼
成を大気中などの酸素雰囲気下で行なう場合および原料
物質自体が十分量の酸素を含んでいる場合には、酸素源
となる原料物質を使用する必要はない。焼成温度および
時間は、使用する原料物質の種類、組成比などにより異
なるが、通常800〜860℃程度で、5〜100時間
程度の範囲内にあり、一例として、840℃で20時間
である。焼成手段も特に限定されず、電気加熱炉、ガス
加熱炉、光加熱炉など任意の手段を採用し得る。形成さ
れた焼成物は十分に粉砕し粉末状にする。次いで、この
粉末に上記の文献記載の方法により得られた2212相
または2201相の繊維状結晶あるいは単結晶を埋め込
み、熱処理する。熱処理温度および時間は、使用する粉
末の組成比、埋め込む繊維状結晶および単結晶の大きさ
などにより異なるが、通常833℃〜845℃程度で8
0〜200時間程度の範囲内にあり、一例として、84
0℃で150時間である。熱処理手段も特に限定され
ず、電気加熱炉、ガス加熱炉、光加熱炉など任意の手段
を採用し得る。熱処理終了後、粉末中から繊維状結晶あ
るいは単結晶を分離して取り出すことにより、Bi2-x
Pbx Sry Cay Cu3 Liz w (0<x<0.
4、1.4≦y≦2.0、0.01<z<0.1、およ
び9.0<w<11.0)なる組成を有し、且つBi2
Sr2 Ca2 Cu3 10構造(2223相)を持つ超電
導繊維状結晶および単結晶を得ることができる。
The powder for embedding the 2212 phase or 2201 phase fibrous crystal or single crystal has an atomic composition ratio of Bi = 1.0, Sr = 0.5 to 1.5,
Ca = 1.0 to 3.0, Cu = 1.0 to 5.0, Pb =
It is manufactured by mixing the raw materials so that 0.2 to 1.0 and Li = 0.05 to 0.25 and then firing. The raw material is not particularly limited as long as it can form an oxide by firing, and simple metals, oxides, various compounds (carbonates, etc.) can be used. As a raw material,
A compound containing two or more of the above atoms may be used. When firing is performed in an oxygen atmosphere such as in the air, or when the raw material itself contains a sufficient amount of oxygen, it is not necessary to use the raw material that serves as an oxygen source. The firing temperature and time are usually 800 to 860 ° C. and 5 to 100 hours, for example, 840 ° C. and 20 hours, although the firing temperature and time vary depending on the type of raw material used and the composition ratio. The firing means is also not particularly limited, and any means such as an electric heating furnace, a gas heating furnace, and a light heating furnace can be adopted. The fired product thus formed is sufficiently pulverized into powder. Next, this powder is embedded with a fibrous crystal or single crystal of 2212 phase or 2201 phase obtained by the method described in the above-mentioned literature and heat-treated. The heat treatment temperature and time differ depending on the composition ratio of the powder used, the size of the fibrous crystals and single crystals to be embedded, etc.
It is in the range of about 0 to 200 hours, and as an example, 84
150 hours at 0 ° C. The heat treatment means is also not particularly limited, and any means such as an electric heating furnace, a gas heating furnace, and a light heating furnace can be adopted. After the heat treatment is completed, the fibrous crystals or single crystals are separated and taken out from the powder to obtain Bi 2-x.
Pb x Sr y Ca y Cu 3 Li z O w (0 <x <0.
4, 1.4 ≦ y ≦ 2.0, 0.01 <z <0.1, and 9.0 <w <11.0), and Bi 2
Superconducting fibrous crystals and single crystals having the Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase) can be obtained.

【0015】詳しくは以下の実施例において示される
が、本発明のLiを含む2223相の超電導繊維状結晶
および単結晶は、同様の方法で製造したLiを含まない
2223相の超電導繊維状結晶および単結晶に比べて臨
界温度が約1K上昇する。すなわち、Bi系2223相
の臨界温度の向上にLiの添加が有効であることが明か
となった。
As will be described in detail in the following Examples, the 2223 phase superconducting fibrous crystals and single crystals of the present invention containing Li are 2223 phase superconducting fibrous crystals produced by the same method. The critical temperature rises by about 1K as compared with a single crystal. That is, it became clear that the addition of Li is effective in improving the critical temperature of the Bi-based 2223 phase.

【0016】本発明の製造方法においては、下記の
(イ)および(ロ)の条件を充足することを必須とす
る。
In the manufacturing method of the present invention, it is essential to satisfy the following conditions (a) and (b).

【0017】(イ)特定組成範囲の成分比を有する粉末
を使用すること;組成比が仮に一種でも規定範囲外とな
った場合には、Liを添加した2223相の繊維状結晶
および単結晶の生成は困難となる。
(A) Use a powder having a composition ratio within a specific composition range; if even one composition ratio is out of the specified range, a 2223 phase fibrous crystal and a single crystal containing Li are added. Generation is difficult.

【0018】(ロ)特定範囲の温度で熱処理すること;
焼成粉末のすべての組成が規定範囲内であっても、熱処
理温度が規定範囲外になれば、Liを添加した2223
相の超電導繊維状結晶および単結晶の製造は著しく困難
になる。
(B) heat treatment at a temperature within a specific range;
Even if all the compositions of the fired powder were within the specified range, if the heat treatment temperature was out of the specified range, Li was added.
The production of phase superconducting fibrous crystals and single crystals becomes extremely difficult.

【0019】本発明における、Li添加による臨界温度
上昇の原因は未だ十分に解明されていないが、以下に示
すような2種類の可能性が考えられる。
The cause of the increase in the critical temperature due to the addition of Li in the present invention has not been fully clarified yet, but the following two possibilities are conceivable.

【0020】1つの可能性は、ホール濃度の最適化であ
る。一般に酸化物超電導体の臨界温度はキャリアーであ
るホールの濃度と相関関係を持つことが知られている。
すなわち、臨界温度を最大にする最適のホール濃度が存
在し、もしホール濃度が最適値より過剰或いは不足すれ
ば臨界温度は低下する。CAP法で製造したLi添加2
223相の繊維状結晶および単結晶が、Liを含まない
2223相の繊維状結晶および単結晶に比べて高い臨界
温度を持つ原因として、Liがホールの濃度の最適化に
役立っていることが挙げられる。
One possibility is the optimization of hole concentration. It is generally known that the critical temperature of an oxide superconductor has a correlation with the concentration of holes that are carriers.
That is, there is an optimum hole concentration that maximizes the critical temperature, and if the hole concentration is over or under the optimum value, the critical temperature decreases. Li addition 2 produced by CAP method
The reason why the 223 phase fibrous crystal and the single crystal have a higher critical temperature than the 2223 phase fibrous crystal and the single crystal not containing Li is that Li is useful for optimizing the hole concentration. To be

【0021】もう一つの可能性は、アルカリ土類金属
(Sr、Ca)の比が変化したことである。Bi系超電
導体では、SrとCaの比が臨界温度に影響を与えるこ
とが知られている。イオン半径の大きいSrの比が大き
くなる程臨界温度が上昇する傾向がある。CAP法にお
いて2212相あるいは2201相から2223相に変
換する場合、Liの有無がSrとCaの比に影響を与
え、臨界温度が上昇したことも考えられる。
Another possibility is that the ratio of alkaline earth metals (Sr, Ca) has changed. In Bi-based superconductors, it is known that the ratio of Sr to Ca affects the critical temperature. The critical temperature tends to increase as the ratio of Sr having a large ionic radius increases. When converting from the 2212 phase or 2201 phase to the 2223 phase in the CAP method, it is also considered that the presence or absence of Li affects the ratio of Sr and Ca and the critical temperature rises.

【0022】[0022]

【発明の効果】本発明によれば、Bi、Sr、Ca、C
u、Pb、LiおよびOからなり、その原子の組成比が
Bi2-x Pbx Sry Cay Cu3 Liz w (0<x
<0.4、1.4≦y≦2.0、0.01<z<0.
1、9.0<w<11.0)であり、且つBi2 Sr2
Ca2 Cu3 10構造(2223相)を有する超電導繊
維状結晶および単結晶が得られる。
According to the present invention, Bi, Sr, Ca, C
It consists of u, Pb, Li and O, and the composition ratio of the atoms is Bi 2-x Pb x Sr y Ca y Cu 3 Li z O w (0 <x
<0.4, 1.4 ≦ y ≦ 2.0, 0.01 <z <0.
1, 9.0 <w <11.0) and Bi 2 Sr 2
Superconducting fibrous crystals and single crystals having a Ca 2 Cu 3 O 10 structure (2223 phase) are obtained.

【0023】本発明では、Liの添加がBi系2223
相の臨界温度の向上に有効であることが明かとなった。
液体窒素中での応用を考えた場合、より大きな温度マー
ジンが取れることになり、これにより高い臨界電流密度
が達成できることになる。従って、液体窒素中で使用で
きる磁場発生用マグネット材料、電力貯蔵用および電力
輸送用の線材の特性向上に役立つものと期待される。
In the present invention, the addition of Li is based on Bi type 2223.
It has been revealed that it is effective in improving the critical temperature of the phase.
Considering the application in liquid nitrogen, a larger temperature margin can be taken, and thus a high critical current density can be achieved. Therefore, it is expected to be useful for improving the characteristics of magnetic field generating magnet materials that can be used in liquid nitrogen, and electric wire for electric power storage and electric power transportation.

【0024】[0024]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

【0025】なお、以下の実施例においてCAP法にお
ける埋込み用の粉末の作製に使用した各原子源となる原
料は、下記のものであった。
The raw materials used as the respective atom sources used to prepare the powder for embedding in the CAP method in the following examples were as follows.

【0026】*Bi源 酸化ビスマス(Bi2 3 ) *Sr源 炭酸ストロンチウム(SrCO3 ) *Ca源 炭酸カルシウム(CaCO3 ) *Cu源 酸化銅 (CuO) *Pb源 酸化鉛(PbO) *Li源 炭酸リチウム(Li2 CO3 * Bi source Bismuth oxide (Bi 2 O 3 ) * Sr source Strontium carbonate (SrCO 3 ) * Ca source Calcium carbonate (CaCO 3 ) * Cu source Copper oxide (CuO) * Pb source Lead oxide (PbO) * Li Source Lithium carbonate (Li 2 CO 3 )

【0027】[0027]

【実施例1】Bi2 Sr2 Ca4 Cu6 Pb0.5 Li
0.2 x に示す原子組成比となる様に各原子源となる原
料を十分に混合した後、その15gをアルミナルツボに
入れ、電気炉中で840℃で20時間焼成した。粉砕
後、再び840℃で20時間焼成し、次いで焼成物を十
分に粉砕し、CAP法における埋込み用の粉末とした。
Example 1 Bi 2 Sr 2 Ca 4 Cu 6 Pb 0.5 Li
After thoroughly mixing the raw materials to be the respective atomic sources so that the atomic composition ratio was 0.2 O x , 15 g of the raw materials were placed in an alumina crucible and fired at 840 ° C. for 20 hours in an electric furnace. After crushing, it was baked again at 840 ° C. for 20 hours, and then the baked product was sufficiently crushed to obtain a powder for embedding in the CAP method.

【0028】次いで、2212構造を持つ繊維状結晶数
十本を、上記粉末中に埋め込み、電気炉中各々830
℃、835℃、838℃、840℃、843℃、845
℃で150時間熱処理し、各温度における磁化率の推移
を測定した。結果を図1に示す。 なお、図1中の各プ
ロットは、以下の試料を意味する。
Next, dozens of fibrous crystals having a 2212 structure were embedded in the above powder, and 830 each was placed in an electric furnace.
℃, 835 ℃, 838 ℃, 840 ℃, 843 ℃, 845
It heat-processed at 150 degreeC for 150 hours, and measured the transition of the magnetic susceptibility at each temperature. The results are shown in Fig. 1. In addition, each plot in FIG. 1 means the following samples.

【0029】●は、上記粉末中における加熱処理をしな
い試料についての結果である。
 indicates the result of the sample in the above powder which was not heat-treated.

【0030】○は、上記粉末中、830℃で加熱処理を
行った試料についての結果である。
∘ indicates the result of the sample which was heat-treated at 830 ° C. in the above powder.

【0031】△は、上記粉末中、835℃で加熱処理を
行った試料についての結果である。
Δ is the result of the sample which was heat-treated in the above powder at 835 ° C.

【0032】▲は、上記粉末中、838℃で加熱処理を
行った試料についての結果である。
▴ represents the results of a sample in the above powder which was heat-treated at 838 ° C.

【0033】□は、上記粉末中、840℃で加熱処理を
行った試料についての結果である。
□ represents the result of the sample which was heat-treated in the above powder at 840 ° C.

【0034】■は、上記粉末中、843℃で加熱処理を
行った試料についての結果である。
(3) is the result of a sample which was heat-treated at 843 ° C. in the above powder.

【0035】図1の結果より、熱処理温度が840℃〜
843℃の時、2223相にほぼ完全に変換することが
確認された。また、熱処理温度が845℃の時は、繊維
状結晶は粉末と分離不可能となる。これは、熱処理温度
が高くなるに従い、埋め込み粉末中の部分溶融による液
相が多くなり、繊維状結晶を侵食するためと思われる。
From the results shown in FIG. 1, the heat treatment temperature is 840 ° C.
It was confirmed that at 843 ° C., almost completely converted to 2223 phase. Moreover, when the heat treatment temperature is 845 ° C., the fibrous crystals cannot be separated from the powder. This is considered to be because as the heat treatment temperature increases, the liquid phase due to partial melting in the embedded powder increases and corrodes the fibrous crystals.

【0036】臨界温度付近の磁化率の温度変化を図2に
示す。
FIG. 2 shows changes in magnetic susceptibility with temperature near the critical temperature.

【0037】なお、図2中、●は、Liを含まない22
23構造の試料を示す。
In FIG. 2, the black circles 22 do not contain Li.
23 shows a sample of structure 23.

【0038】○は、Liを含む2223構造の試料を示
す。
◯ indicates a sample having a 2223 structure containing Li.

【0039】Liを添加した試料(○)は、840℃で
熱処理を行ったものである。比較として、Liを含まな
い試料(●)を示す。これは、CAP法で作成したが、
埋め込み粉末中にLiは含んでいないものである。Li
を添加した試料(○)の臨界温度は、108.1Kであ
り、Liを添加していない試料(●)の臨界温度(10
7.0K)に比べ1.1K上昇した。
The sample (◯) to which Li was added was heat-treated at 840 ° C. For comparison, a sample not containing Li (●) is shown. This was created by the CAP method,
The embedded powder does not contain Li. Li
The critical temperature of the sample (◯) added with is 108.1K, and the critical temperature (10) of the sample without addition of Li (10) is
1.1K higher than 7.0K).

【0040】この繊維状結晶の電気抵抗と絶対温度との
関係を直流四端子法により測定した。結果を図3に示
す。図3から明らかなように、電気抵抗がゼロになる温
度は107.5Kであった。
The relationship between the electric resistance of this fibrous crystal and the absolute temperature was measured by the DC four-terminal method. The results are shown in Fig. 3. As is clear from FIG. 3, the temperature at which the electric resistance became zero was 107.5K.

【0041】[0041]

【実施例2】埋め込み用粉末の組成をBi2 Sr2 Ca
4 Cu6 Pb0.5 Li0.3 x に変えること以外は実施
例1の手法に準じて2212構造を有する繊維状結晶を
熱処理し、次いでこの結晶を粉末と分離した。この場
合、熱処理温度838〜840℃においてほぼ完全に2
223相に変換した試料が得られた。実施例1に比べ、
最適熱処理温度は約3℃低下した。得られたLi添加2
223相の繊維状結晶の臨界温度は、108.1Kであ
り、実施例1の場合と同一であった。
[Example 2] The composition of the powder for embedding was set to Bi 2 Sr 2 Ca.
A fibrous crystal having a 2212 structure was heat-treated according to the method of Example 1 except that 4 Cu 6 Pb 0.5 Li 0.3 O x was changed, and then this crystal was separated from the powder. In this case, at the heat treatment temperature of 838 to 840 ° C., almost 2
A sample converted to the 223 phase was obtained. Compared to Example 1,
The optimum heat treatment temperature decreased by about 3 ° C. Obtained Li addition 2
The critical temperature of the 223 phase fibrous crystal was 108.1 K, which was the same as in Example 1.

【0042】[0042]

【実施例3】埋め込み用粉末の組成をBi2 Sr2 Ca
4 Cu6 Pb0.5 Li0.4 x に変えること以外は実施
例1の手法に準じて2212構造を有する繊維状結晶を
熱処理し、次いでこの結晶を粉末と分離した。この場
合、熱処理温度836〜838℃においてほぼ完全に2
223相に変換した試料が得られた。実施例1に比べ、
最適熱処理温度は約5℃低下した。得られたLi添加2
223相の繊維状結晶の臨界温度は、108.2Kであ
り、実施例1の場合とほぼ同様であった。
Example 3 The composition of the embedding powder was Bi 2 Sr 2 Ca.
A fibrous crystal having a 2212 structure was heat treated according to the method of Example 1 except that 4 Cu 6 Pb 0.5 Li 0.4 O x was changed, and then this crystal was separated from the powder. In this case, at the heat treatment temperature of 836 to 838 ° C., almost 2
A sample converted to the 223 phase was obtained. Compared to Example 1,
The optimum heat treatment temperature decreased by about 5 ° C. Obtained Li addition 2
The critical temperature of the 223 phase fibrous crystal was 108.2K, which was almost the same as in the case of Example 1.

【0043】[0043]

【実施例4】埋め込み用粉末の組成をBi2 Sr2 Ca
4 Cu6 Pb0.5 Li0.5 x に変えること以外は実施
例1の手法に準じて2212構造を有する繊維状結晶を
熱処理し、次いでこの結晶を粉末と分離した。この場
合、熱処理温度833〜835℃においてほぼ完全に2
223相に変換した試料が得られた。実施例1に比べ、
最適熱処理温度は約8℃低下した。得られたLi添加2
223相の繊維状結晶の臨界温度は、108.2Kと、
実施例1の場合とほぼ同様であった。
[Embodiment 4] The composition of the embedding powder was set to Bi 2 Sr 2 Ca.
A fibrous crystal having a 2212 structure was heat-treated in the same manner as in Example 1 except that 4 Cu 6 Pb 0.5 Li 0.5 O x was used, and then this crystal was separated from the powder. In this case, at the heat treatment temperature of 833 to 835 ° C., almost 2
A sample converted to the 223 phase was obtained. Compared to Example 1,
The optimum heat treatment temperature dropped by about 8 ° C. Obtained Li addition 2
The critical temperature of the 223 phase fibrous crystal is 108.2K,
It was almost the same as in the case of Example 1.

【0044】[0044]

【実施例5】埋め込み用粉末の組成をBi2 Sr2 Ca
4 Cu6 Pb0.5 Li0.1 x に変えること以外は実施
例1の手法に準じて2212構造を有する繊維状結晶を
熱処理し、次いでこの結晶を粉末と分離した。この場
合、熱処理温度843〜845℃においてほぼ完全に2
223相に変換した試料が得られた。実施例1に比べ、
最適熱処理温度は約2℃上昇した。得られたLi添加2
223相の繊維状結晶の臨界温度は、108.0Kであ
り、実施例1の場合とほぼ同様であった。
[Embodiment 5] The composition of the powder for embedding was set to Bi 2 Sr 2 Ca.
A fibrous crystal having a 2212 structure was heat treated according to the method of Example 1 except that 4 Cu 6 Pb 0.5 Li 0.1 O x was changed, and then this crystal was separated from the powder. In this case, at the heat treatment temperature of 843 to 845 ° C., almost 2
A sample converted to the 223 phase was obtained. Compared to Example 1,
The optimum heat treatment temperature increased by about 2 ° C. Obtained Li addition 2
The critical temperature of the 223 phase fibrous crystal was 108.0 K, which was almost the same as in the case of Example 1.

【0045】[0045]

【実施例6】埋め込み用粉末の組成をBi2 Sr2 Ca
4 Cu6 Pb0.5 Li0.3 x に変えること以外は実施
例1の手法に準じて2201構造を有する繊維状結晶を
熱処理し、次いでこの結晶を粉末と分離した。この場
合、熱処理温度838〜840℃においてほぼ完全に2
223相に変換した試料が得られた。得られたLi添加
2223相の繊維状結晶の臨界温度は、108.1K
と、実施例1の場合とほぼ同様であった。
[Embodiment 6] The composition of the powder for embedding was set to Bi 2 Sr 2 Ca.
A fibrous crystal having a 2201 structure was heat-treated according to the method of Example 1 except that 4 Cu 6 Pb 0.5 Li 0.3 O x was used, and then this crystal was separated from the powder. In this case, at the heat treatment temperature of 838 to 840 ° C., almost 2
A sample converted to the 223 phase was obtained. The critical temperature of the obtained Li-added 2223 phase fibrous crystal is 108.1K.
Was almost the same as the case of Example 1.

【0046】[0046]

【実施例7】埋め込み用粉末の組成をBi2 Sr2 Ca
4 Cu6 Pb0.5 Li0.4 x に変えること以外は実施
例1の手法に準じて2201構造を有する繊維状結晶を
熱処理し、次いでこの結晶を粉末と分離した。この場
合、熱処理温度836〜838℃においてほぼ完全に2
223相に変換した試料が得られた。得られたLi添加
2223相の繊維状結晶の臨界温度は、108.1K
と、実施例1の場合とほぼ同様であった。
[Embodiment 7] The composition of the powder for embedding is Bi 2 Sr 2 Ca.
A fibrous crystal having a 2201 structure was heat-treated according to the method of Example 1 except that 4 Cu 6 Pb 0.5 Li 0.4 O x was changed, and then this crystal was separated from the powder. In this case, at the heat treatment temperature of 836 to 838 ° C., almost 2
A sample converted to the 223 phase was obtained. The critical temperature of the obtained Li-added 2223 phase fibrous crystal is 108.1K.
Was almost the same as the case of Example 1.

【0047】[0047]

【実施例8】埋め込み用粉末の組成をBi2 Sr2 Ca
4 Cu6 Pb0.5 Li0.1 x に変えること以外は実施
例1の手法に準じて2201構造を有する繊維状結晶を
熱処理し、次いでこの結晶を粉末と分離した。この場
合、熱処理温度843〜845℃においてほぼ完全に2
223相に変換した試料が得られた。得られたLi添加
2223相の繊維状結晶の臨界温度は、108.0K
と、実施例1の場合とほぼ同様であった。
[Embodiment 8] The composition of the powder for embedding was set to Bi 2 Sr 2 Ca.
A fibrous crystal having a 2201 structure was heat-treated in the same manner as in Example 1 except that 4 Cu 6 Pb 0.5 Li 0.1 O x was used, and then this crystal was separated from the powder. In this case, at the heat treatment temperature of 843 to 845 ° C., almost 2
A sample converted to the 223 phase was obtained. The critical temperature of the obtained Li-added 2223 phase fibrous crystal is 108.0K.
Was almost the same as the case of Example 1.

【0048】[0048]

【実施例9】実施例1の手法に準じて2212構造を有
する単結晶を熱処理し、次いでこの結晶を粉末と分離し
た。この場合、熱処理温度840〜843℃においてほ
ぼ完全に2223相に変換した試料が得られた。得られ
たLi添加2223相の単結晶の臨界温度は、108.
1Kと、実施例1の場合とほぼ同様であった。
Example 9 A single crystal having a 2212 structure was heat-treated according to the method of Example 1, and then this crystal was separated from powder. In this case, at the heat treatment temperature of 840 to 843 ° C., a sample that was almost completely converted to the 2223 phase was obtained. The critical temperature of the obtained Li-added 2223 phase single crystal was 108.
1K was almost the same as in the case of Example 1.

【0049】[0049]

【実施例10】埋め込み用粉末の組成をBi2 Sr2
4 Cu6 Pb0.5 Li0.3 x に変えること以外は実
施例1の手法に準じて2212構造を有する単結晶を熱
処理し、次いでこの結晶を粉末と分離した。この場合、
熱処理温度838〜840℃においてほぼ完全に222
3相に変換した試料が得られた。得られたLi添加22
23相の単結晶の臨界温度は、108.2Kと、実施例
1の場合とほぼ同様であった。
[Embodiment 10] The composition of the powder for embedding is Bi 2 Sr 2 C.
A single crystal having a 2212 structure was heat treated according to the method of Example 1 except that it was changed to a 4 Cu 6 Pb 0.5 Li 0.3 O x , and then this crystal was separated from the powder. in this case,
222 at the heat treatment temperature of 838 to 840 ° C. almost completely
A sample converted into three phases was obtained. Obtained Li addition 22
The critical temperature of the 23-phase single crystal was 108.2K, which was almost the same as in the case of Example 1.

【0050】[0050]

【実施例11】実施例1の手法に準じて2201構造を
有する単結晶を熱処理し、次いでこの結晶を粉末と分離
した。この場合、熱処理温度840〜843℃において
ほぼ完全に2223相に変換した試料が得られた。得ら
れたLi添加2223相の単結晶の臨界温度は、10
8.1Kと、実施例1の場合とほぼ同様であった。
Example 11 A single crystal having a 2201 structure was heat-treated according to the method of Example 1, and then this crystal was separated from powder. In this case, at the heat treatment temperature of 840 to 843 ° C., a sample that was almost completely converted to the 2223 phase was obtained. The critical temperature of the obtained Li-added 2223 phase single crystal was 10
The value was 8.1K, which was almost the same as in the case of Example 1.

【0051】[0051]

【実施例12】埋め込み用粉末の組成をBi2 Sr2
4 Cu6 Pb0.5 Li0.3 x に変えること以外は実
施例1の手法に準じて2201構造を有する単結晶を熱
処理し、次いでこの結晶を粉末と分離した。この場合、
熱処理温度838〜840℃においてほぼ完全に222
3相に変換した試料が得られた。得られたLi添加22
23相の単結晶の臨界温度は、108.2Kと、実施例
1の場合とほぼ同様であった。
[Embodiment 12] The composition of the powder for embedding is Bi 2 Sr 2 C.
except changing the a 4 Cu 6 Pb 0.5 Li 0.3 O x was heat-treated single crystal having a 2201 structure in accordance with the procedure of Example 1, followed by separating the crystals and powders. in this case,
222 at the heat treatment temperature of 838 to 840 ° C. almost completely
A sample converted into three phases was obtained. Obtained Li addition 22
The critical temperature of the 23-phase single crystal was 108.2K, which was almost the same as in the case of Example 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】各熱処理温度で得られた試料の磁化率の温度依
存性を示す図である。
FIG. 1 is a diagram showing temperature dependence of magnetic susceptibility of a sample obtained at each heat treatment temperature.

【図2】Liを添加した2223繊維状結晶の臨界温度
付近での磁化率の温度依存性をLiを含まない2223
繊維状結晶と比較した図である。
FIG. 2 shows the temperature dependence of the magnetic susceptibility of a 2223 fibrous crystal added with Li in the vicinity of the critical temperature when 2223 without Li is included.
It is a figure compared with a fibrous crystal.

【図3】本発明で得られたLi添加2223繊維状結晶
の絶対温度と電気抵抗との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the absolute temperature and the electrical resistance of the Li-added 2223 fibrous crystal obtained in the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Bi、Sr、Ca、Cu、Pb、Liおよ
びOからなり、その原子の組成比がBi2-x Pbx Sr
y Cay Cu3 Liz w (0<x<0.4、1.4≦
y≦2.0、0.01<z<0.1、および9.0<w
<11.0)であり、且つBi2 Sr2 Ca2 Cu3
10構造(2223相)を有する超電導繊維状結晶。
1. A composition comprising Bi, Sr, Ca, Cu, Pb, Li and O, the atomic composition ratio of which is Bi 2-x Pb x Sr.
y Ca y Cu 3 Li z O w (0 <x <0.4, 1.4 ≦
y ≦ 2.0, 0.01 <z <0.1, and 9.0 <w
<11.0) and Bi 2 Sr 2 Ca 2 Cu 3 O
A superconducting fibrous crystal having 10 structures (2223 phases).
【請求項2】Bi、Sr、Ca、Cu、Pb、Liおよ
びOからなり、その原子の組成比がBi2-x Pbx Sr
y Cay Cu3 Liz w (0<x<0.4、1.4≦
y≦2.0、0.01<z<0.1、および9.0<w
<11.0)であり、且つBi2 Sr2 Ca2 Cu3
10構造(2223相)を有する超電導単結晶。
2. Composition of Bi, Sr, Ca, Cu, Pb, Li and O, the composition ratio of the atoms of which is Bi 2-x Pb x Sr.
y Ca y Cu 3 Li z O w (0 <x <0.4, 1.4 ≦
y ≦ 2.0, 0.01 <z <0.1, and 9.0 <w
<11.0) and Bi 2 Sr 2 Ca 2 Cu 3 O
A superconducting single crystal having 10 structures (2223 phases).
【請求項3】(a)Bi、Sr、Ca、CuおよびOか
らなり、Bi2 Sr2 CaCu2 8 構造(2212
相)を有する繊維状結晶、またはBi、Sr、Cuおよ
びOからなり、Bi2 Sr2 CuO6 構造(2201
相)を有する繊維状結晶を、(b)原子の組成比が Bi=1.0 Sr=0.5〜1.5 Ca=1.0〜3.0 Cu=1.0〜5.0 Pb=0.2〜1.0 Li=0.05〜0.25 である酸化物粉末中に埋め込み、833℃〜845℃で
熱処理することを特徴とする、原子の組成比がBi2-x
Pbx Sry Cay Cu3 Liz w (0<x<0.
4、1.4≦y≦2.0、0.01<z<0.1、及び
9.0<w<11.0)であり、且つBi2 Sr2 Ca
2 Cu3 10構造(2223相)を有する超電導繊維状
結晶の製造方法。
3. A (2) Bi 2 Sr 2 CaCu 2 O 8 structure (2212) comprising Bi, Sr, Ca, Cu and O.
Phase) or a Bi 2 Sr 2 CuO 6 structure (2201) composed of Bi, Sr, Cu and O.
(B) the composition ratio of atoms is Bi = 1.0 Sr = 0.5 to 1.5 Ca = 1.0 to 3.0 Cu = 1.0 to 5.0 Pb = 0.2-1.0 Li = 0.05-0.25 embedded in an oxide powder and heat-treated at 833 [deg.] C.-845 [deg.] C., wherein the atomic composition ratio is Bi2 -x.
Pb x Sr y Ca y Cu 3 Li z O w (0 <x <0.
4, 1.4 ≦ y ≦ 2.0, 0.01 <z <0.1, and 9.0 <w <11.0), and Bi 2 Sr 2 Ca.
A method for producing a superconducting fibrous crystal having a 2 Cu 3 O 10 structure (2223 phase).
【請求項4】(a)Bi、Sr、Ca、CuおよびOか
らなり、Bi2 Sr2 CaCu2 8 構造(2212
相)を有する単結晶、またはBi、Sr、CuおよびO
からなり、Bi2 Sr2 CuO6 構造(2201相)を
有する単結晶を、(b)原子の組成比が Bi=1.0 Sr=0.5〜1.5 Ca=1.0〜3.0 Cu=1.0〜5.0 Pb=0.2〜1.0 Li=0.05〜0.25 である酸化物粉末中に埋め込み、833℃〜845℃で
熱処理することを特徴とする、原子の組成比がBi2-x
Pbx Sry Cay Cu3 Liz w (0<x<0.
4、1.4≦y≦2.0、0.01<z<0.1、及び
9.0<w<11.0)であり、且つBi2 Sr2 Ca
2 Cu3 10構造(2223相)を有する超電導単結晶
の製造方法。
4. A structure comprising (a) Bi, Sr, Ca, Cu and O, and having a Bi 2 Sr 2 CaCu 2 O 8 structure (2212).
Phase), or Bi, Sr, Cu and O
A single crystal having a Bi 2 Sr 2 CuO 6 structure (2201 phase), the composition ratio of (b) atoms is Bi = 1.0 Sr = 0.5 to 1.5 Ca = 1.0 to 3. 0 Cu = 1.0 to 5.0 Pb = 0.2 to 1.0 Li = 0.05 to 0.25 embedded in an oxide powder and heat treated at 833 ° C. to 845 ° C. , The atomic composition ratio is Bi 2-x
Pb x Sr y Ca y Cu 3 Li z O w (0 <x <0.
4, 1.4 ≦ y ≦ 2.0, 0.01 <z <0.1, and 9.0 <w <11.0), and Bi 2 Sr 2 Ca.
A method for producing a superconducting single crystal having a 2 Cu 3 O 10 structure (2223 phase).
JP3273251A 1991-09-24 1991-09-24 Superconducting fibrous crystal, single crystal and method for producing the same Expired - Lifetime JPH0725639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273251A JPH0725639B2 (en) 1991-09-24 1991-09-24 Superconducting fibrous crystal, single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273251A JPH0725639B2 (en) 1991-09-24 1991-09-24 Superconducting fibrous crystal, single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06107497A true JPH06107497A (en) 1994-04-19
JPH0725639B2 JPH0725639B2 (en) 1995-03-22

Family

ID=17525231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273251A Expired - Lifetime JPH0725639B2 (en) 1991-09-24 1991-09-24 Superconducting fibrous crystal, single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0725639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031266A (en) * 2005-06-23 2007-02-08 Sumitomo Electric Ind Ltd Bi-BASE SUPERCONDUCTOR AND ITS MANUFACTURING METHOD, SUPERCONDUCTING WIRE MATERIAL AND SUPERCONDUCTING DEVICE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031266A (en) * 2005-06-23 2007-02-08 Sumitomo Electric Ind Ltd Bi-BASE SUPERCONDUCTOR AND ITS MANUFACTURING METHOD, SUPERCONDUCTING WIRE MATERIAL AND SUPERCONDUCTING DEVICE
JP4631813B2 (en) * 2005-06-23 2011-02-16 住友電気工業株式会社 Bi-based superconductor and manufacturing method thereof, superconducting wire and superconducting equipment

Also Published As

Publication number Publication date
JPH0725639B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
US4921834A (en) Flux method of growing oxide superconductors
US4894361A (en) Superconducting metal oxide Tl-Pb-Ca-Sr-O compositions and processes for manufacture and use
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US5017554A (en) Superconducting metal oxide Tl-Pb-Ca-Sr-Cu-O compositions and processes for manufacture and use
US5242896A (en) Superconductor crystal and process for preparing the same
JPH06107497A (en) Superconducting fibrous crystal, single crystal and production thereof
US5264414A (en) Superconducting metal oxide (Tl,Bi)1 Sr2 Ca2 Cu3 O.sub.y
JP2850310B2 (en) Superconductive metal oxide composition and method for producing the same
US5354921A (en) Single crystalline fibrous superconductive composition and process for preparing the same
US7008906B2 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
JPH0465395A (en) Superconducting fibrous crystal and its production
US5444039A (en) (Hg,Pb)-Ba-Ca-Cu-O superconductor and method of manufacturing the same
JPH08259230A (en) Oxide superconductor and production thereof
Chu et al. New materials and high temperature superconductivity
EP0441893B1 (en) Superconducting metal oxide compositions and processes for manufacture and use
EP0489087A4 (en) Superconducting metal oxide compositions and processes for manufacture and use
Hur et al. Superconductivity in the indium-doped Tl-1223 phase:(Tl0. 8In0. 2)(Sr0. 8Ba0. 2) 2Ca2Cu3O9− δ
WO1989008076A1 (en) SUPERCONDUCTIVITY IN A Bi-Ca-Sr-Cu OXIDE COMPOUND SYSTEM FREE OF RARE EARTHS
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH0465396A (en) Superconducting single crystal and its production
Wang et al. STUDY ON THE 11 OK PHASE OF THE Bi-Pb-Sr-Ca-Cu-O SUPERCONDUCTOR
JPH09502959A (en) Superconductor containing at least one of barium and strontium and thallium, copper, oxygen and fluorine
Kandyel Studies on (Hg0. 7Mo0. 3) Sr2 (Sr1− x La x) Cu2O z with a Wide Range of Doping State
JPH0676279B2 (en) Method for producing high temperature superconducting oxide single crystal
Aldica et al. Structure and superconductivity of Bi-(Pb)-Ca-Sr-Cu-O ceramics processed by arc melting

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term