JP3631415B2 - Method for producing oxide single crystal - Google Patents

Method for producing oxide single crystal Download PDF

Info

Publication number
JP3631415B2
JP3631415B2 JP2000161628A JP2000161628A JP3631415B2 JP 3631415 B2 JP3631415 B2 JP 3631415B2 JP 2000161628 A JP2000161628 A JP 2000161628A JP 2000161628 A JP2000161628 A JP 2000161628A JP 3631415 B2 JP3631415 B2 JP 3631415B2
Authority
JP
Japan
Prior art keywords
single crystal
producing
oxide single
growth
temperature gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000161628A
Other languages
Japanese (ja)
Other versions
JP2001342092A (en
Inventor
孝夫 渡辺
梓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000161628A priority Critical patent/JP3631415B2/en
Publication of JP2001342092A publication Critical patent/JP2001342092A/en
Application granted granted Critical
Publication of JP3631415B2 publication Critical patent/JP3631415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、酸化物単結晶の製造方法、特に液相線が狭いため育成が困難であった物質の単結晶を製造する方法に関するものである。
【0002】
【従来技術】
超伝導材料は、超伝導磁石、超伝導送電および高速コンピュータ素子などへの幅広い応用が期待されている。J.G.BednorzとK.A.MullerによるLa−Ba−Cu−Oからなる高温超伝導体の発見(1986年)に端を発した高温超伝導材料の研究は、上述の応用の可能性を大いに高めた。なかでもBiSrCaCu10+ δ相やHgBaCaCu8+ δ相などの3枚単位のCuO面を有する物質は、超伝導転移温度(Tc)が最も高く(100K≦Tc≦135K)(A.Schilling,M.Cantoni,J.D.Guo and H.R.Ott:Nature 363,56(1993))実用材料としての期待も大きいが充分なサイズの単結晶が得られていない。
【0003】
一方、高温超伝導体の単結晶育成法としては、その簡便さからフラックス法が広く用いられてきた。しかしBiSrCaCu10+ δ相は液相線が極めて狭いため通常の自己フラックス法では単結晶が得られず、添加剤としてKCIを加えることによってかろうじてμmサイズの結晶を得ているのみであった。
【0004】
溶媒移動浮遊帯域法(TSFZ:travelling solvent floating zone法)は大型の単結晶育成法として原理的に有望であるが、その成功例はこれまでは液相線が広く単結晶育成が容易なLa2−XSrCuO(I.Tanaka and H.Kojima:Nature 337,21(1989))やBiSrCaCu8+ δ(S.Takekawa,H.Nozaki,A.Umezono,K.Kosuda and M.Kobayashi:J.Cryst.Growth 92,687(1988))などに限られている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、BiSrCaCu10+ δ相などの液相線が極めて狭く一般には単結晶育成が困難な物質でも、育成可能な単結晶の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明による酸化物単結晶の製造方法は、溶媒移動浮遊帯域法を用い、成長速度を0.05mm/h以下とし、固液界面の温度勾配を300℃/cm以上とすることを特徴とする。また、本発明による酸化物単結晶の製造方法は、3枚単位のCuO 面を有する酸化物単結晶の製造方法であって、溶媒移動浮遊帯域法を用い、成長速度を0.1mm/h以下とし、固液界面の温度勾配を300℃/cm以上とすることを特徴とする。更に、Bi Sr Ca Cu 10+δ 相の酸化物単結晶の製造方法であって、溶媒移動浮遊帯域法を用い、成長速度を0.1mm/h以下とし、固液界面の温度勾配を300℃/cm以上とすることを特徴とする。
【0007】
本発明によれば、BiSrCaCu10+ δ相などの液相線が極めて狭く一般には単結晶育成が困難な物質でも、育成可能になるという利点がある。
【0008】
本発明をさらに詳しく説明する。液相線が狭いために単結晶育成が困難である系では、通常のフラックス法を用いた場合結晶の収率は非常に低くなってしまうため、通常のフラックス法で大型の単結晶を得るには限界がある。
【0009】
TSFZ法は原理的には温度一組成相図上の一点で結晶成長を継続できるので、液相線が狭い系でも条件が整えば大型の単結晶育成が可能であると考えられる。しかし、結晶成長の駆動力は溶液の過飽和度によって与えられるので、液相線が狭いことは低速度成長を余儀なくされることを意味する。市販の赤外線集中加熱炉では通常、低速度成長限界は0.3mm/h程度である。そこで我々は、(1)0.03mm/hの低速度成長が可能となるよう装置を改造した。このような単結晶の成長速度は0.1mm/h以下である。成長速度が0.1mm/hを超えると、液相線が狭い単結晶を成長させることができない。特に好ましくは0.05mm/h以下である。
【0010】
また、TSFZ法では溶融ゾーンは表面張力によって支えられているのでゾーンの大きさは通常4mm程度に決まってしまう。このことは有限の温度勾配下では成長温度を任意に調節できないことを意味する。そこで、(2)小さなランプ(300W、通常は1500W)を用いることによってランプの集光性を高め従来より2倍程度大きな温度勾配を実現した。大きな温度勾配は成長温度を調整可能にする他、溶融ゾーン内の熱対流を促し過飽和度を高める、組成的過冷却によるセル成長を回避するなどの効果も期待される。
【0011】
固液界面の温度勾配は、本発明において300℃/cm以上である。300℃/cm未満であると、上述の単結晶を成長させるのが困難であるからである。特に好ましくは370℃/cm以上である。
【0012】
【実施例】
以下、本発明の酸化物単結晶の製造方法について実施例にもとづいて具体的に説明する。
【0013】
【実施例1】
原料には高純度(99.999%あるいは99.999%相当)のBi,SrCO,CaCO,CuOを800℃程度で2〜3回仮焼成したあと空気中860℃で50時間本焼成することによって原料棒を作製した。こうしてできた原料棒を、下主軸20mm/h、上主軸16mm/hの高速で一旦溶融凝固させ(いわゆるゾーンパス)高密度化した。この高密度原料棒の一部は種結晶代わりに利用した。
【0014】
結晶育成本番は下主軸0.05mm/h、上主軸0.04mm/hの送り速度で行った。上下主軸の回転速度はそれぞれ10.5rpm,10.0rpmとした。ソルベントは用いなかったが結晶育成に伴って自然に形成されたと考えられる。課題を解決する手段の項で述べた様に、加熱には300Wのハロゲンランプ2個を用いた(双楕円型赤外線集中加熱炉)ため、固液界面の温度勾配は約370℃/cmと従来より2倍程度大きくなっていた。
【0015】
図1に15倍の顕微鏡写真を示すように、作製した結晶のサイズは約4×2×0.1mmでBiSrCaCu8+ δ並の大きさである。図2にアズ−グローン(as−grown)単結晶(約0.1mg)の磁化の温度依存性を示す。用いた磁場は30ガウスである。この特性はTcが約105KのBiSrCaCu10+ δ単結晶がほぼ単相でできていることを示唆するものである。
【0016】
図3にX線回折図形を示す。(002n)の反射が選択的に観測されることから、単相の単結晶であることがわかる。2θの値からc軸長は37.08Åと求まり、文献値と一致することからBiSrCaCu10+ δ単結晶であることが更に確認された。
【0017】
図4、図5に様々な雰囲気下で熱処理された試料のそれぞれ面内抵抗率、面間抵抗率を示す。
【0018】
図4中、試料aはO400℃で225時間熱処理されたもの(a; O 400℃ 225時間、と表記する)、以下同様にb; O 500℃ 50時間、c; O 600℃ 12時間、d; O−10% 600℃ 20時間、e; O−1% 600℃ 15時間、f; O−0.1% 600℃ 20時間、g; O−0.01% 600℃ 15時間で熱処理を行ったもの(試料a〜g)の面内抵抗率を示す。
【0019】
図5中、下記の条件で熱処理を行った試料h〜Oの面間抵抗率を示している。
h; O 400℃ 250時間、i; O 500℃ 75時間、j; O 600℃ 12時間、k; O−10% 600℃ 40時間、l; O−1% 600℃ 20時間、m; O−0.1% 600℃ 20時間、n; O−0.01% 600℃ 20時間、o; O 5×10−3torr。
【0020】
興味深いことに、オーバードープ側ではキャリアは確実にドープされているにもかかわらずTcは最高値の109Kから下がらない。これは3枚のCuO面のうち外側の2枚のCuO面にのみキャリアドープが進み、内側のCuO面はほぼ最適ドープ状態に保たれるためと考えられる。高いTcを維持したまま異方性を低下させうる可能性を示している。
【0021】
【発明の効果】
以上説明したように、本発明の酸化物単結晶育成法を用いれば高いTcを有するBiSrCaCu10+δ単結晶などが育成可能となるため、超伝導応用の可能性が広がる利点がある。特に、BiSrCaCu10+δ単結晶は高いTcを維持したまま異方性を低下させうると考えられるため、高Jcの実用線材への応用などが期待される。また本発明の単結晶育成法は超伝導材料のみに留まらず、一般の物質に適用可能であることは言うまでもない。
【図面の簡単な説明】
【図1】実施例1で製造された酸化物超伝導体単結晶の15倍顕微鏡写真である。
【図2】実施例1の手法で製造された酸化物超伝導体単結晶の磁化の温度変化を示す図である。
【図3】実施例1の手法で製造された酸化物超伝導体単結晶のX線回折図形を示す図である。
【図4】実施例1の手法で製造された酸化物超伝導体単結晶を様々な雰囲気下で熱処理した場合の面内抵抗率の温度変化を示す図である。
【図5】実施例1の手法で製造された酸化物超伝導体単結晶を様々な雰囲気下で熱処理した場合の面間抵抗率の温度変化を示す図である。
[0001]
[Industrial application fields]
The present invention relates to a method for producing an oxide single crystal, and more particularly to a method for producing a single crystal of a substance that has been difficult to grow due to a narrow liquidus.
[0002]
[Prior art]
Superconducting materials are expected to be widely applied to superconducting magnets, superconducting power transmission and high-speed computer elements. J. et al. G. Bednorz and K.M. A. Muller's research on high-temperature superconducting materials originated from the discovery of a high-temperature superconductor composed of La-Ba-Cu-O (1986) greatly increased the possibilities of the above-mentioned applications. Among them, a substance having a CuO 2 plane of 3 sheets such as Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ phase and HgBa 2 Ca 2 Cu 3 O 8+ δ phase has the highest superconducting transition temperature (Tc) ( 100K ≦ Tc ≦ 135K) (A. Schilling, M. Cantoni, JD Guo and HR Ott: Nature 363, 56 (1993)) Not obtained.
[0003]
On the other hand, as a method for growing a single crystal of a high-temperature superconductor, a flux method has been widely used because of its simplicity. However, the Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ phase has a very narrow liquidus, so a single crystal cannot be obtained by the normal self-flux method. By adding KCI as an additive, a micrometer-sized crystal can be obtained. It was only there.
[0004]
The solvent transfer floating zone method (TSFZ) is promising in principle as a large-scale single crystal growth method, but its successful example has so far been La 2 with a wide liquidus line and easy single crystal growth. -X Sr X CuO 4 (I. Tanaka and H. Kojima: Nature 337, 21 (1989)) and Bi 2 Sr 2 Ca 1 Cu 2 O 8+ δ (S. Takekawa, H. Nozaki, A. Umezono, K. Kosuda and M. Kobayashi: J. Cryst. Growth 92, 687 (1988)).
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a single crystal capable of growing even a substance having a very narrow liquidus line such as Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ phase and generally difficult to grow a single crystal. is there.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the oxide single crystal production method according to the present invention uses a solvent transfer floating zone method, a growth rate is 0.05 mm / h or less, and a temperature gradient at a solid-liquid interface is 300 ° C./cm or more. It is characterized by. In addition, the method for producing an oxide single crystal according to the present invention is a method for producing an oxide single crystal having a CuO 2 plane in units of three pieces , using a solvent transfer floating zone method, and a growth rate of 0.1 mm / h. The temperature gradient of the solid-liquid interface is 300 ° C./cm or more. Furthermore, it is a method for producing a Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ phase oxide single crystal, using a solvent transfer floating zone method, a growth rate of 0.1 mm / h or less, and a temperature gradient at a solid-liquid interface Is 300 ° C./cm or more.
[0007]
According to the present invention, there is an advantage that even a substance that has a very narrow liquidus line such as Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ phase and is generally difficult to grow a single crystal can be grown.
[0008]
The present invention will be described in more detail. In systems where single crystal growth is difficult due to the narrow liquidus, the yield of crystals will be very low when using the normal flux method. There are limits.
[0009]
Since the TSFZ method can in principle continue crystal growth at one point on the temperature-composition phase diagram, it is considered that large single crystals can be grown even in systems with narrow liquidus lines if conditions are adjusted. However, since the driving force for crystal growth is given by the degree of supersaturation of the solution, the narrow liquidus means that low-speed growth is forced. In a commercially available infrared concentrated heating furnace, the low-speed growth limit is usually about 0.3 mm / h. Therefore, we modified (1) the device to enable low-speed growth of 0.03 mm / h. The growth rate of such a single crystal is 0.1 mm / h or less. When the growth rate exceeds 0.1 mm / h, a single crystal having a narrow liquidus cannot be grown. Especially preferably, it is 0.05 mm / h or less.
[0010]
In the TSFZ method, since the melting zone is supported by surface tension, the size of the zone is usually determined to be about 4 mm. This means that the growth temperature cannot be arbitrarily adjusted under a finite temperature gradient. Therefore, (2) by using a small lamp (300 W, usually 1500 W), the condensing property of the lamp was improved and a temperature gradient about twice as large as that of the conventional one was realized. The large temperature gradient makes it possible to adjust the growth temperature, and also promotes thermal convection in the melting zone to increase the degree of supersaturation and avoids cell growth due to compositional supercooling.
[0011]
The temperature gradient at the solid-liquid interface is 300 ° C./cm or more in the present invention. It is because it is difficult to grow the above-mentioned single crystal when it is less than 300 ° C./cm. Particularly preferred is 370 ° C./cm or more.
[0012]
【Example】
Hereinafter, the manufacturing method of the oxide single crystal of this invention is demonstrated concretely based on an Example.
[0013]
[Example 1]
The raw materials were pre-fired high-purity (99.999% or 99.999% equivalent) Bi 2 O 3 , SrCO 3 , CaCO 3 , CuO at about 800 ° C. for 2 to 3 times, and then in air at 860 ° C. for 50 hours. The raw material rod was produced by carrying out the main firing. The raw material rod thus produced was once melted and solidified at a high speed of 20 mm / h for the lower spindle and 16 mm / h for the upper spindle (so-called zone pass) to increase the density. A part of this high-density raw material rod was used instead of the seed crystal.
[0014]
Crystal growth was performed at a feed rate of 0.05 mm / h for the lower spindle and 0.04 mm / h for the upper spindle. The rotation speeds of the upper and lower spindles were 10.5 rpm and 10.0 rpm, respectively. Although the solvent was not used, it is thought that it formed spontaneously with the crystal growth. As described in the section on how to solve the problem, since two 300 W halogen lamps were used for heating (double elliptical infrared central heating furnace), the temperature gradient of the solid-liquid interface was about 370 ° C./cm. It was about twice as large.
[0015]
As shown in FIG. 1, a 15-fold micrograph shows that the size of the produced crystal is about 4 × 2 × 0.1 mm, which is about the same size as Bi 2 Sr 2 Ca 1 Cu 2 O 8+ δ . FIG. 2 shows the temperature dependence of the magnetization of an as-grown single crystal (about 0.1 mg). The magnetic field used is 30 gauss. This characteristic suggests that a Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ single crystal having a Tc of about 105 K is almost composed of a single phase.
[0016]
FIG. 3 shows an X-ray diffraction pattern. Since (002n) reflection is selectively observed, it can be seen that it is a single-phase single crystal. From the value of 2θ, the c-axis length was found to be 37.08 mm, and it was confirmed to be a Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ single crystal because it coincided with the literature value.
[0017]
4 and 5 show the in-plane resistivity and the inter-surface resistivity, respectively, of the samples heat-treated in various atmospheres.
[0018]
In Figure 4, the sample a is what is heat treated 225 h O 2 400 ℃ (a; O 2 400 ℃ 225 hours, and hereinafter), and so on b; O 2 500 ℃ 50 hours, c; O 2 600 ° C 12 hours, d; O 2 -10% 600 ° C 20 hours, e; O 2 -1% 600 ° C 15 hours, f; O 2 -0.1% 600 ° C 20 hours, g; O 2 -0.01 % 600 ° C. Indicates the in-plane resistivity of the sample heat-treated at 15 ° C. (samples a to g).
[0019]
In FIG. 5, the inter-surface resistivity of samples h to O that have been heat-treated under the following conditions is shown.
h; O 2 400 ° C. 250 hours, i; O 2 500 ° C. 75 hours, j; O 2 600 ° C. 12 hours, k; O 2 −10% 600 ° C. 40 hours, l; O 2 −1% 600 ° C. 20 hours , M; O 2 −0.1% 600 ° C. for 20 hours, n; O 2 −0.01% 600 ° C. for 20 hours, o; O 2 5 × 10 −3 torr.
[0020]
Interestingly, on the overdoped side, Tc does not drop from the highest value of 109 K, although the carriers are definitely doped. This is presumably because carrier doping proceeds only on the outer two CuO 2 surfaces of the three CuO 2 surfaces, and the inner CuO 2 surface is maintained in an almost optimally doped state. This shows the possibility that anisotropy can be reduced while maintaining a high Tc.
[0021]
【The invention's effect】
As described above, if the oxide single crystal growth method of the present invention is used, Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ single crystal having a high Tc can be grown, so that the possibility of superconductivity application is expanded. There are advantages. In particular, Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ single crystal is considered to be able to reduce anisotropy while maintaining a high Tc, and is expected to be applied to a high Jc practical wire. Needless to say, the single crystal growth method of the present invention is applicable not only to superconducting materials but also to general substances.
[Brief description of the drawings]
1 is a 15 × photomicrograph of an oxide superconductor single crystal produced in Example 1. FIG.
2 is a graph showing a change in temperature of magnetization of an oxide superconductor single crystal manufactured by the method of Example 1. FIG.
3 is a diagram showing an X-ray diffraction pattern of an oxide superconductor single crystal manufactured by the method of Example 1. FIG.
4 is a graph showing the temperature change of in-plane resistivity when an oxide superconductor single crystal manufactured by the method of Example 1 is heat-treated in various atmospheres. FIG.
5 is a graph showing a change in interfacial resistivity with temperature when an oxide superconductor single crystal manufactured by the method of Example 1 is heat-treated in various atmospheres. FIG.

Claims (5)

溶媒移動浮遊帯域法を用い、成長速度を0.05mm/h以下とし、固液界面の温度勾配を300℃/cm以上とすることを特徴とする酸化物単結晶の製造方法。A method for producing an oxide single crystal, characterized by using a solvent transfer floating zone method, a growth rate of 0.05 mm / h or less, and a temperature gradient at a solid-liquid interface of 300 ° C./cm or more. 3枚単位のCuO3 CuO units 2 面を有する酸化物単結晶の製造方法であって、溶媒移動浮遊帯域法を用い、成長速度を0.1mm/h以下とし、固液界面の温度勾配を300℃/cm以上とすることを特徴とする酸化物単結晶の製造方法。A method for producing an oxide single crystal having a surface, characterized by using a solvent transfer floating zone method, a growth rate of 0.1 mm / h or less, and a temperature gradient of a solid-liquid interface of 300 ° C./cm or more. A method for producing an oxide single crystal. BiBi 2 SrSr 2 CaCa 2 CuCu 3 O 10+δ10 + δ 相の酸化物単結晶の製造方法であって、溶媒移動浮遊帯域法を用い、成長速度を0.1mm/h以下とし、固液界面の温度勾配を300℃/cm以上とすることを特徴とする酸化物単結晶の製造方法。A method for producing a single-phase oxide crystal, characterized by using a solvent transfer floating zone method, a growth rate of 0.1 mm / h or less, and a solid-liquid interface temperature gradient of 300 ° C./cm or more. A method for producing an oxide single crystal. 前記成長速度は0.05mm/h以下であることを特徴とした請求項2または3に記載の酸化物単結晶の製造方法。The method for producing an oxide single crystal according to claim 2 or 3 , wherein the growth rate is 0.05 mm / h or less. 前記温度勾配は370℃/cm以上であることを特徴とした請求項1乃至請求項4のいずれかに記載の酸化物単結晶の製造方法。The said temperature gradient is 370 degrees C / cm or more, The manufacturing method of the oxide single crystal in any one of the Claims 1 thru | or 4 characterized by the above-mentioned.
JP2000161628A 2000-05-31 2000-05-31 Method for producing oxide single crystal Expired - Fee Related JP3631415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161628A JP3631415B2 (en) 2000-05-31 2000-05-31 Method for producing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161628A JP3631415B2 (en) 2000-05-31 2000-05-31 Method for producing oxide single crystal

Publications (2)

Publication Number Publication Date
JP2001342092A JP2001342092A (en) 2001-12-11
JP3631415B2 true JP3631415B2 (en) 2005-03-23

Family

ID=18665626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161628A Expired - Fee Related JP3631415B2 (en) 2000-05-31 2000-05-31 Method for producing oxide single crystal

Country Status (1)

Country Link
JP (1) JP3631415B2 (en)

Also Published As

Publication number Publication date
JP2001342092A (en) 2001-12-11

Similar Documents

Publication Publication Date Title
JPH0567571B2 (en)
Bykov et al. Crystallization of high temperature superconductors from nonstoichiometric melts
JP3631415B2 (en) Method for producing oxide single crystal
Costa et al. Influence of epitaxial growth on superconducting properties of LFZ Bi Sr Ca Cu O fibres. Part I. Crystal nucleation and growth
KR100336613B1 (en) A fabrication technique for single crystals of high temperature superconductor by top and bottom seeding method
Xu et al. Effects of Y2BaCuO5 content and the initial temperature of slow-cooling on the growth of YBCO bulk
Tanaka et al. Growth of Bi2Sr2CaCu2Oy single crystals by a vertical Bridgman method and their characterization
JP2782594B2 (en) Method for producing superconducting fibrous crystal
JP2672533B2 (en) Method for producing oxide superconductor crystal
JPH0465395A (en) Superconducting fibrous crystal and its production
Kishida et al. Growth of Bi2Sr2CaCu2Oy single crystals by a self-flux method using precursors
Guo et al. YBa2Cu3Oy liquid-phase epitaxy films of a orientation grown under ultra-low supersaturation caused by a homogeneous nucleation catastrophe
Zhang et al. Sustainable Recycling Strategy of Seed Crystal for Preparation of YBCO Bulk Superconductor
Imao et al. Re-growth of large Bi-2212 single crystals by a self-flux method
JP3613424B2 (en) Manufacturing method of oxide superconductor
Goeking et al. Single-phase synthesis of Bi-Ca-Sr-Cu oxides by high-temperature solution growth technique
Luo et al. Growth of c-axis-oriented films of YbBa2Cu3O7− δ on single and polycrystalline MgO substrates by oxidation of a liquid alloy precursor
JPH0791056B2 (en) Method for producing oxide superconductor having new structure
Nagai et al. Effect of annealing on properties of bismuth based high T c superconductors
Sureshkumar et al. Growth and Morphology Studies of BiSrCaCu 2 O y Crystals
Jin et al. Single-crystal growth and characterization of the Pb0. 5Sr2. 5Y1− xCaxCu2Oy system
JP3548795B2 (en) Method for producing triaxially oriented oxide superconducting composite
JP3411048B2 (en) Manufacturing method of oxide superconductor
JP3560483B2 (en) Method for producing superconducting oxide single crystal film
JPH02243519A (en) Oxide superconductor and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees