JPH01211989A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH01211989A
JPH01211989A JP3610988A JP3610988A JPH01211989A JP H01211989 A JPH01211989 A JP H01211989A JP 3610988 A JP3610988 A JP 3610988A JP 3610988 A JP3610988 A JP 3610988A JP H01211989 A JPH01211989 A JP H01211989A
Authority
JP
Japan
Prior art keywords
insulating film
resist
rib
etching
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3610988A
Other languages
Japanese (ja)
Inventor
Kazuaki Watanabe
和昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3610988A priority Critical patent/JPH01211989A/en
Publication of JPH01211989A publication Critical patent/JPH01211989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the confinement effect of injection current and light, by a method wherein, after the overhang part of an insulating film on a rib is eliminated, II-VI compound semiconductor is buried. CONSTITUTION:A semiconductor substrate 101 has a clad layer 103, an active layer 104 and a clad layer 105, and a double hetero junction is stacked. On the substrate, an insulating film 107 is deposited, and resist 108 is spread. By patterning the resist 108 and using it as a mask, the insulating film 107 is subjected to etching. By using the insulating film 107 as a mask without eliminating the resist 108, etching is performed to form a rib. By etching the insulating film 107 between the resist 108 and the rib, the width of the insulating film 107 is made narrower than the stripe width of the rib. After the resist 108 is exfoliated, the epitaxial growth of II-VI compound semiconductor 109 is performed, and the semiconductor layer 109 is selectively eliminated. Thereby a semiconductor laser free from the leak of injection current and light can be manufactured with excellent yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor laser.

〔従来の技術〕[Conventional technology]

従来の半導体レーザにおいては、リブの形成及び埋め込
みに際して第2図(a)〜(c)に示す様に、ダブルヘ
テロ接合を積層した半導体基板上に、絶縁膜、例えば二
酸化ケイ素膜を蒸着し、パターンニングを施したレジス
トをマスクとして二酸化ケイ素膜のエツチングを行い、
次いでレジストを剥離(a)、II−Vl族化合物半導
体、例えばセレン化亜鉛のエピタキシャル成長を行った
のち(b)、多結晶セレン化亜鉛と単結晶セレン化亜鉛
のエツチング速度の差を利用してリブ上のセレン化亜鉛
を選択的に除去していた。
In conventional semiconductor lasers, when forming and embedding ribs, as shown in FIGS. 2(a) to (c), an insulating film, such as a silicon dioxide film, is deposited on a semiconductor substrate on which double heterojunctions are stacked. The silicon dioxide film is etched using the patterned resist as a mask.
Next, the resist is peeled off (a), and a II-Vl group compound semiconductor, such as zinc selenide, is epitaxially grown (b), and ribs are formed using the difference in etching speed between polycrystalline zinc selenide and single crystal zinc selenide. The zinc selenide on top was selectively removed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし前述の従来技術では、ライブ上の絶縁膜がヒサシ
状に張り出すためセレン化亜鉛のエピタキシャル成長を
行った場合、第2図(b)の様な形状に多結晶及び単結
晶ff−Vl族化合物半導体層が成長し、その結果、リ
ブ上のIf−Vl族化合物半導体層を取り除くために選
択エツチングを行うと第2図(C)の様にリブの側面に
沿ってもエツチングが進行し、デバイスとして使用した
場合、注入電流あるいは光のもれが生じるという問題点
を有する。
However, in the above-mentioned conventional technology, the insulating film on the live protrudes like a canopy, so when zinc selenide is epitaxially grown, polycrystalline and single-crystalline ff-Vl group compounds form in the shape shown in Figure 2(b). As the semiconductor layer grows, as a result, when selective etching is performed to remove the If-Vl group compound semiconductor layer on the rib, the etching progresses also along the sides of the rib as shown in FIG. 2(C), and the device When used as such, there is a problem in that injection current or light leakage occurs.

そこで本発明は、この様な問題点を解決するもので、そ
の目的とするところは注入電流及び光のもれがないリブ
埋め込み型半導体レーザを歩留りよく製造することであ
る。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to manufacture a rib-embedded semiconductor laser with high yield without leakage of injection current or light.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザの製造方法は、第1のクラッド層
、活性層、第2のクラッド層を有するダブルヘテロ接合
を積層した半導体基板上に絶縁膜を蒸着する工程と、上
記、絶縁膜上にレジストを塗布する工程と、レジストを
パターニングしこれをマスクとして絶縁膜をエツチング
する工程と、上記レジストを除去することなく絶縁膜を
マスクとしてエツチングによりリブを形成する工程と、
レジストとリブの間の絶縁膜をエツチングして絶縁膜の
幅をリブのストライプ幅より細くする工程と、レジスト
を剥龍したのち■−■族化合物半導体のエピタキシャル
成長を行う工程と、リブ上のIf−Vl族化合物半導体
層を選択的に除去する工程とからなることを特徴とする
The method for manufacturing a semiconductor laser of the present invention includes the steps of depositing an insulating film on a semiconductor substrate laminated with a double heterojunction having a first cladding layer, an active layer, and a second cladding layer; a step of applying a resist; a step of patterning the resist and etching the insulating film using the resist as a mask; and a step of forming ribs by etching using the insulating film as a mask without removing the resist.
A step of etching the insulating film between the resist and the ribs to make the width of the insulating film thinner than the stripe width of the ribs, a step of epitaxially growing a ■-■ group compound semiconductor after stripping the resist, and a step of etching the If on the ribs. - selectively removing the Vl group compound semiconductor layer.

〔実 施 例〕〔Example〕

第1図は本発明の一実施例を示し従来例との相違は、リ
ブ形成の際マスクとして用いた絶縁膜のしサシ状に張り
出した部分を取り除いたのち、■−Vl族化合物半導体
でリブを埋め込むことである。
Figure 1 shows an embodiment of the present invention, which differs from the conventional example in that after removing the protruding part of the insulating film used as a mask when forming the ribs, the ribs are formed using a -Vl group compound semiconductor. It is to embed.

次に製造工程を第1図(a)〜(f)を用いて説明する
。まず第1図(a)の如く、バッファ層102、第1の
クラッド層103、活性層104、第2のクラッド層1
05、コンタクト層106が順次積層された半導体基板
101を準備し、上記コンタクト層106上全面に絶縁
膜、例えば二酸化ケイ素膜107を積層する。欺る二酸
化ケイ素膜の成長は常圧化学気相成長法(CVD)を用
いて320・〜500°Cで行い、その膜厚は1000
〜3000人とする4次いでレジスト108を二酸化゛
ケイ素膜上に塗布、さらにフォト工程によりパターニン
グしたのち、上記レジストをマスクとして二酸化ケイ素
層107をコンタクト層106が露出するまでエツチン
グする。なおエッチャントとして、フッ酸−フッ化アン
モニウム系のものを用いる。(第1図(b)) その後、第1図(c)に示す如く二酸化ケイ素層107
をマスクとしてエツチングを行いリブを形成する。欺る
エツチングは硫酸系エッチャントを使用し、第2のクラ
ッド層106が0.1〜0゜4μm残るまでエツチング
する。
Next, the manufacturing process will be explained using FIGS. 1(a) to 1(f). First, as shown in FIG. 1(a), a buffer layer 102, a first cladding layer 103, an active layer 104, a second cladding layer 1
05. A semiconductor substrate 101 on which contact layers 106 are sequentially laminated is prepared, and an insulating film, for example, a silicon dioxide film 107 is laminated on the entire surface of the contact layer 106. The deceptive silicon dioxide film was grown using atmospheric chemical vapor deposition (CVD) at 320-500°C, and the film thickness was 1000°C.
4. Next, a resist 108 of up to 3,000 layers is coated on the silicon dioxide film, and after patterning is performed by a photo process, the silicon dioxide layer 107 is etched using the resist as a mask until the contact layer 106 is exposed. Note that as the etchant, a hydrofluoric acid-ammonium fluoride based etchant is used. (FIG. 1(b)) After that, as shown in FIG. 1(c), the silicon dioxide layer 107
Using this as a mask, etching is performed to form ribs. In the deceptive etching, a sulfuric acid-based etchant is used, and the second cladding layer 106 is etched until a thickness of 0.1 to 0.4 .mu.m remains.

次いで、第1図(d)の如くリブからヒサシ状に張り出
した二酸化ケイ素lB1107をエツチングして、ヒサ
シ状の部分を取り除く、エッチャントは第1図(b)に
おいて二酸化ケイ素WA107をパターニングした際使
用したものと同じフッ酸−フッ化アンモニウム系のもの
を使用し、二酸化ケイ素膜がリブ端から0.1〜1.0
μm後退するまでエツチングする。
Next, as shown in Figure 1(d), the silicon dioxide 1B1107 protruding from the rib in a ridge shape was etched to remove the ridge-shaped part.The etchant used was the same as that used when patterning the silicon dioxide WA107 in Figure 1(b). The same hydrofluoric acid-ammonium fluoride type material as the one used was used, and the silicon dioxide film was 0.1 to 1.0
Etch until it retreats by μm.

さらにレジスト108を除去し、第1図(e)の如<I
[−Vl族化合物半導体例えば、セレン化亜鉛を電流狭
窄層としてリブを埋め込む、埋め込みは有機化学気相成
長法(MOCVD)法により亜鉛ソースとしてジメチル
亜鉛=ジエチルセレン:アダクツを、セレンソースとし
て上記アダクツの他にセレン化水素を使用し、成長温度
350〜400℃でエピタキシャル成長を行う、その結
果第1図(e)の如く二酸化ケイ素上にはセレン化亜鉛
の多結晶が、その他の部分にはセレン化亜鉛の単結晶が
積層される。
Furthermore, the resist 108 is removed, and as shown in FIG.
[-Vl group compound semiconductor For example, the ribs are buried using zinc selenide as a current confinement layer, and the embedding is performed by organic chemical vapor deposition (MOCVD) using a dimethylzinc=diethylselenium adduct as a zinc source and the above adduct as a selenium source. In addition, hydrogen selenide is used for epitaxial growth at a growth temperature of 350 to 400°C. As a result, as shown in Figure 1(e), polycrystals of zinc selenide are formed on silicon dioxide, and selenium is formed on other parts. Single crystals of zinc oxide are stacked.

最後に、水酸化ナトリウム系エッチャントによリセレン
化亜鉛のエツチングを行うと、エツチング速度の大きい
リブ上の多結晶セレン化亜鉛が選択的にエツチングされ
、リブの両側には単結晶のセレン化亜鉛が残る。エツチ
ングはリブ上の二酸化ケイ素が露出するまで行う。
Finally, when zinc recryselide is etched with a sodium hydroxide etchant, polycrystalline zinc selenide on the ribs, which has a high etching rate, is selectively etched, and single-crystal zinc selenide is formed on both sides of the ribs. remain. Etching is performed until the silicon dioxide on the ribs is exposed.

以上のように本実施例の半導体レーザの製造方法では、
リブ上の二酸化ケイ素のしサシ状の部分を除去してから
セレン化亜鉛による埋め込みを行うので、埋め込み後リ
ブ上の多結晶セレン化亜鉛をエツチングにより取り除く
際、リブの脇が掘れることがなく、従来の方法で製造さ
れた半導体レーザに比べ電流狭窄及び光の閉じ込めとい
う点で良好である。
As described above, in the semiconductor laser manufacturing method of this embodiment,
The rib-like portion of silicon dioxide on the ribs is removed before embedding with zinc selenide, so when the polycrystalline zinc selenide on the ribs is removed by etching after embedding, the sides of the ribs are not dug up. Compared to semiconductor lasers manufactured by conventional methods, this method has better current confinement and light confinement.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体レーザの製造方法によれば、■−■族化
合物半導体によるリブ埋め込み後、リブ上に積層した■
−■族化合物半導体を取り除く際、選択エツチングを行
ってもリブ側面の■−■族化合物半導体がエツチングさ
れることはなく、このことはデバイスとして使用した場
合、注入電流および光の閉じ込め効果が向上し、低しき
い電流値でのレーザ発振が可能になると共に高い外部微
分量子効率が得られ、その結果半導体レーザの高出力化
、高寿命化が期待できる。
According to the method for manufacturing a semiconductor laser of the present invention, after filling the rib with the ■-■ group compound semiconductor, the ■
When removing the −■ group compound semiconductor, the ■−■ group compound semiconductor on the side surface of the rib is not etched even if selective etching is performed, and this improves the injection current and light confinement effect when used as a device. However, laser oscillation at a low threshold current value becomes possible and high external differential quantum efficiency can be obtained, and as a result, higher output and longer life of semiconductor lasers can be expected.

また埋め込み層として使用しているII−Vl族化合物
半導体は熱伝導度が高いため、リブに■−■族化合物半
導体が密着しているということは、レーザ発振させた場
合発生した熱の放熱効率が高く、しいては高寿命化、高
信頼性が得られる。
In addition, the II-Vl group compound semiconductor used as the buried layer has high thermal conductivity, so the fact that the ■-■ group compound semiconductor is in close contact with the rib means that the heat generated during laser oscillation is dissipated efficiently. This results in a long life and high reliability.

一方、従来技術においてリブから張り出しな絶縁膜のヒ
サシ状の部分を取り除くことなくff−IV族化合物半
導体をエピタキシャル成長させ、成長後リプの脇が掘れ
ない様リプ上のII−Vl族化合物半導体層を取り除く
ためには、II−Vl族化合物半導体層上にパターニン
グしたマスクを形成し、エツチングを施すことが必要だ
が、この方法は工程数が増えるばかりが平坦でない面上
に塗布したレジストに対してアライメントを行うといっ
なフォト工程を経なければならない、従って本半導体レ
ーザの製造方法は、工程数の減少と共に歩留りの大幅な
向上という効果を有する。
On the other hand, in the conventional technology, an FF-IV group compound semiconductor is epitaxially grown without removing the canopy part of the insulating film that overhangs from the rib, and a II-Vl group compound semiconductor layer on the rib is grown so that the sides of the lip are not dug after growth. In order to remove it, it is necessary to form a patterned mask on the II-Vl group compound semiconductor layer and perform etching, but this method increases the number of steps and requires alignment for the resist applied on an uneven surface. Therefore, the method for manufacturing a semiconductor laser has the effect of reducing the number of steps and greatly improving the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例を示す製造工
程断面図、第2図(a)〜(c)は従来例を示す製造工
程断面図である。 101.201・・・半導体基板 102.202・・・バッファー層 103.203・・・第1クラッド層 104.204・・・活性層 105.205・・・第2クラッド層 106.206・・・コンタクト層 107.207・・・二酸化ケイ素膜 108・・・・・・・レジスト 109.209・・・単結晶セレン化亜鉛の埋め込み層 110.210・・・多結晶セレン化亜鉛以上 出願人 セイコーエプソン株式会社 代理人 弁理士 最 上  務(他1名)6・ \、、−“ (久) (1D)
FIGS. 1(a) to 1(f) are sectional views showing the manufacturing process of an embodiment of the present invention, and FIGS. 2(a) to 2(c) are sectional views of the manufacturing process showing a conventional example. 101.201... Semiconductor substrate 102.202... Buffer layer 103.203... First cladding layer 104.204... Active layer 105.205... Second cladding layer 106.206... Contact layer 107.207...Silicon dioxide film 108...Resist 109.209...Buried layer of single crystal zinc selenide 110.210...Polycrystalline zinc selenide and above Applicant: Seiko Epson Agent Co., Ltd. Patent Attorney Tsutomu Mogami (1 other person) 6.

Claims (1)

【特許請求の範囲】[Claims]  第1のクラッド層、活性層、第2のクラッド層を有す
るダブルヘテロ接合を積層した半導体基板上に絶縁膜を
蒸着する工程と、上記、絶縁膜上にレジストを塗布する
工程と、レジストをパターンニングしこれをマスクとし
て絶縁膜をエッチングする工程と、上記レジストを除去
することなく絶縁膜をマスクとしてエッチングによりリ
ブを形成する工程と、レジストとリブの間の絶縁膜をエ
ッチングして絶縁膜の幅をリブのストライプ幅より細く
する工程と、レジストを剥離したのちII−VI族化合
物半導体のエピタキシャル成長を行う工程と、リブ上の
II−VI族化合物半導体層を選択的に除去する工程と
からなることを特徴とする半導体レーザの製造方法。
A step of depositing an insulating film on a semiconductor substrate laminated with a double heterojunction having a first cladding layer, an active layer, and a second cladding layer, a step of applying a resist on the above-mentioned insulating film, and a step of patterning the resist. a step of forming ribs by etching the insulating film using the insulating film as a mask without removing the resist; and a step of etching the insulating film between the resist and the ribs. It consists of a step of making the width thinner than the stripe width of the rib, a step of epitaxially growing the II-VI group compound semiconductor after removing the resist, and a step of selectively removing the II-VI group compound semiconductor layer on the rib. A method for manufacturing a semiconductor laser, characterized in that:
JP3610988A 1988-02-18 1988-02-18 Manufacture of semiconductor laser Pending JPH01211989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3610988A JPH01211989A (en) 1988-02-18 1988-02-18 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3610988A JPH01211989A (en) 1988-02-18 1988-02-18 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01211989A true JPH01211989A (en) 1989-08-25

Family

ID=12460602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3610988A Pending JPH01211989A (en) 1988-02-18 1988-02-18 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01211989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866918A (en) * 1995-02-15 1999-02-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866918A (en) * 1995-02-15 1999-02-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP2889588B2 (en) Method of forming alternation of single crystal semiconductor material layer and insulating material layer
US5360754A (en) Method for the making heteroepitaxial thin layers and electronic devices
JPH1131864A (en) Crystal growth of low-migration gallium nitride
JPH0541536A (en) Manufacture of semiconductor light emitting device
JP4274504B2 (en) Semiconductor thin film structure
JP4303379B2 (en) Manufacturing method of semiconductor substrate
JPH02288288A (en) Manufacture of buried hetero-structure laser diode
JPS5810875B2 (en) handout
JPH01211989A (en) Manufacture of semiconductor laser
JP3047049B2 (en) Method of manufacturing buried semiconductor laser
JP4303500B2 (en) Method of manufacturing nitride semiconductor device
JP2508456B2 (en) Method for forming semiconductor single crystal thin film
JPH0194690A (en) Manufacture of buried type semiconductor laser device
JPH0824208B2 (en) Manufacturing method of semiconductor laser
JP3188931B2 (en) Thin film growth method
JP2002203793A (en) Nitride-based semiconductor device and its formation method
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JPS63177493A (en) Manufacture of semiconductor laser
JPH07176830A (en) Manufacture of semiconductor light-emitting element
JP2525617B2 (en) Method for manufacturing semiconductor laser
JPS60260184A (en) Semiconductor luminescent device
JPS6281782A (en) Semiconductor light emitting device
JP2002246279A (en) Semiconductor substrate, its producing method and semiconductor device
JPH05275356A (en) Mask for selective growth of group iii-v compound semiconductor film and group iii-v compound semiconductor film selective growth method using this
JPH09148670A (en) Semiconductor laser and its manufacture