JPH07176830A - Manufacture of semiconductor light-emitting element - Google Patents

Manufacture of semiconductor light-emitting element

Info

Publication number
JPH07176830A
JPH07176830A JP32158493A JP32158493A JPH07176830A JP H07176830 A JPH07176830 A JP H07176830A JP 32158493 A JP32158493 A JP 32158493A JP 32158493 A JP32158493 A JP 32158493A JP H07176830 A JPH07176830 A JP H07176830A
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
type inp
conductivity type
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32158493A
Other languages
Japanese (ja)
Inventor
Etsuo Noguchi
悦男 野口
Susumu Kondo
進 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32158493A priority Critical patent/JPH07176830A/en
Publication of JPH07176830A publication Critical patent/JPH07176830A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To keep an active layer consisting of a mixed crystal in a high- performance quality by a method wherein second and first conductivity type semiconductor layers are grown in order on a first conductivity type semiconductor substrate and after two parallel striped dielectric films are formed on the first conductivity type semiconductor layer, a region, which is used as a current route, is etched away and a buffer layer is formed thick. CONSTITUTION:A P-type InP current blocking layer 10 and an N-type InP current blocking layer 11 are formed on an N-type InP substrate 1 and thereafter, an SiO2 selection mask is formed. Two striped SiO2 films 12 are formed using a resist film as a mask and after the peeling of the resist film, the layers 11 and 10 are etched using the films 12 as masks up to reach the substrate 1. An N-type InP buffer layer 2, an active region layer 13 and a P-type InP clad layer 4 are selectively grown so as to control a growth thickness of a region pinched by the two parallel films 12. As the layer 2 can be grown fully thick, a high-performance quality can be kept also in the layer 13 consisting of an aluminium-containing mixed crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信方式の光源とし
て用いられる高出力、高効率、低閾値で且つモード制御
性の良好な半導体レーザ素子であって、総てMOVPE
(有機金属熱分解気相成長法)成長によって成長するこ
とが可能な選択成長埋め込み型発光素子を製造する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device used as a light source for an optical communication system, having high output, high efficiency, low threshold value and good mode controllability.
(Organic Metal Pyrolysis Vapor Deposition Method) The present invention relates to a method for manufacturing a selective growth embedded type light emitting device capable of growing by growth.

【0002】[0002]

【従来の技術】半導体基板上に、SiO2等の選択マスク
をストライプ状に二本形成して、選択マスクで挟まれた
半導体基板上に発光再結合する活性層を含む多層の成長
層を成長する方法が提案されている。その一例を図3に
示す。この例は、活性層としてリンを含む混晶層、例え
ば、InGaAsPを用いたものである。
2. Description of the Related Art Two selective masks such as SiO 2 are formed in stripes on a semiconductor substrate, and a multi-layered growth layer including an active layer for radiative recombination is grown on the semiconductor substrate sandwiched by the selective masks. The method of doing is proposed. An example thereof is shown in FIG. In this example, a mixed crystal layer containing phosphorus, for example, InGaAsP is used as the active layer.

【0003】図3に示すように、この半導体レーザで
は、n型InP基板1上に、n型InPバッファ層2を介
して活性層3を成長させ、活性層3の上にp型InP層
4を成長させる。しかし、その後、SiO2膜を取り除い
て活性層を含むメサストライプの埋め込み成長を行う
と、MOVPE成長では全面に成長するため、活性領域
を除いて電流ブロック層を選択的に成長出来ない。
As shown in FIG. 3, in this semiconductor laser, an active layer 3 is grown on an n-type InP substrate 1 via an n-type InP buffer layer 2, and a p-type InP layer 4 is formed on the active layer 3. Grow. However, when the SiO 2 film is removed and the mesa stripe including the active layer is embedded and grown thereafter, the MOVPE growth grows over the entire surface, and therefore the current block layer cannot be selectively grown except the active region.

【0004】そこで、活性層近傍にのみ選択的にp型I
nPクラッド層5を成長する方法が採られ、このために
二回目の選択成長用のマスク形成する必要があった。ま
た、電極9の形成においても大きな段差があるため、リ
ークパスが多く、リークパスをブロックするためにで電
解プロセスが煩雑になるという欠点があった。
Therefore, p-type I is selectively formed only in the vicinity of the active layer.
A method of growing the nP clad layer 5 was adopted, and for this reason, it was necessary to form a mask for the second selective growth. In addition, since there is a large step in the formation of the electrode 9, there are many leak paths, and the electrolytic process is complicated because the leak paths are blocked.

【0005】更に、活性層にアルミニウム(Al)を含む
混晶層の選択成長においては、活性層3の品質はn型I
nPバッファ層2の厚みに大きく依存するため、十分に
厚いバッファ層2を成長させる必要があるが、そのよう
にすると、電極形成においては、リンを含む系の素子よ
りも段差が大きくなるという欠点があった。
Further, in the selective growth of the mixed crystal layer containing aluminum (Al) in the active layer, the quality of the active layer 3 is n-type I.
Since it depends largely on the thickness of the nP buffer layer 2, it is necessary to grow a sufficiently thick buffer layer 2. However, in that case, the step becomes larger in the electrode formation than the element of the system containing phosphorus. was there.

【0006】このようなことから、誘電体選択マスクを
用いた選択成長により、アルミニウムを含む混晶層の活
性層を成長させ、更に、電流狭窄構造を持つ半導体レー
ザを作製する場合においては、活性層の品質を保持した
ままで電流狭窄が可能であり、電極形成においても段差
が小さく、リークパスの少ない埋め込み構造を持った発
光素子の開発が期待されていた。
From the above, when the active layer of the mixed crystal layer containing aluminum is grown by the selective growth using the dielectric selective mask, and further, when the semiconductor laser having the current confining structure is manufactured, the active layer is activated. It has been expected to develop a light emitting device having an embedded structure that allows current confinement while maintaining the quality of layers, has a small step even in electrode formation, and has a small leak path.

【0007】[0007]

【発明が解決しようとする課題】上述したように、従来
では、n型InP基板1上に選択マスクとして二本の互
いに平行なストライプ状の誘電体膜を形成し、n型In
Pバッファ層2、活性層3、p型InP層4を順に形成
したため、p型InPクラッド層4で活性層3を覆うこ
ととなる。このため、先に形成した二本の互いに平行な
ストライプ状の誘電体膜の幅を細くするため2回目のフ
ォトリソグラフィーとRIEを行う必要があり、電流狭
窄のため、p型InPクラッド層5を成長する領域を狭
める必要があり、その為、素子構造を平坦に出来ないと
いう問題があった。
As described above, conventionally, two stripe-shaped dielectric films parallel to each other are formed on the n-type InP substrate 1 as a selective mask to form an n-type InP substrate.
Since the P buffer layer 2, the active layer 3, and the p-type InP layer 4 are formed in order, the p-type InP clad layer 4 covers the active layer 3. Therefore, it is necessary to perform the second photolithography and RIE in order to narrow the width of the two mutually parallel stripe-shaped dielectric films formed previously, and the p-type InP cladding layer 5 is formed due to the current constriction. It is necessary to narrow the growing region, which causes a problem that the device structure cannot be flattened.

【0008】本発明は、上記従来技術に鑑みて成された
ものであり、選択成長においてアルミニウムを含む混晶
層の活性層を成長する場合においても、活性層の品質を
保ったままで、電流狭窄が可能であり、段差が小さく、
リークパスの少ない電極形成が容易な埋め込み構造半導
体発光素子の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned prior art, and even when the active layer of the mixed crystal layer containing aluminum is grown in the selective growth, the current confinement is performed while maintaining the quality of the active layer. Is possible, the step is small,
It is an object of the present invention to provide a method for manufacturing a semiconductor light emitting device having a buried structure in which electrodes with few leak paths can be easily formed.

【0009】[0009]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成は、先ず、第一導電型半導体基板上に電流狭
窄用の半導体層として、第二導電型半導体層及び第一導
電型半導体層を順に成長させ、次に、前記第一導電型半
導体層の表面に二本の互いに平行なストライプ状誘電体
膜を形成し、該誘電体膜をエッチングマスクとして利用
して、少なくとも該二本の誘電体膜に挟まれた領域の前
記第一導電型半導体層及び前記第二導電型半導体層を取
り除き、引き続き、前記誘電体膜を選択成長マスクとし
て、前記二本の誘電体膜に挟まれた領域に、発光再結合
する活性層を含む半導体多層膜を有機金属熱分解気相成
長法により成長させ、その後、選択成長用マスクとして
利用した前記二本の互いに平行な誘電体膜を取り除き、
更に、前記基板全面に前記活性層よりもバンドギャップ
の大きい第二導電型の半導体層を成長して、光の閉じ込
めを良くすると共に素子の平坦化を行うことを特徴とす
る。
The structure of the present invention for attaining such an object is as follows. First, a second conductivity type semiconductor layer and a first conductivity type semiconductor layer are provided on a first conductivity type semiconductor substrate as a current confinement semiconductor layer. The semiconductor layers are grown in order, then two mutually parallel stripe-shaped dielectric films are formed on the surface of the first conductivity type semiconductor layer, and the dielectric films are used as an etching mask to remove at least the two dielectric films. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer in the region sandwiched between the two dielectric films are removed, and then the two dielectric films are sandwiched between the two dielectric films using the dielectric film as a selective growth mask. In this region, a semiconductor multilayer film including an active layer for radiative recombination is grown by metalorganic pyrolysis vapor phase epitaxy, and then the two parallel dielectric films used as a mask for selective growth are removed. ,
Further, a second conductivity type semiconductor layer having a bandgap larger than that of the active layer is grown on the entire surface of the substrate to improve light confinement and planarize the device.

【0010】更に、第二導電型の電極形成に当たって
は、活性層に効率よく電流注入するため、更に、高周波
特性を良くするために、活性層の上部領域を除いて、S
iO2膜を形成して、その上に全面に電極層を形成するこ
とができる。
Further, in forming the second conductivity type electrode, in order to efficiently inject current into the active layer, and in order to further improve high frequency characteristics, except for the upper region of the active layer, S is added.
An io 2 film can be formed and an electrode layer can be formed on the entire surface.

【0011】[0011]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。尚、以下の実施例では、バン
ドギャップエネルギの代わりに、バンドギャップエネル
ギの逆数に比例するバンドギャップ波長で説明する。本
発明は、以下の実施例に限るものではなく、例えば、選
択成長後に活性領域の光ガイド層にDFB(分布帰還
形)形レーザを得ることを目的として回折格子を形成す
ることも行えるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. In the following embodiments, instead of the bandgap energy, the bandgap wavelength proportional to the reciprocal of the bandgap energy will be described. The present invention is not limited to the following embodiments, and for example, a diffraction grating can be formed for the purpose of obtaining a DFB (distributed feedback type) laser in an optical guide layer in an active region after selective growth. is there.

【0012】〔実施例1〕本発明の第一の実施例を図1
(a)(b)(c)(d)に示す。本実施例は、発光波
長1.5μm帯のn型InP基板を用いたInGaAs/InA
lAs材料によるMQWレーザに関するものである。本実
施例の発光素子を製造するには、以下の手順に従って行
う。
[Embodiment 1] A first embodiment of the present invention is shown in FIG.
It shows in (a) (b) (c) (d). In this embodiment, InGaAs / InA using an n-type InP substrate with an emission wavelength of 1.5 μm band is used.
The present invention relates to an MQW laser using an As material. The light emitting device of this example is manufactured according to the following procedure.

【0013】先ず、図1(a)に示すように、MOVP
E結晶成長装置により、第一回目の成長として成長温度
630℃において、n型InP(100)面方位基板1上に
p型InP電流ブロック層(0.4μm厚、キャリア濃度:
1×1018cm-3)10、n型InP電流ブロック層(0.4
μm厚、キャリア濃度:1×1018cm-3)11を成長す
る。
First, as shown in FIG. 1A, MOVP
With the E crystal growth device, the growth temperature is set as the first growth.
At 630 ° C., a p-type InP current blocking layer (0.4 μm thick, carrier concentration: n-type InP (100) plane oriented substrate 1) was formed.
1 × 10 18 cm −3 ) 10, n-type InP current blocking layer (0.4
μm thickness, carrier concentration: 1 × 10 18 cm −3 ) 11 is grown.

【0014】次に、プラズマCVD若しくはマグネトロ
ンスパッタ装置を用いて、SiNx窒化膜又はSiO2膜等
の選択マスクを全面に形成する。その後、図1(b)に
示すように、フォトリソグラフィー技術とRIE(リア
クティブイオンエッチング)装置により、レジスト膜を
マスクとして利用し、C 26ガスにより、〈110〉逆
メサ方向に沿ってストライプ状のSiO2膜12を二本形
成する。SiO2膜12の幅は8μm、その間隔は2μm
である。
Next, plasma CVD or magnetro
Using a sputtering devicexNitride film or SiO2Membrane, etc.
Forming a selective mask of the above. After that, in Figure 1 (b)
As shown, photolithography technology and RIE (rear
Active ion etching) equipment to remove the resist film.
Use as a mask, C 2F6<110> reverse due to gas
Striped SiO along the mesa direction2Two-piece membrane 12
To achieve. SiO2The width of the membrane 12 is 8 μm, and the interval is 2 μm
Is.

【0015】引き続き、レジスト膜を剥離した後、この
SiO2膜12をマスクとして利用し、ブロム系のRIE
装置によって、n型InP基板1に達するまで、n型In
P電流ブロック層11、p型InP電流ブロック層10
をエッチングした。この選択エッチングは、メタノール
・ブロム溶液を用いたウェットエッチングでも、サイド
エッチのないエッチングを行うことができる。
Subsequently, after the resist film is peeled off, this SiO 2 film 12 is used as a mask, and bromine-based RIE is performed.
Depending on the device, until the n-type InP substrate 1 is reached,
P current blocking layer 11, p-type InP current blocking layer 10
Was etched. This selective etching can be performed without side etching even by wet etching using a methanol / bromine solution.

【0016】その後、図1(c)に示すように、第二回
目の成長として、成長温度680℃において、n型InPバ
ッファ層(0.9μm厚、キャリア濃度:1×1018
-3)2、活性領域層13、p型InPクラッド層(0.3
μm厚、キャリア濃度:5×1017cm-3)4を、二本の
平行なSiO2膜12に挟まれた領域の成長厚みを制御す
るように選択的に成長する。
Thereafter, as shown in FIG. 1C, as a second growth, an n-type InP buffer layer (0.9 μm thick, carrier concentration: 1 × 10 18 c) was formed at a growth temperature of 680 ° C.
m -3 ) 2, active region layer 13, p-type InP clad layer (0.3
μm thickness, carrier concentration: 5 × 10 17 cm −3 ) 4 is selectively grown so as to control the growth thickness of the region sandwiched between the two parallel SiO 2 films 12.

【0017】活性領域層13は、ノンドープのInAlA
sで始まるInGaAs/InAlAsの6ペアMQW活性層
(InGaAsウェル層の厚さ〜90Å、InAlAsバリア層
の厚さ〜20Å)の上下を1.3μm組成のInGaAsPガイ
ド層(厚さ〜400Å)で挟んだSCH構造(総厚〜0.15
μm)である。更に、図1(d)に示すように、選択成
長用のマスクとして利用したSiO2膜12を弗酸によっ
てエッチングして取り除いた後、三回目のMOVPE成
長により、成長温度630℃でp型InP埋め込み層(0.3
μm厚、キャリア濃度:1×101 8cm-3)5、p型In
GaAs電極層6を成長させた。この三回目の成長によ
り、結晶表面は平坦化される。
The active region layer 13 is made of undoped InAlA.
A 6 pair MQW active layer of InGaAs / InAlAs starting with s (thickness of InGaAs well layer ~ 90Å, thickness of InAlAs barrier layer ~ 20Å) was sandwiched by InGaAsP guide layers (thickness ~ 400Å) of 1.3 µm composition. SCH structure (total thickness ~ 0.15
μm). Further, as shown in FIG. 1D, the SiO 2 film 12 used as a mask for selective growth was removed by etching with hydrofluoric acid, and then a third MOVPE growth was performed to grow the p-type InP at a growth temperature of 630 ° C. Buried layer (0.3
μm thickness, carrier concentration: 1 × 10 1 8 cm -3 ) 5, p -type In
The GaAs electrode layer 6 was grown. By this third growth, the crystal surface is flattened.

【0018】MOVPEの成長条件は、減圧(72tor
r)、III族原料はTMI(トリメチルインジウム)、
TEG(トリエチルガリウム)、TMA(トリメチルア
ルミニウム)、V族原料は100%フォスノン、10%アル
シン、ドーパントはn型がSiH4(シラン)、p型がT
EZ(トリエチル亜鉛)を用いた。
The MOVPE growth conditions are reduced pressure (72 torr).
r), Group III raw material is TMI (trimethylindium),
TEG (triethylgallium), TMA (trimethylaluminum), group V raw material is 100% fosnon, 10% arsine, dopant is n-type SiH 4 (silane), p-type is T
EZ (triethylzinc) was used.

【0019】その後、プラズマCVD若しくはマグネト
ロンスパッタ装置を用いて、SiNx窒化膜又はSiO2
等の誘電体膜を全面に形成し、その後、フォトリソグラ
フィー技術とRIE装置により、レジスト膜をマスクと
して利用し、C26ガスにより、〈110〉逆メサ方向
に沿って活性領域上部の誘電体膜7をストライプ状に幅
5μmにてエッチングした。そして、ウェハの上面にC
r−AuとAu−Znを蒸着して、p型オーミック電極9を
形成した。基板側は、全体の厚みが80μm程度になるま
で研磨したのち、Au−Ge−Niを蒸着し、n型オーミ
ック電極8を全面に形成した。
After that, a dielectric film such as a SiN x nitride film or a SiO 2 film is formed on the entire surface by using a plasma CVD or a magnetron sputtering device, and then the resist film is used as a mask by a photolithography technique and an RIE device. Then, the dielectric film 7 above the active region was etched in a stripe shape with a width of 5 μm along the <110> reverse mesa direction with C 2 F 6 gas. Then, C on the upper surface of the wafer
r-Au and Au-Zn were vapor-deposited to form a p-type ohmic electrode 9. On the substrate side, after polishing the entire thickness to about 80 μm, Au—Ge—Ni was vapor-deposited to form the n-type ohmic electrode 8 on the entire surface.

【0020】続いて、ウェハの劈開により、共振器長36
0μm、素子幅400μmのペレットに分解した。このよう
にして得られた発光素子の各層の構成は、図1(d)に
示すように、各成長層はInPに格子が合している。こ
のペレットを、Au−Snはんだにより、シリコンヒート
シンク上に基板側を下にしてマウントし、Au線によっ
て配線した。
Subsequently, the resonator length 36 is obtained by cleaving the wafer.
It was decomposed into pellets of 0 μm and element width of 400 μm. As for the structure of each layer of the light emitting device thus obtained, as shown in FIG. 1D, each growth layer has a lattice matching with InP. The pellets were mounted on a silicon heat sink with the substrate side down by Au-Sn solder and wired by Au wires.

【0021】光出力特性を測定したところ、室温連続動
作での発振閾値は15mA、微分量子効率は片面当たり約
20%、駆動電流200mAにおいて最大200mAの光出力を
得ることができた。発振波長は1.55μmであった。
When the light output characteristics were measured, the oscillation threshold in continuous operation at room temperature was 15 mA, and the differential quantum efficiency was about one side.
It was possible to obtain a maximum optical output of 200 mA at 20% and a drive current of 200 mA. The oscillation wavelength was 1.55 μm.

【0022】このように、本実施例では、二本の互いに
平行なストライプ状のSiO2膜12を選択成長マスクと
して用い、このSiO2膜12に挟まれた細長い領域に活
性領域層13を選択成長させるものである。特に、Si
2膜12を形成する前に、n型InP基板1上に、電流
狭窄用のp型InP電流ブロック層10、n型InP電流
ブロック層11を形成する点、、SiO2膜12を形成す
るフォトリソグラフィーとRIEとは1回で済む点に利
点がある。
As described above, in this embodiment, the two stripe-shaped SiO 2 films 12 parallel to each other are used as a selective growth mask, and the active region layer 13 is selected in the elongated region sandwiched by the SiO 2 films 12. It grows. In particular, Si
Before forming the O 2 film 12, the p-type InP current blocking layer 10 and the n-type InP current blocking layer 11 for current confinement are formed on the n-type InP substrate 1, and the SiO 2 film 12 is formed. Photolithography and RIE are advantageous in that they only need to be performed once.

【0023】更に、SiO2膜12を図1(b)に示すよ
うにエッチングマスク、図1(c)に示すように選択成
長マスクとして使用する点、従来の構造と異なり、図1
(d)に示すように平坦な構造となる点に利点がある。
Further, unlike the conventional structure, the SiO 2 film 12 is used as an etching mask as shown in FIG. 1 (b) and as a selective growth mask as shown in FIG. 1 (c).
There is an advantage in having a flat structure as shown in (d).

【0024】〔実施例2〕本発明の第二の実施例を図2
に示す。本実施例は、実施例1における図1(b)に示
す工程においてウェットエッチングを行ったものであ
る。即ち、メタノール中のブロムが2%濃度のウェット
エッチング液を使用した攪拌しないエッチングにより、
二本のSiO2膜からなるマスクに挟まれた領域(活性領
域を成長する予定領域)において、n型InP基板1に
達するまで、n型InP電流ブロック層11、p型InP
電流ブロック層10をエッチングした。他の領域では、
p型InP電流ブロック層10を残した状態での選択エ
ッチングを行った。このようにして得られた発光素子の
特性は、実施例1と同程度であった。
[Embodiment 2] A second embodiment of the present invention is shown in FIG.
Shown in. In this example, wet etching was performed in the step shown in FIG. That is, by the non-stirring etching using a wet etching solution having a concentration of 2% bromine in methanol,
In the region (the region where the active region is to be grown) sandwiched by the two SiO 2 film masks, the n-type InP current blocking layer 11 and the p-type InP are formed until the n-type InP substrate 1 is reached.
The current blocking layer 10 was etched. In other areas,
Selective etching was performed with the p-type InP current blocking layer 10 left. The characteristics of the light emitting device thus obtained were similar to those of Example 1.

【0025】また、上記実施例では、波長1.5μm帯の
InGaAs/InAlAs系によるMQWを活性層に持つ素
子について説明したが、本発明は、これに限るものでは
なく、他の波長領域又は波長選択性の良いDFB及びD
BR(分布帰還反射型)のレーザについても応用でき
る。更に、本発明は、GaAs/GaAlAs系の波長0.83
μm帯及び或いはこれ以外の半導体材料を用いた発光素
子についても適用できるものである。
Further, in the above embodiment, the element having MQW in the active layer of InGaAs / InAlAs system in the wavelength band of 1.5 μm was described, but the present invention is not limited to this, and other wavelength regions or wavelength selections are possible. Good DFB and D
It can also be applied to a BR (distributed feedback reflection type) laser. Furthermore, the present invention provides a wavelength of 0.83 for a GaAs / GaAlAs system.
The present invention can also be applied to a light emitting device using a semiconductor material of μm band and / or other materials.

【0026】[0026]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、第一導電型半導体基板上に第二導電型半導体
層及び第一導電型半導体層を順に成長させ、その上に二
本の平行なストライプ状誘電体膜を形成し、電流の通路
となる領域はエッチングによって取り除くため、誘電体
マスクを形成した時のダメージ層は取り除かれる。ま
た、この領域にバッファ層を十分に厚く成長できるの
で、選択成長によって成長するストライプ状の活性層を
含む半導体多層膜はアルミニウムを含む混晶の活性層に
おいても高性能な品質を保つことができる。更に、選択
成長マスクとして利用した二本の平行な誘電体膜を取り
除いた後に、活性層よりもバンドギャップの大きな第二
導電型の半導体層を全面に成長させることによって、光
の閉じ込め性が良くなると共に、素子が平坦化される。
このため、高性能な素子特性に加えて、表面が平坦で段
差が小さいため、電極形成が容易となり、リークパスの
少ない埋め込み構造を持った発光素子を実現することが
できる。
As described above in detail with reference to the embodiments, the second-conductivity-type semiconductor layer and the first-conductivity-type semiconductor layer are sequentially grown on the first-conductivity-type semiconductor substrate, and the second-conductivity-type semiconductor layer and the second-conductivity-type semiconductor layer are grown thereon. The parallel striped dielectric film of the book is formed, and the region serving as a current path is removed by etching. Therefore, the damaged layer when the dielectric mask is formed is removed. Further, since the buffer layer can be grown sufficiently thick in this region, the semiconductor multilayer film including the stripe-shaped active layer grown by selective growth can maintain high-performance quality even in a mixed crystal active layer containing aluminum. . Further, after removing the two parallel dielectric films used as the selective growth mask, a second conductivity type semiconductor layer having a bandgap larger than that of the active layer is grown over the entire surface, so that light confinement is improved. In addition, the element is flattened.
Therefore, in addition to high-performance device characteristics, since the surface is flat and the step is small, it is easy to form electrodes, and it is possible to realize a light-emitting device having an embedded structure with few leak paths.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例に係り、同図(a)は1
回目のMOVPE成長後の電流狭窄層の形成工程におけ
る断面図、同図(b)は選択成長用の誘電体マスクの形
成と選択エッチング後の断面図、同図(c)は2回目の
MOVPE選択成長後の断面図、同図(d)は3回目の
MOVPE埋め込み成長と電極プロセス後の素子断面図
である。
FIG. 1 relates to a first embodiment of the present invention, and FIG.
A sectional view in the step of forming the current confinement layer after the MOVPE growth of the second time, the same figure (b) is a sectional view after the formation of the dielectric mask for selective growth and the selective etching, and the same figure (c) is the second MOVPE selection. A cross-sectional view after the growth, and FIG. 6D is a cross-sectional view of the element after the third MOVPE embedded growth and the electrode process.

【図2】本発明の第二の実施例に係る断面図である。FIG. 2 is a sectional view according to a second embodiment of the present invention.

【図3】従来素子の模式図である。FIG. 3 is a schematic view of a conventional element.

【符号の説明】[Explanation of symbols]

1 n型InP基板 2 n型InPバッファ層 3 ノンドープInGaAs/InAlAsP MQW活性層 4 p型InPクラッド層 5 p型InP埋め込み層 6 p型InGaAs電極層 7 誘電体膜(SiO2膜) 8 n型オーミック電極 9 p型オーミック電極 10 p型InP電流ブロック層 11 n型InP電流ブロック層 12 SiO2膜 13 ノンドープSCH構造活性領域層1 n-type InP substrate 2 n-type InP buffer layer 3 non-doped InGaAs / InAlAsP MQW active layer 4 p-type InP clad layer 5 p-type InP buried layer 6 p-type InGaAs electrode layer 7 dielectric film (SiO 2 film) 8 n-type ohmic Electrode 9 p-type ohmic electrode 10 p-type InP current blocking layer 11 n-type InP current blocking layer 12 SiO 2 film 13 non-doped SCH structure active region layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第一導電型半導体基板上に第二導電型半
導体層及び第一導電型半導体層を順に積層する工程と、
前記第一導電型半導体層の表面に二本の互いに平行なス
トライプ状誘電体膜を形成し、該誘電体膜をエッチング
マスクとして、少なくとも該二本の誘電体膜に挟まれた
領域の前記第一導電型半導体層及び前記第二導電型半導
体層を取り除く工程と、前記誘電体膜を選択成長マスク
として、前記二本の誘電体膜に挟まれた領域に活性層を
含む半導体膜を有機金属熱分解気相成長法により成長す
る工程と、前記二本の互いに平行な誘電体膜を取り除
き、前記基板全面に前記活性層よりもバンドギャップの
大きい第二導電型の半導体層を成長する工程を含むこと
を特徴とする半導体発光素子の製造方法。
1. A step of sequentially laminating a second conductivity type semiconductor layer and a first conductivity type semiconductor layer on a first conductivity type semiconductor substrate,
Two stripe-shaped dielectric films parallel to each other are formed on the surface of the first conductivity type semiconductor layer, and the dielectric film is used as an etching mask in at least the region sandwiched between the two dielectric films. A step of removing the one-conductivity-type semiconductor layer and the second-conductivity-type semiconductor layer; and using the dielectric film as a selective growth mask, a semiconductor film including an active layer in a region sandwiched between the two dielectric films is formed of an organic metal. A step of growing by a pyrolysis vapor deposition method and a step of removing the two parallel dielectric films and growing a second conductivity type semiconductor layer having a band gap larger than that of the active layer on the entire surface of the substrate. A method for manufacturing a semiconductor light emitting device, comprising:
JP32158493A 1993-12-21 1993-12-21 Manufacture of semiconductor light-emitting element Withdrawn JPH07176830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32158493A JPH07176830A (en) 1993-12-21 1993-12-21 Manufacture of semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32158493A JPH07176830A (en) 1993-12-21 1993-12-21 Manufacture of semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPH07176830A true JPH07176830A (en) 1995-07-14

Family

ID=18134189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32158493A Withdrawn JPH07176830A (en) 1993-12-21 1993-12-21 Manufacture of semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPH07176830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986485B1 (en) * 2008-11-21 2010-10-08 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
US8188506B2 (en) 2008-09-30 2012-05-29 Lg Innotek Co., Ltd. Semiconductor light emitting device
US8269250B2 (en) 2009-02-16 2012-09-18 Lg Innotek Co., Ltd. Semiconductor light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188506B2 (en) 2008-09-30 2012-05-29 Lg Innotek Co., Ltd. Semiconductor light emitting device
US8319249B2 (en) 2008-09-30 2012-11-27 Lg Innotek Co., Ltd. Semiconductor light emitting device
US8952414B2 (en) 2008-09-30 2015-02-10 Lg Innotek Co., Ltd. Semiconductor light emitting device
KR100986485B1 (en) * 2008-11-21 2010-10-08 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
US8269250B2 (en) 2009-02-16 2012-09-18 Lg Innotek Co., Ltd. Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US6984840B2 (en) Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element
JP3713100B2 (en) Manufacturing method of semiconductor light emitting device
JPH10152399A (en) Formation of device containing compound semiconductor laminated structure, formation of compound semiconductor laminated structure, device formed of the same, optical transmitter using the same, and optical transmitting system by using the same
JP2004179274A (en) Optical semiconductor device
KR100272155B1 (en) Gallium nitride-based compound semiconductor laser and method of manufacturing the same.
JPH07235732A (en) Semiconductor laser
JP4002422B2 (en) Semiconductor device and manufacturing method thereof
JPH11506273A (en) Radiation-emitting semiconductor diode with a separate confinement layer of a semiconductor material containing up to 30% of aluminum or a semiconductor material without aluminum
JPH07176830A (en) Manufacture of semiconductor light-emitting element
JP3963233B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP3889896B2 (en) Semiconductor light emitting device
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP2002094187A (en) Semiconductor laser and optical communication system using it
JPH10242563A (en) Manufacture of semiconductor light emitting device
JP2758597B2 (en) Semiconductor laser device
JPS6124839B2 (en)
JPH08330665A (en) Manufacture of optical semiconductor laser
JPH08250806A (en) Semiconductor light emitting element and its manufacture
JPH06283803A (en) Semiconductor light emitting device
JPH11284276A (en) Semiconductor laser device and its manufacture
Choi et al. Selective growth and regrowth of high Al content AlGaAs for use in BH lasers
JP3680283B2 (en) Manufacturing method of semiconductor element
JP2973215B2 (en) Semiconductor laser device
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306