JPH06283803A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH06283803A
JPH06283803A JP6652893A JP6652893A JPH06283803A JP H06283803 A JPH06283803 A JP H06283803A JP 6652893 A JP6652893 A JP 6652893A JP 6652893 A JP6652893 A JP 6652893A JP H06283803 A JPH06283803 A JP H06283803A
Authority
JP
Japan
Prior art keywords
ridge
layer
quantum well
width
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6652893A
Other languages
Japanese (ja)
Inventor
Masashi Nakao
正史 中尾
Yasuhiro Kondo
康洋 近藤
Masanobu Okayasu
雅信 岡安
Mitsuru Naganuma
充 永沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6652893A priority Critical patent/JPH06283803A/en
Publication of JPH06283803A publication Critical patent/JPH06283803A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a semiconductor light emission device having good optical coupling characteristics in which DFB lasers and modulators are integrated through simultaneous growth utilizing crystal growth on a ridge. CONSTITUTION:Two types of crystal layer having different emission characteristics are grown simultaneously in the direction of cavity by taking advantage of the fact that a multilayer semiconductor formed on a ridge of 1-3mum wide and 1-3mum high, which is formed between two grooves 5 of 1-10mum wide made in a semiconductor substrate 1, has variable emission characteristics. This method allows formation of a light, emitting part comprising a DFB laser having a distorted multiple quantum well structure in the active layer and an optical modulator part of multiple quantum well structure having an absorption end on the side closer by 50-80nm to the short wave side than the oscillation wavelength of the DFB laser through same process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大容量を必要とする長
距離機関系の光通信用光源等に有用な半導体発光装置、
特に外部変調器付き分布帰還型レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device useful as a light source for optical communication of a long distance engine system requiring a large capacity,
In particular, it relates to a distributed feedback laser with an external modulator.

【0002】[0002]

【従来の技術】高コヒーレント性の必要な周波数分割多
重伝送方式(FDM)の光源素子としてはチャーピング
(変調時の発振波長のゆらぎ)の小さいことが要求され
る。外部変調器付き分布帰還型レーザはこの種の光源素
子として用いられるが、分布帰還型レーザ(以下、DF
Bレーザという。)と光変調器を別々に作製して組み合
わせたものと比較して、素子サイズの減少、両者の光結
合のための調整が不要といった長所がある反面、複数回
の結晶成長と素子作製プロセスを必要とするために、光
結合部における損失をはじめとする光素子全体の特性の
劣化は避けられない。
2. Description of the Related Art As a light source element of a frequency division multiplexing transmission system (FDM) which requires high coherence, it is required that chirping (fluctuation of oscillation wavelength at the time of modulation) is small. A distributed feedback laser with an external modulator is used as a light source element of this type.
It is called B laser. ) And an optical modulator are separately manufactured and combined, but they have the advantage of reducing the device size and not requiring adjustment for optical coupling of the two, but on the other hand, they require multiple crystal growth and device manufacturing processes. Since it is necessary, the deterioration of the characteristics of the entire optical element including the loss in the optical coupling portion cannot be avoided.

【0003】たとえば従来の外部変調器付きDFBレー
ザの作製例を図3に示す。この従来例では、まず有機金
属気相成長法(MOVPE)によりn−InP基板30
上に、InGaAs層31,n−In層32,MQW層
33,DFB層34,p−InP層35及びInGaA
s層36からなる基板DFBレーザ構造を形成した後、
光変調器部MDを形成するために、レーザ部LD以外を
基板30までエッチングして取り除く(図3(A))。
つぎに分子線エピタキシ法(MBE)を用いて、n−I
nAlAs層37,MQW層38,p−InAlAs層
39及びInGaAs層40からなる変調器MD部分を
再成長する(図3(B))。この場合、レーザ部LDと
変調器部MDの境はいわゆるバットジョイント結合とな
る。なお、MOVPE法でも量子閉じ込めシュタルク効
果のあらわれる結晶の成長が可能であり、レーザ部LD
も変調器部MDもMOVPE法のみで形成する場合もあ
る。最後にp−InP層41及びInGaAs層42か
らなるクラッド層43の再成長を行い(図3(C))、
高速な応答特性を得るために、ポリイミド44で埋め込
みし、n電極45及びp電極46の電極付けすることに
よって図3(D)のような素子構造となる。なお、47
は無反射(AR)膜である。この場合の結合効率は80
%程度と評価されている。レーザ部分を従来のバルク型
にしている構造もあるが基本的な製造プロセスに変化は
ない。図3のような素子に関してはプロセスの歩留まり
は低く特性の再現性に乏しい。特開平2−229485
号には変調器の上にレーザを形成することによって光結
合特性を改善した実用的な外部変調器付きDFBレーザ
に関して記載されている。この方法でも変調器部分のレ
ーザ構造の除去とクラッドの再成長さらには埋め込み成
長が必要であり、プロセスは煩雑となる。
An example of manufacturing a conventional DFB laser with an external modulator is shown in FIG. In this conventional example, first, an n-InP substrate 30 is formed by metalorganic vapor phase epitaxy (MOVPE).
An InGaAs layer 31, an n-In layer 32, an MQW layer 33, a DFB layer 34, a p-InP layer 35 and an InGaA layer are formed on the top.
After forming the substrate DFB laser structure composed of the s layer 36,
In order to form the optical modulator portion MD, the portions other than the laser portion LD are etched and removed up to the substrate 30 (FIG. 3A).
Next, using the molecular beam epitaxy method (MBE), n-I
The modulator MD portion including the nAlAs layer 37, the MQW layer 38, the p-InAlAs layer 39, and the InGaAs layer 40 is regrown (FIG. 3B). In this case, the boundary between the laser section LD and the modulator section MD is so-called butt joint coupling. The MOVPE method can also grow crystals exhibiting the quantum confined Stark effect, and the laser LD
The modulator unit MD may be formed only by the MOVPE method. Finally, the clad layer 43 composed of the p-InP layer 41 and the InGaAs layer 42 is regrown (FIG. 3C),
In order to obtain a high-speed response characteristic, a device structure as shown in FIG. 3D is obtained by embedding with polyimide 44 and attaching electrodes of the n electrode 45 and the p electrode 46. In addition, 47
Is an antireflection (AR) film. The coupling efficiency in this case is 80
It is estimated to be about%. There is also a structure in which the laser portion is a conventional bulk type, but the basic manufacturing process does not change. The device shown in FIG. 3 has a low process yield and poor reproducibility of characteristics. JP-A-2-229485
The publication describes a practical DFB laser with an external modulator in which the optical coupling characteristics are improved by forming the laser on the modulator. This method also requires removal of the laser structure in the modulator portion, regrowth of the cladding, and buried growth, which complicates the process.

【0004】マスク選択成長法を利用することによって
DFBレーザと変調器を集積した素子が青木等により実
現されている(応用電子物性分科会研究報告NO.445、 P.
9-14またはELECTRONICS Letters Vol.28,No.12.pp.1157
-1158)。図4にその素子構造を示したが、この素子では
MQW−DFBレーザ部50とMQW−EA変調器部5
2をマスク幅とマスク間のギャップ幅を変化させること
により、それぞれの部分での成長速度の違いによる井戸
層厚の変化が発光特性の変化になることを利用してい
る。したがってこの素子のキャビティ方向には段差が生
じているために光結合を理論的なものにできない。図4
において、MQW−DFBレーザ部50は拡大して示す
ように、グレーティング51を有する。またMQW−E
A変調器部52は拡大して示すように、InGaAs/
InGaAsPのMQW構造53とInGaAsPの導
波層54とを有する。55はn−InP基板、56はF
eドープしたInP層、57は反射(HR)膜、58は
無反射(AR)膜を示す。
An element in which a DFB laser and a modulator are integrated has been realized by Aoki et al. By utilizing the mask selective growth method (Research Report No. 445, P. of Applied Electronic Properties).
9-14 or ELECTRONICS Letters Vol.28, No.12.pp.1157
-1158). The element structure is shown in FIG. 4. In this element, the MQW-DFB laser section 50 and the MQW-EA modulator section 5 are shown.
No. 2 utilizes that the change in the mask width and the gap width between the masks causes the change in the well layer thickness due to the difference in the growth rate in each portion to change the light emission characteristics. Therefore, since there is a step in the cavity direction of this element, the optical coupling cannot be theoretical. Figure 4
In, the MQW-DFB laser unit 50 has a grating 51 as shown in an enlarged manner. Also MQW-E
As shown in an enlarged scale, the A modulator unit 52 has InGaAs /
It has an InGaAsP MQW structure 53 and an InGaAsP waveguide layer 54. 55 is an n-InP substrate, 56 is F
An e-doped InP layer, 57 is a reflective (HR) film, and 58 is a non-reflective (AR) film.

【0005】[0005]

【発明が解決しようとする課題】本発明はリッジ上の結
晶成長を利用して一括成長で光結合特性のよい、DFB
レーザと変調器の集積化された半導体発光装置を実現す
ることを主な課題としている。
DISCLOSURE OF THE INVENTION The present invention utilizes a crystal growth on a ridge to carry out batch growth with good optical coupling characteristics.
The main issue is to realize a semiconductor light emitting device in which a laser and a modulator are integrated.

【0006】[0006]

【課題を解決するための手段】本発明は、半導体上にあ
らかじめ形成するリッジの形状の幅、及び隣接するリッ
ジとの間隔(溝間隔)あるいは溝の幅、及びリッジの高
さを所定の範囲に設定し、有機金属気相成長(MOVP
E)法により活性層を歪多重量子井戸(MQW)構造か
らなる半導体多層膜を形成するものである。即ち、本発
明の半導体発光装置は、半導体基板に形成された幅1〜
10μmの2つの溝の間にできる幅1〜3μm、高さ1
〜3μmのリッジ上に形成された半導体多層膜の発光特
性が変化することを利用した光素子において、キャビテ
ィ方向に2種類の発光特性の異なった結晶層を同時に成
長することによって、発光部と光変調器部が同一工程で
形成されていることを特徴とするものであり、好ましく
は、発光部は活性層に歪多重量子井戸構造をもつ分布帰
還型レーザよりなり、光変調器部は分布帰還型レーザの
発振波長よりも50〜80nm短波長側に吸収端をもつ多
重量子井戸構造よりなることを特徴とするものである。
According to the present invention, the width of the shape of a ridge previously formed on a semiconductor, the interval (groove interval) between adjacent ridges or the width of the groove, and the height of the ridge are within a predetermined range. Set to metalorganic vapor phase growth (MOVP
According to the method E), the active layer is formed into a semiconductor multilayer film having a strained multiple quantum well (MQW) structure. That is, the semiconductor light emitting device of the present invention has a width of 1 to 1 formed on the semiconductor substrate.
Width 1-3 μm between two 10 μm grooves, height 1
In an optical device that utilizes the change in the light emission characteristics of a semiconductor multilayer film formed on a ridge of ~ 3 μm, by simultaneously growing two types of crystal layers having different light emission characteristics in the cavity direction, the light emitting portion and the light The modulator section is formed in the same step, and preferably, the light emitting section is a distributed feedback laser having a strained multiple quantum well structure in the active layer, and the optical modulator section is a distributed feedback laser. It is characterized by having a multiple quantum well structure having an absorption edge on the short wavelength side of 50 to 80 nm from the oscillation wavelength of the type laser.

【0007】[0007]

【作用】あらかじめリッジ幅、溝の幅、及びリッジの高
さが設定されたパタンを有する半導体基板上にMOVP
E法により歪量子井戸構造の半導体多層膜を形成する
と、結晶成長の固有の特性により、結晶面による半導体
構成元素の移動速度に差を生じ、リッジ上でn歪多重量
子井戸膜の組成にわずかながら変化を生じる。このた
め、複数のリッジの上に活性層の厚さと組成がわずかに
異なる光機能素子が形成でき、その波長特性は広い範囲
で制御することができる。
MOVP is formed on a semiconductor substrate having a pattern in which a ridge width, a groove width, and a ridge height are set in advance.
When a semiconductor multi-layer film having a strained quantum well structure is formed by the E method, due to the characteristic of crystal growth, a difference occurs in the moving speed of semiconductor constituent elements depending on the crystal plane, and the composition of the n-strained multiple quantum well film on the ridge is slightly different. While making changes. Therefore, an optical functional element having a slightly different thickness and composition of the active layer can be formed on the plurality of ridges, and its wavelength characteristic can be controlled in a wide range.

【0008】この波長特性の制御において、その変化の
主要因は量子井戸層の組成の変化によるものである。図
1(A),(B),(C)はそれぞれ、In1-X Gax
As/InGaAsP(λg =1.1μm)系の量子井戸
層からの発光特性のリッジ幅、溝の幅、及びリッジの高
さによる変化の様子を示したものである。図1(A)
は、リッジの高さを2μmと一定として、リッジ幅を1
μmから6μmまで変化させた時の発光波長の変化量と
の関係について、リッジ側面の溝幅をパラメータとした
特性を示したものである。図からわかるように、溝幅が
3μm以下ではリッジ幅に対して発光波長のシフト量が
顕著に増加している。リッジ幅が4μm以上では、発光
波長のシフト量はきわめて少ない。図1(B)は、リッ
ジの高さを2μmと一定として、リッジ側面の溝幅を1
μmから10μmまで変化させた時の発光波長の変化量
との関係について、リッジ幅をパラメータとした特性を
示したものである。図からわかるように、リッジ幅が2
μm以下では、溝幅の変化に対して発光波長のシフト量
が大幅に変化し、とくに溝幅が6μm以下で顕著であ
る。図1(C)は、リッジ側面の溝幅を1.5μmと一
定として、リッジの高さを1.2μmから2.2μmま
で変化させた時の発光波長の変化量との関係について、
リッジ幅をパラメータとした特性を示したものである。
図示はしないが、高さ1〜3μmの範囲で、発光波長の
シフト量はリッジの高さに対しても顕著であることがわ
かる。すなわち、図1の特性から、リッジの幅、高さ、
溝幅が10μm以下の微小な寸法では、発光波長の変化
量がきわめて大きく、しかも、リッジなどの加工技術に
より発光波長が制御できることを示している。また、発
光特性はリッジ幅が狭いほど、また溝幅も狭いほど、長
波長側にシフトする。
In controlling the wavelength characteristics, the main cause of the change is the change in the composition of the quantum well layer. 1 (A), (B), and (C) show In 1-X Ga x , respectively.
It is a view showing changes in light emission characteristics from an As / InGaAsP (λg = 1.1 μm) quantum well layer depending on a ridge width, a groove width and a ridge height. Figure 1 (A)
Sets the ridge height to 2 μm and the ridge width to 1
The relationship between the amount of change in the emission wavelength when changing from .mu.m to 6 .mu.m is shown by using the groove width of the ridge side surface as a parameter. As can be seen from the figure, when the groove width is 3 μm or less, the shift amount of the emission wavelength significantly increases with respect to the ridge width. When the ridge width is 4 μm or more, the shift amount of the emission wavelength is extremely small. In FIG. 1B, the groove width on the side surface of the ridge is 1 with the height of the ridge being constant at 2 μm.
It shows the characteristics with the ridge width as a parameter with respect to the relationship with the amount of change in the emission wavelength when changing from μm to 10 μm. As you can see, the ridge width is 2
When the groove width is less than or equal to μm, the shift amount of the emission wavelength changes significantly with respect to the change in groove width, and is particularly remarkable when the groove width is 6 μm or less. FIG. 1C shows the relationship with the amount of change in the emission wavelength when the height of the ridge is changed from 1.2 μm to 2.2 μm with the groove width on the side surface of the ridge being constant at 1.5 μm.
The characteristics are shown with the ridge width as a parameter.
Although not shown, it can be seen that the shift amount of the emission wavelength is remarkable with respect to the height of the ridge in the height range of 1 to 3 μm. That is, from the characteristics of FIG. 1, the ridge width, height,
It is shown that in the case of a groove having a minute dimension of 10 μm or less, the amount of change in the emission wavelength is extremely large, and the emission wavelength can be controlled by a processing technique such as a ridge. Further, the emission characteristics shift to the longer wavelength side as the ridge width becomes narrower and the groove width becomes narrower.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 <DFBレーザと光変調器の集積化光源>リッジ幅と溝
の深さを一定にし、溝間隔あるいは溝の幅を変えること
によりDFBレーザと光変調器の集積化光源を作製する
例を図2に示す。
Embodiments of the present invention will be described below with reference to the drawings. <Integrated Light Source of DFB Laser and Optical Modulator> An example of producing an integrated light source of DFB laser and optical modulator by keeping the ridge width and the groove depth constant and changing the groove interval or the groove width is shown in FIG. Shown in.

【0010】まず、図2(A)に示したようにn型In
P(100)基板1上のDFBレーザとなる部分にレー
ザ干渉露光法あるいは電子ビーム露光法を用いて回析格
子2を形成する。次に酸化膜もしくは窒化膜よりなる絶
縁膜3をフォトリソグラフィとドライエッチングにより
加工し、図2(B)のようなパタン(リッジになるスト
ライブ部分とそれを挟むような一部に階段を有する台地
状のマスク)を得る。基板1にはパタン形成前に光導波
路層(例えばInGaAsP層)が結晶成長されたもの
もあり、その場合には以後の結晶成長において相当する
導波路層の成長過程が省略される。次に、図2(C)の
ように塩素ガスを用いたドライエッチングにより溝幅変
調型の非平坦基板1′が形成される。ここでは幅dwが
1.5mmのリッジ(メサ)4が<011>方向(いわゆる
逆メサ方向)に形成され、溝5の深さhは2μmで、溝
の幅dgがDFBレーザと変調器でそれぞれ1.5μm、
30μmになっている、またそれぞれの部分の長さは3
00μmである。次に、トリメチルインジウム、トリエ
チルガリウム、アルシン、フォスフィンを半導体用の原
料ガスとして、またセレン化水素とジエチルジンクをド
ーピング用ガスとして、630℃、0.1気圧で有機金属
気相成長法によりリッジ上に図2(D)のように、In
GaAsPの導波路層と5周期の30ÅのInGaAs
P井戸/150ÅのInGaAsPバリアよりなる歪量
子井戸構造の発光層6、及びp−InPクラッド層7を
形成する。これにより、フォトルミネスセンス法により
観測した平坦基板上での発光のスペクトルは1.3μmに
ピークを持つのに対して、隣接した溝幅が1.5μm、3.
0μmとなっているリッジ上からの発光のピークはそれ
ぞれ1.55μm、1.48μmになる。このようにするこ
とにより、DFBレーザの発振波長よりも50〜80nm
短波長側に吸収端をもつ多重量子井戸構造よりなる光変
調器が得られる。さらに図2(E)にしたがって有機金
属気相成長法によりp−InPクラッド層7′を積み増
した後、電流ブロックのために埋め込み層としてn−I
nP層8及びp−InP層9を成長した後、p−InG
aAsPコンタクト層10を形成する。図2(D)と
(E)の結晶成長は条件により一回で可能であるが、埋
め込み層の厚さやドーピング制御等を正確に行うとき
は、2ないし3回に分けて成長を行う。最後に図2
(F)のように上下にp電極11とn電極11′を形成
し、更にリッジ上の組成の変化するそれぞれの部分をD
FBレーザ15と光変調器16に分離するために分離溝
12を設ける。
First, as shown in FIG. 2A, n-type In
Diffraction grating 2 is formed on a portion of P (100) substrate 1 which will be a DFB laser, using a laser interference exposure method or an electron beam exposure method. Next, the insulating film 3 made of an oxide film or a nitride film is processed by photolithography and dry etching to have a pattern (a ridge stripe portion and a step between the stripe portions as shown in FIG. 2B). Get the plateau mask). There is also a substrate 1 in which an optical waveguide layer (for example, InGaAsP layer) is crystal-grown before pattern formation, and in that case, a corresponding waveguide layer growth process is omitted in the subsequent crystal growth. Next, as shown in FIG. 2C, a groove width modulation type non-flat substrate 1'is formed by dry etching using chlorine gas. Here, the width dw
A ridge (mesa) 4 of 1.5 mm is formed in the <011> direction (so-called reverse mesa direction), the depth h of the groove 5 is 2 μm, and the groove width dg is 1.5 μm for the DFB laser and the modulator, respectively.
30 μm, and the length of each part is 3
It is 00 μm. Then, using trimethylindium, triethylgallium, arsine, and phosphine as source gases for the semiconductor, and hydrogen selenide and diethylzinc as doping gases, a metalorganic vapor phase epitaxy method was performed on the ridge at 630 ° C. and 0.1 atm. As shown in FIG.
GaAsP waveguide layer and 5 cycles of 30Å InGaAs
A light emitting layer 6 having a strained quantum well structure made of a P well / 150 Å InGaAsP barrier and a p-InP clad layer 7 are formed. As a result, the emission spectrum on the flat substrate observed by the photoluminescence method has a peak at 1.3 μm, while the adjacent groove widths are 1.5 μm and 3.
The peaks of light emission from the ridge, which is 0 μm, are 1.55 μm and 1.48 μm, respectively. By doing this, the oscillation wavelength of the DFB laser is 50 to 80 nm.
An optical modulator having a multiple quantum well structure having an absorption edge on the short wavelength side can be obtained. Further, according to FIG. 2 (E), p-InP clad layer 7'is additionally deposited by metalorganic vapor phase epitaxy, and then n-I is used as a buried layer for current blocking.
After growing the nP layer 8 and the p-InP layer 9, p-InG
The aAsP contact layer 10 is formed. The crystal growth of FIGS. 2D and 2E can be performed once depending on the conditions, but when the thickness of the buried layer, the doping control, and the like are accurately performed, the crystal growth is performed in two or three times. Finally Figure 2
As shown in (F), a p-electrode 11 and an n-electrode 11 'are formed on the upper and lower sides, and each portion on the ridge where the composition changes is D
A separation groove 12 is provided to separate the FB laser 15 and the optical modulator 16.

【0011】これにより、半導体基板1に形成された幅
1〜10μmの2つの溝5,5の間にできる幅1〜3μ
m 、高さ1〜3μmのリッジ4上に形成された半導体
多層膜の発光特性が変化することを利用して、キャビテ
ィ方向に2種類の発光特性の異なった結晶層を同時に成
長することによって、活性層に歪多重量子井戸構造をも
つDFBレーザ15よりなる発光部と、DFBレーザ1
5の発振波長よりも50〜80nm短波長側に吸収端をも
つ多重量子井戸構造よりなる光変調器16とが同一工程
で形成される。
As a result, a width of 1 to 3 μ formed between the two grooves 5 and 5 formed in the semiconductor substrate 1 and having a width of 1 to 10 μm.
By utilizing the fact that the emission characteristics of the semiconductor multi-layer film formed on the ridge 4 having a height of m 3 and a height of 1 to 3 μm change, two kinds of crystal layers having different emission characteristics are simultaneously grown in the cavity direction. A light-emitting portion including a DFB laser 15 having a strained multiple quantum well structure in an active layer, and a DFB laser 1
An optical modulator 16 having a multiple quantum well structure having an absorption edge on the shorter wavelength side of 50 to 80 nm than the oscillation wavelength of 5 is formed in the same step.

【0012】このようにして作製された素子を図2
(F)の如くヒートシンク13上にマウントし、さらに
リード線(ワイヤー)14をボンデングした後に、ILD
として一定電流を注入してDFBレーザ15を発振させ
た状態で、IMOD として変調された電流を光変調器16
に注入して使用する。
The element thus manufactured is shown in FIG.
After mounting on the heat sink 13 as shown in (F) and further bonding the lead wire (wire) 14, I LD
In the state where the DFB laser 15 is oscillated by injecting a constant current as, the current modulated as I MOD is supplied to the optical modulator 16
To use.

【0013】[0013]

【発明の効果】本発明によれば、DFBレーザと光変調
器の集積化光源が容易に作製でき、素子の低価格化によ
る光通信技術の進展がはかられる。
According to the present invention, an integrated light source of a DFB laser and an optical modulator can be easily manufactured, and the optical communication technology can be advanced by reducing the cost of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】非平坦基板上に形成されたIn1-X Gax As
/InGaAsP(λg =1.1μm)系MQW層の発光
波長のシフト量を(A):種々の溝幅における発光波長
のシフト量のリッジ幅依存性、(B):種々のリッジ幅
における発光波長のシフト量の溝幅依存性、(C):種
々のリッジ幅における発光波長のシフト量のリッジ高さ
依存性として示す図。
FIG. 1 In 1-X Ga x As formed on a non-planar substrate
/ InGaAsP (λg = 1.1 μm) -based MQW layer emission wavelength shift amount (A): ridge width dependence of emission wavelength shift amount at various groove widths, (B): emission wavelength at various ridge widths The groove width dependence of the shift amount of (1), (C): the ridge height dependence of the emission wavelength shift amount in various ridge widths.

【図2】本発明の一実施例のDFBレーザと光変調器と
の集積化光源の作製法を示す図。
FIG. 2 is a diagram showing a method of manufacturing an integrated light source of a DFB laser and an optical modulator according to an embodiment of the present invention.

【図3】DFBレーザと光変調器の集積化光源の従来例
を示す図。
FIG. 3 is a diagram showing a conventional example of an integrated light source of a DFB laser and an optical modulator.

【図4】DFBレーザと光変調器の集積化光源の他の従
来例を示す図。
FIG. 4 is a diagram showing another conventional example of an integrated light source of a DFB laser and an optical modulator.

【符号の説明】[Explanation of symbols]

1 基板 2 回折格子 3 酸化膜もしくは窒化膜 4 リッジ 5 溝 6 InGaAs/InGaAsP発光層及び光導波層 7,7′ p−InPクラッド層 8 n−埋め込み層 9 p−InP埋め込み層及びクラッド層 10 コンタクト層 11,11′ 電極 12 素子分離溝 13 ヒートシンク 14 リード線 15 DFBレーザ 16 光変調器 1 Substrate 2 Diffraction Grating 3 Oxide Film or Nitride Film 4 Ridge 5 Groove 6 InGaAs / InGaAsP Light-Emitting Layer and Optical Waveguide Layer 7, 7 ′ p-InP Clad Layer 8 n-Embedded Layer 9 p-InP Embedded Layer and Clad Layer 10 Contact Layer 11, 11 'Electrode 12 Element isolation groove 13 Heat sink 14 Lead wire 15 DFB laser 16 Optical modulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永沼 充 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuru Naganuma 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に形成された幅1〜10μm
の2つの溝の間にできる幅1〜3μm、高さ1〜3μm
のリッジ上に形成された半導体多層膜の発光特性が変化
することを利用した光素子において、キャビティ方向に
2種類の発光特性の異なった結晶層を同時に成長するこ
とによって、発光部と光変調器部が同一工程で形成され
ていることを特徴とする半導体発光装置。
1. A width of 1 to 10 μm formed on a semiconductor substrate
Width 1-3 μm, height 1-3 μm between two grooves
In an optical device that utilizes the change in the emission characteristics of the semiconductor multilayer film formed on the ridge, the two types of crystal layers having different emission characteristics are simultaneously grown in the cavity direction so that the light emitting portion and the optical modulator are formed. A semiconductor light-emitting device, wherein the parts are formed in the same process.
【請求項2】 請求項1において発光部は活性層に歪多
重量子井戸構造をもつ分布帰還型レーザよりなり、光変
調器部は分布帰還型レーザの発振波長よりも50〜80
nm短波長側に吸収端をもつ多重量子井戸構造よりなるこ
とを特徴とする半導体発光装置。
2. The light emitting section according to claim 1, wherein the active layer is a distributed feedback laser having a strained multiple quantum well structure, and the optical modulator section is 50 to 80 wavelengths longer than the oscillation wavelength of the distributed feedback laser.
A semiconductor light emitting device comprising a multi-quantum well structure having an absorption edge on the short wavelength side.
JP6652893A 1993-03-25 1993-03-25 Semiconductor light emitting device Withdrawn JPH06283803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6652893A JPH06283803A (en) 1993-03-25 1993-03-25 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6652893A JPH06283803A (en) 1993-03-25 1993-03-25 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH06283803A true JPH06283803A (en) 1994-10-07

Family

ID=13318470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6652893A Withdrawn JPH06283803A (en) 1993-03-25 1993-03-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH06283803A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121562A (en) * 1988-10-31 1990-05-09 Nec Corp Close-contact type image sensor
JP2009302138A (en) * 2008-06-10 2009-12-24 Opnext Japan Inc Semiconductor laser device, and method of manufacturing the same
JP2015053457A (en) * 2013-09-09 2015-03-19 日本電信電話株式会社 Method for manufacturing optical semiconductor device
CN114122205A (en) * 2021-11-10 2022-03-01 重庆康佳光电技术研究院有限公司 Semiconductor epitaxial structure, application thereof and manufacturing method of semiconductor epitaxial structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121562A (en) * 1988-10-31 1990-05-09 Nec Corp Close-contact type image sensor
JP2009302138A (en) * 2008-06-10 2009-12-24 Opnext Japan Inc Semiconductor laser device, and method of manufacturing the same
JP2015053457A (en) * 2013-09-09 2015-03-19 日本電信電話株式会社 Method for manufacturing optical semiconductor device
CN114122205A (en) * 2021-11-10 2022-03-01 重庆康佳光电技术研究院有限公司 Semiconductor epitaxial structure, application thereof and manufacturing method of semiconductor epitaxial structure

Similar Documents

Publication Publication Date Title
JP2842292B2 (en) Semiconductor optical integrated device and manufacturing method
EP0896406A2 (en) Semiconductor laser device, optical communication system using the same, and method for producing compound semiconductor
JP2000312054A (en) Semiconductor element and manufacture thereof
JPH07235732A (en) Semiconductor laser
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
JP2003069145A (en) Method of manufacturing distributed feedback semiconductor laser element group
JP2890745B2 (en) Method of manufacturing semiconductor device and method of manufacturing optical semiconductor device
JPH0653619A (en) Compound semiconductor device and its manufacture
EP0680119B1 (en) Fabrication process for semiconductor optical device
JP2701569B2 (en) Method for manufacturing optical semiconductor device
KR100632308B1 (en) Gain-coupled distributed feedback semiconductor laser device and manufacturing method thereof
EP0793280B1 (en) An edge emitting LED and method of forming the same
JP4006729B2 (en) Semiconductor light-emitting device using self-assembled quantum dots
JP3421999B2 (en) Optical functional device, optical integrated device including the same, and manufacturing method thereof
JPH08307012A (en) Mask for selective growth, manufacture of semiconductor optical device, and semiconductor optical device
JP5169534B2 (en) Integrated optical semiconductor device manufacturing method and integrated optical semiconductor device
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP4833457B2 (en) Fabrication method of optical integrated device
JPH06283803A (en) Semiconductor light emitting device
US7288783B2 (en) Optical semiconductor device and method for fabricating the same
JP2907234B2 (en) Semiconductor wavelength tunable device
JPH06196797A (en) Optical modulator integrating light source element and manufacture thereof
JPH03151684A (en) Manufacture of multi-wavelength integrated semiconductor laser
US5360763A (en) Method for fabricating an optical semiconductor device
JPH05110186A (en) Monolithic optical element and manufacture of the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530