JPS63177493A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS63177493A
JPS63177493A JP857387A JP857387A JPS63177493A JP S63177493 A JPS63177493 A JP S63177493A JP 857387 A JP857387 A JP 857387A JP 857387 A JP857387 A JP 857387A JP S63177493 A JPS63177493 A JP S63177493A
Authority
JP
Japan
Prior art keywords
layer
stencil
conductivity type
mesa
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP857387A
Other languages
Japanese (ja)
Other versions
JPH0710019B2 (en
Inventor
Yasuhiro Kondo
康洋 近藤
Yoshio Itaya
板屋 義夫
Yoshihiro Imamura
今村 義宏
Mamoru Oishi
護 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP857387A priority Critical patent/JPH0710019B2/en
Publication of JPS63177493A publication Critical patent/JPS63177493A/en
Publication of JPH0710019B2 publication Critical patent/JPH0710019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To remove the influence of abnormal growth, near a mesa, which is specific to the vapor phase growth and which is caused by a transport phenomenon of a gas by a method wherein, after a growth process by an MOVPE method has been executed on a semiconductor substrate containing a mesa region of the multilayer structure composed of an active layer, a clad layer and a stencil layer, the stencil layer is removed. CONSTITUTION:A laminate composed of a semiconductor layer 4 of a second conductivity type and a semiconductor layer 5 of a first conductivity type is grown by a metal organic vapor phase epitaxial method on a semiconductor substrate 1, of the first conductivity type, containing a mesa region of multilayer structure composed of an active layer 2, a clad layer 3 and a stencil layer 8; the height of the laminate which has been grown on the semiconductor substrate 1, of the first conductivity type, other than said mesa region is made equal to the lower face of the stencil layer 8. After that, the stencil layer B is removed selectively; the laminate deposited on the upper face of the stencil layer 8 is removed; the surface is made flat. By this method, a semiconductor laser of buried structure can be made without causing the abnormal growth near the mesa by the metal organic vapor phase epitaxial method which can grow an epitaxial film whose composition and film thickness are uniform over a wide area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大面積に均一な組成および層厚を有するエピ
タキシャル膜を成長可能な有機金属気相エピタキシャル
法による埋込み構造半導体レーザの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a buried structure semiconductor laser using an organometallic vapor phase epitaxial method that is capable of growing an epitaxial film having a uniform composition and layer thickness over a large area. It is something.

〔従来の技術〕[Conventional technology]

レーザとしては、低しきい値で発振し、かつ安定なモー
ドで動作するものが望ましい。以上の条件をみたすもの
として、活性層を活性層よりも屈折率の小さい材料で囲
むように埋め込んだ埋込み構造半導体レーザがある。今
までに報告されている埋込み構造半導体レーザの代表的
なものを第7図、第8図に示す。
It is desirable that the laser oscillates at a low threshold and operates in a stable mode. As a device that satisfies the above conditions, there is a buried structure semiconductor laser in which the active layer is surrounded by a material having a lower refractive index than the active layer. Typical buried structure semiconductor lasers that have been reported so far are shown in FIGS. 7 and 8.

第7図は、「平尾他、応用物理誌、 1980.51巻
、 4539頁」(M、旧rao et al、、J、
 Appl、 Phys、。
Figure 7 is from “Hirao et al., Journal of Applied Physics, Vol. 51, 1980, p. 4539” (formerly RAO et al., J.
Appl, Phys.

1980、 vol 、51. p4539)で報告さ
れた埋込み構造半導体レーザを示す断面図である。第7
図において、lはn形InPバッファ層、2はGa1n
AsP活性層、3はp形InPクラッド層、4はp形I
nP電流ブロック層、5はn形1nP電流閉込め層であ
る。活性層2が屈折率の小さいInP層1.3,4.5
によって囲まれた埋込み構造になっている。この構造に
おいて、埋込み層4および5は液相エピタキシャル法(
以下rLPE法」という)によって成長され、このLP
E法では、メサ上部につけた誘電体膜に結晶が成長しな
いことを利用している。
1980, vol, 51. 4539) is a cross-sectional view showing a buried structure semiconductor laser reported in 7th
In the figure, l is an n-type InP buffer layer, 2 is a Ga1n
AsP active layer, 3 p-type InP cladding layer, 4 p-type I
The nP current blocking layer 5 is an n-type 1nP current confinement layer. Active layer 2 is an InP layer with a small refractive index 1.3, 4.5
It has an embedded structure surrounded by. In this structure, buried layers 4 and 5 are formed by liquid phase epitaxial method (
This LP is grown by
The E method takes advantage of the fact that crystals do not grow on the dielectric film attached to the top of the mesa.

また、第8図は、「水戸他、米国電気電子技術者協会、
光波技術誌、 LT−1@、 195頁、 1983J
(1,Mito et al、1IEEE、J、 Li
ght wave Tech、、LT−1、p、195
.1983 )で報告された埋込み構造半導体レーザを
示す断面図である。この半導体レーザは、第7図に示し
た半導体レーザと同様に、活性層2がInP層1. 3
. 4. 5に埋め込まれているが、最後にクラッド層
3を含めてすべてをp形InPの層6により埋め込む構
造になっている。ここでは、電流ブロック層4.電流閉
込め層5の成長には過飽和度の小さい2相融液を用いた
LPE法が用いられており、この場合、メサ上部と高さ
が一致するまでメサ上部には結晶が成長しないことを利
用している。
In addition, Figure 8 shows “Mito et al., Institute of Electrical and Electronics Engineers,
Light Wave Technology Magazine, LT-1@, 195 pages, 1983J
(1, Mito et al., 1 IEEE, J. Li
ght wave Tech,, LT-1, p, 195
.. 1983) is a cross-sectional view showing a buried structure semiconductor laser reported in 1983). Similar to the semiconductor laser shown in FIG. 7, this semiconductor laser has an active layer 2 formed of an InP layer 1. 3
.. 4. 5, the structure is such that the entire layer including the cladding layer 3 is finally buried with a p-type InP layer 6. Here, the current blocking layer 4. The current confinement layer 5 is grown using the LPE method using a two-phase melt with a low degree of supersaturation. We are using.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、有機金属気相エピタキシャル法(以下rMO
VPE法」という)によって、第9図に示すメサ上部に
5iOz膜7をつけた逆メサ構造を埋め込む場合、メサ
上部の両端でメサ側面方向にそった角状の異常成長がお
こり、埋込み成長ができない。このことは、例えば「大
面および黒岩、電気化学製会誌、 1201〜1214
頁、132巻、5号。
However, metal organic vapor phase epitaxial method (rMO
When an inverted mesa structure with a 5iOz film 7 attached to the top of the mesa as shown in Fig. 9 is buried by the VPE method (referred to as "VPE method"), abnormal angular growth along the sides of the mesa occurs at both ends of the top of the mesa, resulting in the embedding growth. Can not. This can be seen, for example, in ``Omen and Kuroiwa, Denki Kagaku Seikatsu Journal, 1201-1214.
Page, Volume 132, Issue 5.

1985J  (M、0ishi and K、Kur
oiwa+J、Electrochem。
1985J (M, Oishi and K, Kur
oiwa+J, Electrochem.

Soc、、pp、 1201〜1214.vol、13
2.No、5.1985)に記載されている。この異常
成長は5iOz膜の他に窒化シリコン膜でも生じ、一般
にその上に結晶成長が生じない膜をメサ上部に付した場
合に生じる。
Soc,, pp. 1201-1214. vol, 13
2. No. 5.1985). This abnormal growth occurs not only in the 5iOz film but also in the silicon nitride film, and generally occurs when a film on which crystal growth does not occur is deposited on top of the mesa.

また、第10図に示すように、垂直にメサを切った場合
も、側壁部分の成長が速く、側壁部分がすべてp形In
P4で覆われてしまうので、pn接合をメサ側面に形成
することができなかった。
Furthermore, as shown in Figure 10, when the mesa is cut vertically, the growth of the sidewalls is fast, and the sidewalls are all p-type In.
Since it was covered with P4, it was not possible to form a pn junction on the side surface of the mesa.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、気相成長特有のガスの輸送現象
によって起こるメサ近傍での異常成長の影響を除去でき
るMOVPE法による埋込み構造半導体レーザの製造方
法を提供することにある。
The present invention has been made in view of these points, and its purpose is to provide a buried structure using the MOVPE method that can eliminate the influence of abnormal growth near the mesa caused by the gas transport phenomenon unique to vapor phase growth. An object of the present invention is to provide a method for manufacturing a semiconductor laser.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

このような目的を達成するために本発明は、活性層、ク
ラッド層、ステンシル層から成る多層構造のメサ領域を
有する第1導電形半導体基板上に第2導電形半導体層と
第1導電形半導体層から成る積層を有機金属気相エピタ
キシャル法により成長し、メサ領域以外の第1導電形半
導体基板上に成長した積層の高さがステンシル層の下面
に等しくなるようにする工程と、ステンシル層を選択除
去することによってステンシル層上面に堆積された積層
を除去するようにしたものである。
In order to achieve such an object, the present invention provides a semiconductor layer of a second conductivity type and a semiconductor of a first conductivity type on a semiconductor substrate of a first conductivity type, which has a mesa region with a multilayer structure consisting of an active layer, a cladding layer, and a stencil layer. growing a stack of layers by a metal organic vapor phase epitaxial method so that the height of the stack grown on the first conductivity type semiconductor substrate other than the mesa region is equal to the lower surface of the stencil layer; The stacked layers deposited on the upper surface of the stencil layer are removed by selective removal.

〔作用〕[Effect]

本発明においては、大面積に均一な組成および層厚を有
するエピタキシャル膜を成長可能なを機金属気相エピタ
キシャル法により、メサ近傍での異常成長を起こすこと
なく、埋込み構造半導体レーザを作製できる。
In the present invention, a buried structure semiconductor laser can be manufactured without causing abnormal growth in the vicinity of the mesa by using a metal-mechanical vapor phase epitaxial method that is capable of growing an epitaxial film having a uniform composition and layer thickness over a large area.

〔実施例〕〔Example〕

第1図〜第6図は、本発明に係わる埋込み構造半導体レ
ーザの製造方法の一実施例を説明するための断面図であ
る。まず、第1図に示すように、(100)面n形In
P基板la上にSeドープn形1nP層1b(層厚約2
μm)を積層した1nP基板1を形成し、次に、アンド
ープGaInAsPの活性層2(層厚約0.1μm>、
p形InPクラッド層3 (層厚約1.0μm)を形成
し、さらに、選択エツチングによりメサ上面に成長した
層を除去するためのGaInAsPステンシル層8(層
厚約0.1μm)をMOVPE法によって成長する。
1 to 6 are cross-sectional views for explaining an embodiment of a method for manufacturing a buried structure semiconductor laser according to the present invention. First, as shown in FIG. 1, (100) plane n-type In
A Se-doped n-type 1nP layer 1b (layer thickness approximately 2
A 1nP substrate 1 with a layer thickness of about 0.1 μm is formed, and then an active layer 2 of undoped GaInAsP (layer thickness of about 0.1 μm>,
A p-type InP cladding layer 3 (layer thickness of about 1.0 μm) is formed, and a GaInAsP stencil layer 8 (layer thickness of about 0.1 μm) is formed by MOVPE to remove the layer grown on the top surface of the mesa by selective etching. grow up.

次に、第2図に示すように成長面にプラズマCVD法に
よって酸化シリコン膜(図示せず)を付け、ホトリソグ
ラフィの技術によって(011)方向に酸化シリコン膜
でストライプ幅約2〜3μmのストライプマスクを形成
し、1%の13rメチル液によって活性層の下までエツ
チングし、メサ領域を形成する。そして、次に、酸化シ
リコン膜をプラズマエツチング法によって除去する。
Next, as shown in FIG. 2, a silicon oxide film (not shown) is applied to the growth surface by plasma CVD, and the silicon oxide film is formed into stripes with a stripe width of about 2 to 3 μm in the (011) direction using photolithography. Form a mask and etch below the active layer with 1% 13r methyl solution to form mesa regions. Then, the silicon oxide film is removed by plasma etching.

次に、第3図に示すように、MOVPB法により、上記
のメサ領域を有する基板上にp形InP電流ブロック層
4 (Jii厚約0.5μm)およびn形InP電流閉
込め層5(層厚約0.5μm)を形成する。成長条件と
しては、例えばソースガスとしてPH3:TMI=15
0 : 1  (流量比)を用い、p形InPを堆積す
る場合はドーピングガスとしてDEZ (ジエチル亜鉛
)を、n形InPを堆積する場合にはドーピングガスと
してHzseを用い、キャリアガスとして水素を用い、
反応炉内圧力を50To r r、基板温度を約685
℃として堆積を行なう。このとき、メサ上面では、側面
に(111)面を出した成長がおこり、他の領域では、
はぼ均一な成長がおこる。そして、メサ領域以外で成長
したn形InP電流閉込め層5の高さをメサ領域最上面
のGa1nAsPステンシル層8の下面にそろうように
する。
Next, as shown in FIG. 3, a p-type InP current blocking layer 4 (Jii thickness of about 0.5 μm) and an n-type InP current confinement layer 5 (layer A thickness of approximately 0.5 μm) is formed. As a growth condition, for example, PH3:TMI=15 as a source gas.
DEZ (diethyl zinc) is used as a doping gas when depositing p-type InP, Hzse is used as a doping gas when depositing n-type InP, and hydrogen is used as a carrier gas. ,
The pressure inside the reactor was 50 Torr, and the substrate temperature was about 685
Deposition is carried out at ℃. At this time, growth occurs on the top surface of the mesa with (111) planes on the sides, and in other areas,
Uniform growth occurs. Then, the height of the n-type InP current confinement layer 5 grown outside the mesa region is made to be aligned with the lower surface of the Ga1nAsP stencil layer 8 on the uppermost surface of the mesa region.

次に、H2SO4: H2O2: H20’=3 : 
1 : 1(30℃)の溶液を用いてメサ領域最上面の
GaInAsPステンシル層8を選択エツチングし、メ
サ領域上面に成長したp形1nP電流ブロック層4. 
 n形1nP電流閉込め層5を除去する。これにより、
第4図に示すような結晶平面の平坦化を行なう。
Next, H2SO4: H2O2: H20'=3:
The GaInAsP stencil layer 8 on the top surface of the mesa region is selectively etched using a 1:1 (30° C.) solution, and a p-type 1nP current blocking layer 4 is grown on the top surface of the mesa region.
The n-type 1nP current confinement layer 5 is removed. This results in
The crystal plane is flattened as shown in FIG.

次に、MOVPE法によって、p”形Ga1nAsPキ
ャップ層9をウェハ全体に成長し、基板側を研磨してウ
ェハの厚さを約80μmとした後、成長側にAuンZ 
n / N i電極10、基板側にAu / G e 
/ N i電極11を真空蒸着し、H2中420℃で熱
処理し電極を形成する。その後、紙面に平行な面をへき
関し、第5図に示すようなレーザ・チップを作製する。
Next, a p'' type Ga1nAsP cap layer 9 is grown on the entire wafer by MOVPE, and the substrate side is polished to a thickness of about 80 μm, and then Au and Z are grown on the growth side.
n/Ni electrode 10, Au/Ge on the substrate side
/ Ni electrode 11 is vacuum deposited and heat treated in H2 at 420°C to form an electrode. Thereafter, the plane parallel to the plane of the paper is separated to produce a laser chip as shown in FIG.

上記に示したように、その上に化合物半導体のエピタキ
シャル成長が可能な膜をメサ領域の最上層に用いること
によりレーザを作製すれば、MOVPE法によるメサ領
域での異常成長は生じず、メサ領域を埋め込むことがで
き、MOVPE法だけで容易に埋込み構造半導体レーザ
を作製することができる。なお、最上層(ステンシル層
)8の選択エツチング時に下地のクラッド層3がエツチ
ングされないように最上層を選ぶ必要がある。
As shown above, if a laser is manufactured by using a film on which a compound semiconductor can be epitaxially grown as the top layer of the mesa region, abnormal growth will not occur in the mesa region by the MOVPE method, and the mesa region will be It can be buried, and a buried structure semiconductor laser can be easily manufactured using only the MOVPE method. Incidentally, when selectively etching the uppermost layer (stencil layer) 8, it is necessary to select the uppermost layer so that the underlying cladding layer 3 is not etched.

また、上記実施例では、メサ領域最上層のGaInAs
Pステンシル層8の下面とn形1nP電流閉込め層5の
上面がちょうど一致しなければ、選択エツチングによっ
て表面の平坦化はできない。
In the above embodiment, the uppermost layer of the mesa region is made of GaInAs.
Unless the bottom surface of the P stencil layer 8 and the top surface of the n-type 1nP current confinement layer 5 exactly match, the surface cannot be planarized by selective etching.

しかし、n形1nP電流閉込め層5の上面がメサ領域最
上層(ステンシル層)8の下面より低く、選択エツチン
グを行なった後、低いメサが残ったとしても、そのメサ
の高さが1μmより小さければ、MOVPE法でもウェ
ハ全体に均一に結晶を成長させることができるので、そ
の場合は、第6図に示すように、選択エツチング後にウ
ェハ全体にp形InP埋込み層6を成長し、表面の平坦
化を行なってから、前述したようにp°形GaInAs
Pキ(17プ層9.Au/Zn/Ni電極10、Au/
Qe/Ni電極11を作製し、埋込み構造半導体レーザ
を作製する。
However, even if the top surface of n-type 1nP current confinement layer 5 is lower than the bottom surface of mesa region top layer (stencil layer) 8 and a low mesa remains after selective etching, the height of the mesa is less than 1 μm. If the crystal is small, it is possible to grow the crystal uniformly over the entire wafer using the MOVPE method. In that case, as shown in FIG. 6, a p-type InP buried layer 6 is grown over the entire wafer after selective etching, and the surface After planarization, the p° type GaInAs was
P key (17 layer 9. Au/Zn/Ni electrode 10, Au/
A Qe/Ni electrode 11 is produced, and a buried structure semiconductor laser is produced.

また、埋込み層6となる部分にn形InPを用いた場合
は、活性層2上面の埋込み層6部分にp形1nPクラッ
ド層3に到達するまでZnの拡散を行ないp形化すれば
よい。
Furthermore, when n-type InP is used for the portion that will become the buried layer 6, Zn may be diffused into the portion of the buried layer 6 on the upper surface of the active layer 2 until it reaches the p-type 1nP cladding layer 3 to make it p-type.

さらに、半導体基板1としてSeドープn形InPJi
lbがないn形1nP基板1aを用いてもよい。
Furthermore, Se-doped n-type InPJi is used as the semiconductor substrate 1.
An n-type 1nP substrate 1a without lb may also be used.

さらに、上記実施例では、電流ブロック層としてInP
のpn逆バイアス層を用いたが、pHnP電流ブロック
層4.  n形1nP電流閉込め層5の代わりに半絶縁
性のInP層を用いてもよい。
Furthermore, in the above embodiment, InP is used as the current blocking layer.
A pn reverse bias layer was used, but a pHnP current blocking layer 4. A semi-insulating InP layer may be used instead of the n-type 1nP current confinement layer 5.

さらに、Ga1nAsP/InP系について述べたが、
G a A s / A!GaAs系など他の結晶系を
用いてもよい。
Furthermore, although we have described the Ga1nAsP/InP system,
G a As / A! Other crystal systems such as GaAs may also be used.

さらに、ここではn形基板を用いて説明したが、p形基
板を用いても同様のことが可能である。
Furthermore, although the explanation has been made using an n-type substrate, the same thing can be done using a p-type substrate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、多層構造のメサ領域を有
する第1導電形半導体基板上に第2導電形半導体層と第
1導電形半導体層から成る積層を有機金属気相エピタキ
シャル法により成長し、メサ領域以外の第1導電形半導
体基板上に成長した積層の高さがメサ領域のステンシル
層の下面に等しくなるようにし、上記ステンシル層を選
択除去することによってステンシル層上面に堆積された
積層を除去して表面の平坦化を行なうことにより、有機
金属気相エピタキシャル法だけで埋込み構造半導体レー
ザを作製することができるので、液相エピタキシャル法
で不可能な一度に大面積の成長を行なうことができ、多
量の半導体レーザを作製することが可能になる効果があ
る。
As explained above, the present invention grows a stack of a second conductivity type semiconductor layer and a first conductivity type semiconductor layer on a first conductivity type semiconductor substrate having a multilayered mesa region by an organometallic vapor phase epitaxial method. , the height of the stack grown on the first conductivity type semiconductor substrate other than the mesa region is made equal to the lower surface of the stencil layer in the mesa region, and the stencil layer is selectively removed, thereby forming a stack deposited on the upper surface of the stencil layer. By removing and flattening the surface, it is possible to fabricate a buried structure semiconductor laser using only the organometallic vapor phase epitaxial method, which allows growth of a large area at once, which is impossible with the liquid phase epitaxial method. This has the effect of making it possible to manufacture a large number of semiconductor lasers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明に係わる埋込み構造半導体レー
ザの製造方法の一実施例を説明するための断面図、第6
図はその第2の実施例を説明するための断面図、第7図
、第8図は液相エピタキシャル法で作製された埋込み構
造半導体レーザを示す断面図、第9図、第10図は有機
金属気相エピタキシャル法による従来の製造方法を説明
するための断面図である。 1.1a−n形InP基板、lb’−・・n形1nPバ
ッファ層、2・・・QalnAsP活性層、3・・・p
形1nPクラッド層、4・・・p形InP電流ブロック
層、5・・・n形TnP電流閉込め層、6・・・p形I
nP埋込み層、7・・・酸化シリコン膜、8・・・Ga
InAs Pステンシル層、9 ・p ”形Ga I 
nAsPキー?7ブ層9.10 ・・・A u/ Z 
n/N i電極、11”Au/Ge/Ni電極。
1 to 5 are cross-sectional views for explaining one embodiment of the method for manufacturing a buried structure semiconductor laser according to the present invention, and FIG.
The figure is a cross-sectional view for explaining the second embodiment, FIGS. 7 and 8 are cross-sectional views showing a buried structure semiconductor laser fabricated by liquid phase epitaxial method, and FIGS. 9 and 10 are organic FIG. 2 is a cross-sectional view for explaining a conventional manufacturing method using a metal vapor phase epitaxial method. 1.1a-n-type InP substrate, lb'--n-type 1nP buffer layer, 2...QalnAsP active layer, 3...p
1nP type cladding layer, 4...p-type InP current blocking layer, 5...n-type TnP current confinement layer, 6...p-type I
nP buried layer, 7... silicon oxide film, 8... Ga
InAs P stencil layer, 9.p” type Ga I
nAsP key? 7b layer 9.10...A u/Z
n/N i electrode, 11” Au/Ge/Ni electrode.

Claims (1)

【特許請求の範囲】[Claims] 活性層、クラッド層、ステンシル層から成る多層構造の
メサ領域を有する第1導電形半導体基板上に第2導電形
半導体層と第1導電形半導体層から成る積層を有機金属
気相エピタキシャル法により成長させて前記メサ領域以
外の前記第1導電形半導体基板上に成長した前記積層の
高さが前記ステンシル層の下面に等しくなるようにする
工程と、前記ステンシル層を選択除去することによって
前記ステンシル層上面に堆積された前記積層を除去して
表面の平坦化を行なう工程とを含むことを特徴とする埋
込み構造半導体レーザの製造方法。
A laminated layer consisting of a second conductivity type semiconductor layer and a first conductivity type semiconductor layer is grown by an organometallic vapor phase epitaxial method on a first conductivity type semiconductor substrate having a multilayer structure mesa region consisting of an active layer, a cladding layer, and a stencil layer. the stencil layer by selectively removing the stencil layer, and selectively removing the stencil layer so that the height of the stacked layer grown on the first conductivity type semiconductor substrate in areas other than the mesa region is equal to the lower surface of the stencil layer; 1. A method of manufacturing a buried structure semiconductor laser, comprising the step of removing the laminated layer deposited on the upper surface to planarize the surface.
JP857387A 1987-01-17 1987-01-17 Embedded structure semiconductor laser manufacturing method Expired - Fee Related JPH0710019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP857387A JPH0710019B2 (en) 1987-01-17 1987-01-17 Embedded structure semiconductor laser manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP857387A JPH0710019B2 (en) 1987-01-17 1987-01-17 Embedded structure semiconductor laser manufacturing method

Publications (2)

Publication Number Publication Date
JPS63177493A true JPS63177493A (en) 1988-07-21
JPH0710019B2 JPH0710019B2 (en) 1995-02-01

Family

ID=11696787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP857387A Expired - Fee Related JPH0710019B2 (en) 1987-01-17 1987-01-17 Embedded structure semiconductor laser manufacturing method

Country Status (1)

Country Link
JP (1) JPH0710019B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672740A1 (en) * 1991-02-08 1992-08-14 Alcatel Nv PROCESS FOR PRODUCING A PLANAR SEMICONDUCTOR LASER WITH BURIED RIBBON.
FR2674684A1 (en) * 1991-03-28 1992-10-02 Alcatel Nv PROCESS FOR PRODUCING A SEMICONDUCTOR COMPONENT SUCH AS A BURIED RIBBON LASER
US5478775A (en) * 1993-12-10 1995-12-26 Nec Corporation Ridge stripe type laser diode and method for fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672740A1 (en) * 1991-02-08 1992-08-14 Alcatel Nv PROCESS FOR PRODUCING A PLANAR SEMICONDUCTOR LASER WITH BURIED RIBBON.
FR2674684A1 (en) * 1991-03-28 1992-10-02 Alcatel Nv PROCESS FOR PRODUCING A SEMICONDUCTOR COMPONENT SUCH AS A BURIED RIBBON LASER
US5278094A (en) * 1991-03-28 1994-01-11 Alcatel N.V. Method of manufacturing a planar buried heterojunction laser
US5478775A (en) * 1993-12-10 1995-12-26 Nec Corporation Ridge stripe type laser diode and method for fabricating the same

Also Published As

Publication number Publication date
JPH0710019B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
JP6484076B2 (en) Optical device
US5093278A (en) Method of manufacturing a semiconductor laser
JP2017130657A (en) Optical semiconductor element manufacturing method and optical semiconductor element
US5360754A (en) Method for the making heteroepitaxial thin layers and electronic devices
JP4274504B2 (en) Semiconductor thin film structure
EP1719003A1 (en) Buried heterostructure device fabricated by single step mocvd
CN111987585B (en) Silicon waveguide output laser
CN112042069A (en) Optical semiconductor element and method for manufacturing the same, and optical integrated semiconductor element and method for manufacturing the same
JPS63177493A (en) Manufacture of semiconductor laser
JP3825652B2 (en) Semiconductor optical device
JP2567008B2 (en) Semiconductor laser device and manufacturing method thereof
US5084410A (en) Method of manufacturing semiconductor devices
JP2003101125A (en) Waveguide type optical element
JPS62179790A (en) Semiconductor laser
JP2525617B2 (en) Method for manufacturing semiconductor laser
JPH01189185A (en) Manufacture of semiconductor laser having embedded structure
JPS63129683A (en) Manufacture of buried semiconductor laser
KR0161064B1 (en) Fabrication method for burried semiconductor laser
JP3132054B2 (en) Method of manufacturing buried semiconductor laser
KR100304658B1 (en) Semiconductor laser device and method for fabricating the same
JP2996221B2 (en) Semiconductor laser and method of manufacturing the same
JPS63281487A (en) Semiconductor laser
JP2002246279A (en) Semiconductor substrate, its producing method and semiconductor device
JPH01179486A (en) Manufacture of semiconductor laser
JPH04144295A (en) Semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees