JPH0710019B2 - Embedded structure semiconductor laser manufacturing method - Google Patents

Embedded structure semiconductor laser manufacturing method

Info

Publication number
JPH0710019B2
JPH0710019B2 JP857387A JP857387A JPH0710019B2 JP H0710019 B2 JPH0710019 B2 JP H0710019B2 JP 857387 A JP857387 A JP 857387A JP 857387 A JP857387 A JP 857387A JP H0710019 B2 JPH0710019 B2 JP H0710019B2
Authority
JP
Japan
Prior art keywords
layer
mesa
semiconductor laser
type inp
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP857387A
Other languages
Japanese (ja)
Other versions
JPS63177493A (en
Inventor
康洋 近藤
義夫 板屋
義宏 今村
護 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP857387A priority Critical patent/JPH0710019B2/en
Publication of JPS63177493A publication Critical patent/JPS63177493A/en
Publication of JPH0710019B2 publication Critical patent/JPH0710019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大面積に均一な組成および層厚を有するエピ
タキシャル膜を成長可能な有機金属気相エピタキシャル
法による埋込み構造半導体レーザの製造方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a buried structure semiconductor laser by a metal organic vapor phase epitaxial method capable of growing an epitaxial film having a uniform composition and a layer thickness in a large area. It is a thing.

〔従来の技術〕[Conventional technology]

レーザとしては、低しきい値で発振し、かつ安定なモー
ドで動作するものが望ましい。以上の条件をみたすもの
として、活性層を活性層よりも屈折率の小さい材料で囲
むように埋め込んだ埋込み構造半導体レーザがある。今
までに報告されている埋込み構造半導体レーザの代表的
なものを第7図,第8図に示す。
A laser that oscillates at a low threshold and operates in a stable mode is desirable. As a device that satisfies the above conditions, there is a buried structure semiconductor laser in which an active layer is embedded so as to be surrounded by a material having a smaller refractive index than the active layer. Representative examples of the buried structure semiconductor lasers reported so far are shown in FIGS. 7 and 8.

第7図は、「平尾他,応用物理誌,1980,51巻,4539頁」
(M.Hirao et al.,J.Appl.Phys.,1980,vol.51,p4539)
で報告された埋込み構造半導体レーザを示す断面図であ
る。第7図において、1はn形InPバッファ層、2はGaI
nAsP活性層、3はp形InPクラッド層、4はp形InP電流
ブロック層、5はn形InP電流閉込め層である。活性層
2が屈折率の小さいInP層1,3,4,5によって囲まれた埋込
み構造になっている。この構造において、埋込み層4お
よび5は液相エピタキシャル法(以下「LPE法」とい
う)によって成長され、このLPE法では、メサ上部につ
けた誘導体膜に結晶が成長しないことを利用している。
Figure 7 shows "Hirao et al., Applied Physics, 1980, 51, 4539".
(M.Hirao et al., J.Appl.Phys., 1980, vol.51, p4539)
3 is a cross-sectional view showing a buried structure semiconductor laser reported in FIG. In FIG. 7, 1 is an n-type InP buffer layer, 2 is GaI
nAsP active layer, 3 is a p-type InP clad layer, 4 is a p-type InP current blocking layer, and 5 is an n-type InP current confinement layer. The active layer 2 has a buried structure surrounded by InP layers 1, 3, 4, and 5 having a small refractive index. In this structure, the buried layers 4 and 5 are grown by a liquid phase epitaxial method (hereinafter referred to as “LPE method”), and this LPE method utilizes the fact that crystals do not grow in the derivative film attached to the upper portion of the mesa.

また、第8図は、「水戸他,米国電気電子技術者協会,
光波技術誌,LT−1巻,195頁,1983」(I.Mito et al.,IE
EE,J.Light wave Tech.,LT-1,p.195,1983)で報告され
た埋込み構造半導体レーザを示す断面図である。この半
導体レーザは、第7図に示した半導体レーザと同様に、
活性層2がInP層1,3,4,5に埋め込まれているが、最後に
クラッド層3を含めてすべてをp形InPの層6により埋
め込む構造になっている。ここでは、電流ブロック層4,
電流閉込め層5の成長には過飽和度の小さい2相融液を
用いたLPE法が用いられており、この場合、メサ上部と
高さが一致するまでメサ上部には結晶が成長しないこと
を利用している。
Further, FIG. 8 shows “Mito et al., American Electrical and Electronic Engineers Association,
Lightwave Technical Journal, LT-1, Vol. 195, 1983 "(I. Mito et al., IE
EE, J. Light wave Tech., LT-1, p.195, 1983) is a sectional view showing a buried structure semiconductor laser. This semiconductor laser is similar to the semiconductor laser shown in FIG.
The active layer 2 is buried in the InP layers 1, 3, 4, 5 and finally, the entire structure including the cladding layer 3 is buried by the p-type InP layer 6. Here, the current block layer 4,
The LPE method using a two-phase melt having a low degree of supersaturation is used for growing the current confinement layer 5. In this case, it is confirmed that crystals do not grow on the upper portion of the mesa until the height of the upper portion of the mesa matches. We are using.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、有機金属気相エピタキシャル法(以下「MOVP
E法」という)によって、第9図に示すメサ上部にSiO2
膜7をつけた逆メサ構造を埋め込む場合、メサ上部の両
端でメサ側面方向にそった角状の異常成長がおこり、埋
込み成長ができない。このことは、例えば「大石および
黒岩,電気化学協会誌,1201〜1214頁,132巻,5号,1985」
(M.Oishi and K.Kuroiwa,J.Electrochem.Soc.,pp.1201
〜1214,vol.132,No.5,1985)に記載されている。この異
常成長はSiO2膜の他に窒化シリコン膜でも生じ、一般に
その上に結晶成長が生じない膜をメサ上部に付した場合
に生じる。
However, the metalorganic vapor phase epitaxial method (hereinafter referred to as "MOVP
"E method"), SiO 2 is deposited on the upper portion of the mesa shown in FIG.
When the inverted mesa structure with the film 7 is embedded, abnormal growth in an angular shape along the side surface of the mesa occurs at both ends of the upper portion of the mesa, and the embedded growth cannot be performed. For example, “Oishi and Kuroiwa, Journal of Electrochemical Society, 1201-1214, 132, No. 5, 1985”
(M. Oishi and K. Kuroiwa, J. Electrochem. Soc., Pp.1201
~ 1214, vol.132, No.5, 1985). This abnormal growth occurs not only in the SiO 2 film but also in the silicon nitride film, and generally occurs when a film on which crystal growth does not occur is attached to the upper part of the mesa.

また、第10図に示すように、垂直にメサを切った場合
も、側壁部分の成長が速く、側壁部分がすべてp形InP4
で覆われてしまうので、pn接合をメサ側面に形成するこ
とができなかった。
Also, as shown in FIG. 10, even when the mesa is cut vertically, the sidewall portion grows rapidly, and the sidewall portion is entirely p-type InP4.
Therefore, the pn junction could not be formed on the side surface of the mesa.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、気相成長特有のガスの輸送現象
によって起こるメサ近傍での異常成長の影響を除去でき
るMOVPE法による埋込み構造半導体レーザの製造方法を
提供することにある。
The present invention has been made in view of such a point, and an object thereof is an embedded structure by a MOVPE method capable of removing the influence of abnormal growth in the vicinity of a mesa caused by a gas transport phenomenon peculiar to vapor phase growth. It is to provide a method for manufacturing a semiconductor laser.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために本発明は、活性相、ク
ラッド層、ステンシル層から成る多層構造のメサ領域を
有する第1導電形半導体基板上に第2導電形半導体層と
第1導電形半導体層から成る積層を有機金属気相エピタ
キシャル法により成長し、メサ領域以外の第1導電形半
導体基板上に成長した積層の高さがステンシル層の下面
に等しくなるようにする工程と、ステンシル層を選択除
去することによってステンシル層上面に堆積された積層
を除去するようにしたものである。
In order to achieve such an object, the present invention provides a second conductivity type semiconductor layer and a first conductivity type semiconductor on a first conductivity type semiconductor substrate having a mesa region having a multilayer structure including an active phase, a clad layer, and a stencil layer. A step of growing a stack of layers by a metal organic vapor phase epitaxial method so that the height of the stack grown on the first conductivity type semiconductor substrate other than the mesa region becomes equal to the lower surface of the stencil layer; By selectively removing, the laminated layer deposited on the upper surface of the stencil layer is removed.

〔作用〕[Action]

本発明においては、大面積に均一な組成および層厚を有
するエピタキシャル膜を成長可能な有機金属気相エピタ
キシャル法により、メサ近傍での異常成長を起こすこと
なく、埋込み構造半導体レーザを作製できる。
In the present invention, a buried structure semiconductor laser can be manufactured without causing abnormal growth in the vicinity of a mesa by a metal organic vapor phase epitaxial method capable of growing an epitaxial film having a uniform composition and layer thickness in a large area.

〔実施例〕〔Example〕

第1図〜第6図は、本発明に係わる埋込み構造半導体レ
ーザの製造方法の一実施例を説明するための断面図であ
る。まず、第1図に示すように、(100)面n形InP基板
1a上にSeドープn形InP層1b(層厚約2μm)を積層し
たInP基板1を形成し、次に、アンドープGaInAsPの活性
層2(層厚約0.1μm),p形InPクラッド層3(層厚約1.
0μm)を形成し、さらに、選択エッチングによりメサ
上面に成長した層を除去するためのGaInAsPステンシル
層8(層厚約0.1μm)をMOVPE法によって成長する。
1 to 6 are cross-sectional views for explaining one embodiment of a method of manufacturing a buried structure semiconductor laser according to the present invention. First, as shown in FIG. 1, (100) plane n-type InP substrate
An InP substrate 1 in which a Se-doped n-type InP layer 1b (layer thickness of about 2 μm) is laminated on 1a is formed, and then an undoped GaInAsP active layer 2 (layer thickness of about 0.1 μm) and a p-type InP clad layer 3 ( Layer thickness about 1.
0 μm) is formed, and a GaInAsP stencil layer 8 (layer thickness of about 0.1 μm) for removing the layer grown on the upper surface of the mesa by selective etching is grown by MOVPE method.

次に、第2図に示すように成長面にプラズマCVD法によ
って酸化シリコン膜(図示せず)を付け、ホトリソグラ
フィの技術によって(011)方向に酸化シリコン膜でス
トライプ幅約2〜3μmのストライプマスクを形成し、
1%のBrメチル液によって活性層の下までエッチング
し、メサ領域を形成する。そして、次に、酸化シリコン
膜をプラズマエッチング法によって除去する。
Next, as shown in FIG. 2, a silicon oxide film (not shown) is attached to the growth surface by a plasma CVD method, and a stripe having a stripe width of about 2 to 3 μm is formed in the (011) direction by a photolithography technique. Forming a mask,
Etching is performed under the active layer with a 1% Br methyl solution to form a mesa region. Then, next, the silicon oxide film is removed by the plasma etching method.

次に、第3図に示すように、MOVPE法により、上記のメ
サ領域を有する基板上にp形InP電流ブロック層4(層
厚約0.5μm)およびn形InP電流閉込め層5(層厚約0.
5μm)を形成する。成長条件としては、例えばソース
ガスとしてPH3:TMI=150:1(流量比)を用い、p形InP
を堆積する場合はドーピングガスとしてDEZ(ジエチル
亜鉛)を、n形InPを堆積する場合にはドーピングガス
としてH2Seを用い、キャリアガスとして水素を用い、反
応炉内圧力を50Torr、基板温度を約685℃として堆積を
行なう。このとき、メサ上面では、側面に(111)面を
出した成長がおこり、他の領域では、ほぼ均一な成長が
おこる。そして、メサ領域以外で成長したn形InP電流
閉込め層5の高さをメサ領域最上面のGaInAsPステンシ
ル層8の下面にそろうようにする。
Next, as shown in FIG. 3, the p-type InP current blocking layer 4 (layer thickness of about 0.5 μm) and the n-type InP current confinement layer 5 (layer thickness) were formed on the substrate having the above mesa region by the MOVPE method. About 0.
5 μm) is formed. As a growth condition, for example, PH 3 : TMI = 150: 1 (flow ratio) is used as a source gas, and p-type InP is used.
DEZ (diethylzinc) is used as a doping gas when H is deposited, H 2 Se is used as a doping gas when n-type InP is deposited, hydrogen is used as a carrier gas, the reactor pressure is 50 Torr, and the substrate temperature is Deposition is performed at about 685 ° C. At this time, on the upper surface of the mesa, the growth having the (111) plane on the side surface occurs, and in the other regions, almost uniform growth occurs. Then, the height of the n-type InP current confinement layer 5 grown in a region other than the mesa region is made to conform to the lower surface of the GaInAsP stencil layer 8 on the uppermost surface of the mesa region.

次に、H2SO4:H2O2:H2O=3:1:1(30℃)の溶液を用いて
メサ領域最上面のGaInAsPステンシル層8を選択エッチ
ングし、メサ領域上面に成長したp形InP電流ブロック
層4,n形InP電流閉込め層5を除去する。これにより、第
4図に示すような結晶平面の平坦化を行なう。
Next, the GaInAsP stencil layer 8 on the uppermost surface of the mesa region is selectively etched using a solution of H 2 SO 4 : H 2 O 2 : H 2 O = 3: 1: 1 (30 ° C.) to grow on the upper surface of the mesa region. The p-type InP current blocking layer 4 and the n-type InP current confinement layer 5 are removed. As a result, the crystal plane is flattened as shown in FIG.

次に、MOVPE法によって、p+形GaInAsPキャップ層9をウ
ェハ全体に成長し、基板側を研磨してウェハの厚さを約
80μmとした後、成長側にAu/Zn/Ni電極10、基板側にAu
/Ge/Ni電極11を真空蒸着し、H2中420℃で熱処理し電極
を形成する。その後、紙面に平行な面をへき開し、第5
図に示すようなレーザ・チップを作製する。
Next, the p + -type GaInAsP cap layer 9 is grown on the entire wafer by the MOVPE method, and the substrate side is polished to reduce the thickness of the wafer to approx.
After 80 μm, Au / Zn / Ni electrode 10 on the growth side and Au on the substrate side
/ Ge / Ni electrode 11 is vacuum-deposited and heat-treated at 420 ° C. in H 2 to form an electrode. After that, the plane parallel to the paper surface is cleaved and the fifth
Make a laser chip as shown.

上記に示したように、その上に化合物半導体のエピタキ
シャル成長が可能な膜をメサ領域の最上層に用いること
によりレーザを作製すれば、MOVPE法によるメサ領域で
の異常成長は生じず、メサ領域を埋め込むことができ、
MOVPE法だけで容易に埋込み構造半導体レーザを作製す
ることができる。なお、最上層(ステンシル層)8の選
択エッチング時に下地のクラッド層3がエッチングされ
ないように最上層を選ぶ必要がある。
As described above, if a laser is manufactured by using a film on which a compound semiconductor can be epitaxially grown as the uppermost layer of the mesa region, abnormal growth in the mesa region by the MOVPE method does not occur, and the mesa region is formed. Can be embedded,
A buried structure semiconductor laser can be easily manufactured only by the MOVPE method. It is necessary to select the uppermost layer (stencil layer) 8 so that the underlying clad layer 3 is not etched during the selective etching.

また、上記実施例では、メサ領域最上層のGaInAsPステ
ンシル層8の下面とn形InP電流閉込め層5の上面がち
ょうど一致しなければ、選択エッチングによって表面の
平坦化はできない。しかし、n形InP電流閉込め層5の
上面がメサ領域最上層(ステンシル層)8の下面より低
く、選択エッチングを行なった後、低いメサが残ったと
しても、そのメサの高さが1μmより小さければ、MOVP
E法でもウェハ全体に均一に結晶を成長させることがで
きるので、その場合は、第6図に示すように、選択エッ
チング後にウェハ全体にp形InP埋込み層6を成長し、
表面の平坦化を行なってから、前述したようにp+形GaIn
AsPキャップ層9,Au/Zn/Ni電極10,Au/Ge/Ni電極11を作製
し、埋込み構造半導体レーザを作製する。
Further, in the above-described embodiment, if the lower surface of the GaInAsP stencil layer 8 which is the uppermost layer of the mesa region and the upper surface of the n-type InP current confinement layer 5 do not coincide with each other, the surface cannot be flattened by the selective etching. However, the upper surface of the n-type InP current confinement layer 5 is lower than the lower surface of the mesa region uppermost layer (stencil layer) 8, and even if a low mesa remains after the selective etching, the height of the mesa is less than 1 μm. MOVP if smaller
Since the crystal can be uniformly grown on the entire wafer even by the E method, in that case, as shown in FIG. 6, the p-type InP buried layer 6 is grown on the entire wafer after the selective etching,
After flattening the surface, p + type GaIn
An AsP cap layer 9, an Au / Zn / Ni electrode 10, and an Au / Ge / Ni electrode 11 are produced to produce a buried structure semiconductor laser.

また、埋込み層6となる部分にn形InPを用いた場合
は、活性層2上面の埋込み層6部分にp形InPクラッド
層3に到達するまでZnの拡散を行ないp形化すればよ
い。
When n-type InP is used for the part to be the buried layer 6, Zn may be diffused to the part of the buried layer 6 on the upper surface of the active layer 2 until the p-type InP clad layer 3 is reached, so that the p-type is formed.

さらに、半導体基板1としてSeドープn形InP層1bがな
いn形InP基板1aを用いてもよい。
Further, as the semiconductor substrate 1, the n-type InP substrate 1a without the Se-doped n-type InP layer 1b may be used.

さらに、上記実施例では、電流ブロック層としてInPのp
n逆バイアス層を用いたが、p形InP電流ブロック層4,n
形InP電流閉込め層5の代わりに半絶縁性のInP層を用い
てもよい。
Further, in the above embodiment, the InP p layer is used as the current blocking layer.
n reverse bias layer was used, but p-type InP current blocking layer 4, n
A semi-insulating InP layer may be used instead of the InP current confinement layer 5.

さらに、GaInAsP/InP系について述べたが、GaAs/AlGaAs
系など他の結晶系を用いてもよい。
Furthermore, we have described the GaInAsP / InP system.
Other crystal systems such as a system may be used.

さらに、ここではn形基板を用いて説明したが、p形基
板を用いても同様のことが可能である。
Furthermore, although an n-type substrate is used for the description here, the same thing can be done by using a p-type substrate.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、多層構造のメサ領域を有
する第1導電形半導体基板上に第2導電形半導体層と第
1導電形半導体層から成る積層を有機金属気相エピタキ
シャル法により成長し、メサ領域以外の第1導電形半導
体基板上に成長した積層の高さがメサ領域のステンシル
層の下面に等しくなるようにし、上記ステンシル層を選
択除去することによってステンシル層上面に堆積された
積層を除去して表面の平坦化を行なうことにより、有機
金属気相エピタキシャル法だけで埋込み構造半導体レー
ザを作製することができるので、液相エピタキシャル法
で不可能な一度に大面積の成長を行なうことができ、多
量の半導体レーザを作製することが可能になる効果があ
る。
As described above, according to the present invention, a stack of the second conductivity type semiconductor layer and the first conductivity type semiconductor layer is grown on the first conductivity type semiconductor substrate having the multi-layered mesa region by the metalorganic vapor phase epitaxial method. A layer deposited on the upper surface of the stencil layer by selectively removing the stencil layer so that the height of the layer grown on the semiconductor substrate of the first conductivity type other than the mesa area becomes equal to the lower surface of the stencil layer in the mesa area. Since the buried structure semiconductor laser can be manufactured only by the metalorganic vapor phase epitaxial method by removing the surface and flattening the surface, it is possible to grow a large area at a time, which is impossible with the liquid phase epitaxial method. Therefore, there is an effect that a large amount of semiconductor lasers can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第5図は本発明に係わる埋込み構造半導体レー
ザの製造方法の一実施例を説明するための断面図、第6
図はその第2の実施例を説明するための断面図、第7
図,第8図は液晶エピタキシャル法で作製された埋込み
構造半導体レーザを示す断面図、第9図,第10図は有機
金属気相エピタキシャル法による従来の製造方法を説明
するための断面図である。 1,1a……n形InP基板、1b……n形InPバッファ層、2…
…GaInAsP活性層、3……p形InPクラッド層、4……p
形InP電流ブロック層、5……n形InP電流閉込め層、6
……p形InP埋込み層、7……酸化シリコン膜、8……G
aInAsPステンシル層、9……p+形GaInAsPキャップ層
9、10……Au/Zn/Ni電極、11……Au/Ge/Ni電極。
1 to 5 are sectional views for explaining an embodiment of a method of manufacturing a buried structure semiconductor laser according to the present invention, and FIG.
FIG. 7 is a sectional view for explaining the second embodiment,
8 and 9 are sectional views showing a buried structure semiconductor laser manufactured by a liquid crystal epitaxial method, and FIGS. 9 and 10 are sectional views for explaining a conventional manufacturing method by a metal organic vapor phase epitaxial method. . 1, 1a ... n-type InP substrate, 1b ... n-type InP buffer layer, 2 ...
… GaInAsP active layer, 3 …… p type InP cladding layer, 4 …… p
Type InP current blocking layer, 5 ... n type InP current confinement layer, 6
…… P-type InP buried layer, 7 …… Silicon oxide film, 8 …… G
aInAsP stencil layer, 9 …… p + type GaInAsP cap layer 9, 10 …… Au / Zn / Ni electrode, 11 …… Au / Ge / Ni electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】活性層、クラッド層、ステンシル層から成
る多層構造のメサ領域を有する第1導電形半導体基板上
に第2導電形半導体層と第1導電形半導体層から成る積
層を有機金属気相エピタキシャル法により成長させて前
記メサ領域以外の前記第1導電形半導体基板上に成長し
た前記積層の高さが前記ステンシル層の下面に等しくな
るようにする工程と、前記ステンシル層を選択除去する
ことによって前記ステンシル層上面に堆積された前記積
層を除去して表面の平坦化を行なう工程とを含むことを
特徴とする埋込み構造半導体レーザの製造方法。
1. A stack of a second-conductivity-type semiconductor layer and a first-conductivity-type semiconductor layer is formed on a first-conductivity-type semiconductor substrate having a multi-layered mesa region composed of an active layer, a clad layer, and a stencil layer. Growing by a phase epitaxial method so that the height of the stack grown on the semiconductor substrate of the first conductivity type other than the mesa region is equal to the lower surface of the stencil layer, and the stencil layer is selectively removed. Thereby removing the stack of layers deposited on the upper surface of the stencil layer to planarize the surface thereof.
JP857387A 1987-01-17 1987-01-17 Embedded structure semiconductor laser manufacturing method Expired - Fee Related JPH0710019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP857387A JPH0710019B2 (en) 1987-01-17 1987-01-17 Embedded structure semiconductor laser manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP857387A JPH0710019B2 (en) 1987-01-17 1987-01-17 Embedded structure semiconductor laser manufacturing method

Publications (2)

Publication Number Publication Date
JPS63177493A JPS63177493A (en) 1988-07-21
JPH0710019B2 true JPH0710019B2 (en) 1995-02-01

Family

ID=11696787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP857387A Expired - Fee Related JPH0710019B2 (en) 1987-01-17 1987-01-17 Embedded structure semiconductor laser manufacturing method

Country Status (1)

Country Link
JP (1) JPH0710019B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672740B1 (en) * 1991-02-08 1995-03-31 Alcatel Nv PROCESS FOR PRODUCING A PLANAR SEMICONDUCTOR LASER WITH AN UNDERGROUND TAPE.
FR2674684A1 (en) * 1991-03-28 1992-10-02 Alcatel Nv PROCESS FOR PRODUCING A SEMICONDUCTOR COMPONENT SUCH AS A BURIED RIBBON LASER
JP2822868B2 (en) * 1993-12-10 1998-11-11 日本電気株式会社 Manufacturing method of semiconductor laser

Also Published As

Publication number Publication date
JPS63177493A (en) 1988-07-21

Similar Documents

Publication Publication Date Title
US9972973B2 (en) Process of forming semiconductor optical device and semiconductor optical device
JP2827326B2 (en) Manufacturing method of semiconductor laser
US20210408767A1 (en) O-band silicon-based high-speed semiconductor laser diode for optical communication and its manufacturing method
EP1719003A1 (en) Buried heterostructure device fabricated by single step mocvd
US6556605B1 (en) Method and device for preventing zinc/iron interaction in a semiconductor laser
US6639926B1 (en) Semiconductor light-emitting device
JPH0710019B2 (en) Embedded structure semiconductor laser manufacturing method
US5084410A (en) Method of manufacturing semiconductor devices
JPH0552676B2 (en)
JPH07254750A (en) Semiconductor laser
JPH077232A (en) Optical semiconductor device
JP2869995B2 (en) Method of manufacturing semiconductor laser with embedded high-resistance semiconductor layer
JPH1098234A (en) Semiconductor laser and its manufacture
KR100363240B1 (en) Semiconductor laser diode and its manufacturing method
JPH0555692A (en) Semiconductor laser
JPS61288481A (en) Manufacture of semiconductor light emitting device
JPS63129683A (en) Manufacture of buried semiconductor laser
JP2525617B2 (en) Method for manufacturing semiconductor laser
JP2554192B2 (en) Semiconductor laser manufacturing method
JPS63281487A (en) Semiconductor laser
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JP3522151B2 (en) Method for manufacturing compound semiconductor laser
JPH01189185A (en) Manufacture of semiconductor laser having embedded structure
JPS63244785A (en) Semiconductor light emitting element and manufacture thereof
JPH0521891A (en) Manufacture of buried structure semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees