JPH0552676B2 - - Google Patents

Info

Publication number
JPH0552676B2
JPH0552676B2 JP1772584A JP1772584A JPH0552676B2 JP H0552676 B2 JPH0552676 B2 JP H0552676B2 JP 1772584 A JP1772584 A JP 1772584A JP 1772584 A JP1772584 A JP 1772584A JP H0552676 B2 JPH0552676 B2 JP H0552676B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
active layer
semiconductor layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1772584A
Other languages
Japanese (ja)
Other versions
JPS60163487A (en
Inventor
Kenichi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1772584A priority Critical patent/JPS60163487A/en
Publication of JPS60163487A publication Critical patent/JPS60163487A/en
Publication of JPH0552676B2 publication Critical patent/JPH0552676B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は低しきい値で安定な単一横モード発振
する半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor laser that oscillates in a stable single transverse mode with a low threshold value.

(従来技術) 一般に、半導体レーザにとつて低しきい値で安
定な単一横モード発振することは、光通信や光情
報処理用光源として重要である。従来、半導体レ
ーザを製作する場合、液相エピタキシヤル成長
(以後LPE成長という)による半導体レーザの結
晶成長が主流であつたが、有機金属分解法(以後
MOCVD法という)による結晶成長が均一性及
び量産性の面から注目されている。
(Prior Art) Generally, it is important for a semiconductor laser to oscillate in a single transverse mode stably with a low threshold value as a light source for optical communication and optical information processing. Conventionally, when manufacturing semiconductor lasers, the mainstream was to grow semiconductor laser crystals by liquid phase epitaxial growth (hereinafter referred to as LPE growth), but metal organic decomposition method (hereinafter referred to as LPE growth) was the mainstream.
Crystal growth using MOCVD (MOCVD) is attracting attention from the viewpoint of uniformity and mass productivity.

第1図aはV溝をもつた基板上にLPE成長に
より作製した半導体レーザの活性層の積層状態を
示す断面図である。まず、半導体基板1上にこの
基板1と導電性が異り活性層より禁制帯幅が小さ
い電流ブロツク層2を形成し、この電流ブロツク
層2から半導体基板1に達するV溝を設ける。こ
のV溝のある基板1上にある条件下でLPE成長
により第1のクラツド層3と活性層4を順次積層
すると、第1のクラツド層3はV溝を平坦に埋
め、この第1のクラツド層3上に平坦な活性層4
が結晶成長される。
FIG. 1a is a cross-sectional view showing the stacked state of the active layer of a semiconductor laser fabricated by LPE growth on a substrate having a V-groove. First, a current blocking layer 2 having a conductivity different from that of the substrate 1 and having a smaller forbidden band width than the active layer is formed on a semiconductor substrate 1, and a V-groove extending from this current blocking layer 2 to the semiconductor substrate 1 is provided. When the first cladding layer 3 and the active layer 4 are sequentially laminated by LPE growth on the substrate 1 having the V-groove, the first cladding layer 3 fills the V-groove flatly and the first cladding layer 3 flatly fills the V-groove. flat active layer 4 on layer 3
is grown as a crystal.

このV溝上の活性層4は、電流ブロツク層2あ
るいは半導体基板1に対して第1のクラツド層3
を介してV溝以外の平坦部上に形成された活性層
4と比較して離れているため、光の導波機構を形
成し、安定な単一横モード発振する優れた半導体
レーザが得られる。しかし、ある混晶系、例えば
GaAs基板上にAlGaInP混晶系は、LPE成長が非
常に難かしく、MOCVD法などの非平衡成長法
によらなければ製作できない。
The active layer 4 on this V-groove is connected to the current blocking layer 2 or the first cladding layer 3 with respect to the semiconductor substrate 1.
Since it is separated from the active layer 4 formed on the flat part other than the V-groove through the V-groove, it forms an optical waveguide mechanism and provides an excellent semiconductor laser that stably oscillates in a single transverse mode. . However, certain mixed crystal systems, e.g.
AlGaInP mixed crystal systems on GaAs substrates are extremely difficult to grow by LPE, and can only be produced by non-equilibrium growth methods such as MOCVD.

一方、この半導体レーザをMOCVD法により
製作する場合、このMOCVD法は均一性、量産
性という利点を有するが、第1図bに示すよう
に、V溝上には、V溝形状をそのままに残した第
1のクラツド層3および活性層4が成長し、第1
図aに示すような活性層形状を得ることが出来な
い欠点がある。
On the other hand, when manufacturing this semiconductor laser by the MOCVD method, this MOCVD method has the advantage of uniformity and mass production, but as shown in Figure 1b, the V-groove shape is left as it is on the V-groove. A first cladding layer 3 and an active layer 4 are grown;
There is a drawback that it is not possible to obtain the active layer shape as shown in Figure a.

(発明の目的) 本発明の目的は、このような欠点を除き、V字
形の導波機構および電流ブロツク層をもつた構造
をMOCVD法で容易に作製できるようにした半
導体レーザを提供する事にある。
(Objective of the Invention) The object of the present invention is to provide a semiconductor laser which eliminates the above-mentioned drawbacks and allows a structure having a V-shaped waveguide mechanism and a current blocking layer to be easily manufactured by the MOCVD method. be.

(発明の構成) 本発明の構成は、第1および第2のクラツド層
により活性層を挾んだダブルヘテロ構造の半導体
層を有する半導体レーザにおいて、半導体基板上
に前記活性層より禁制帯幅が大きい第1の半導体
層を含んで設けられたメサと、このメサの上面以
外と前記基板上面とを被覆し前記活性層より禁制
帯幅が小さくかつ前記半導体基板と導電性の異な
る第2の半導体層とを備え、この第2の半導体層
上部に設けられた前記ダブルヘテロ構造の半導体
層を設けたことを特徴とする。
(Structure of the Invention) The structure of the present invention is a semiconductor laser having a double heterostructure semiconductor layer in which an active layer is sandwiched between first and second cladding layers. a mesa provided including a large first semiconductor layer; and a second semiconductor that covers other than the upper surface of the mesa and the upper surface of the substrate, has a band gap smaller than that of the active layer, and has a different conductivity from the semiconductor substrate. layer, and the double heterostructure semiconductor layer is provided on top of the second semiconductor layer.

本発明の構成によれば、側面に活性層より禁制
帯幅が小さく半導体基板と導電性の異なる第2の
半導体層を有するメサ上部の活性層が導波機構を
有し、かつ第2の半導体層が半導体基板と導電性
が異なることにより電流は活性層の発光領域に有
効に注入されて発振し、またLPE成長の特異性
を用いずに作製できるためMOCVD法とホトリ
ソグラフイとにより作製することができる。
According to the configuration of the present invention, the active layer on the upper part of the mesa, which has a second semiconductor layer on the side surface which has a smaller bandgap than the active layer and has a different conductivity from the semiconductor substrate, has a waveguide mechanism, and the second semiconductor layer has a waveguide mechanism. Since the conductivity of the layer is different from that of the semiconductor substrate, current is effectively injected into the light-emitting region of the active layer and oscillates, and since it can be manufactured without using the specificity of LPE growth, it is manufactured by MOCVD method and photolithography. be able to.

(発明の実施例) 以下本発明を図面を用いて詳細に説明する。(Example of the invention) The present invention will be explained in detail below using the drawings.

第2図は本発明の実施例の断面図である。この
実施例は、半導体基板1上に活性層4より禁制帯
幅が大きい第1の半導体層11を含むメサ20を
設けている。このメサ20の両側面には活性層4
より禁制帯幅が小さく前記半導体基板1と導電性
の異なる第2の半導体層12が設けられている。
このメサ20と第2の半導体層12の上部には、
第1のクラツド層3、活性層4、第2のクラツド
層5からなるダブルヘテロ構造を設けている。こ
のメサ20上部の平坦な活性層4の中央部は、第
1のクラツド層3を介して第1の半導体層11に
接し、その両端は、第1のクラツド層3を介して
光を吸収し活性層4より禁制帯幅の小さい第2の
半導体層12と接している。このためメサ上部の
活性層4は光の導波機構を有すると共に、第2の
半導体層12により電流がメサ20上部の活性層
4の中央部に有効に注入される。従つて、この構
造の半導体レーザは、低しきい値で安定な単一横
モードで発振する。
FIG. 2 is a cross-sectional view of an embodiment of the invention. In this embodiment, a mesa 20 including a first semiconductor layer 11 having a larger forbidden band width than an active layer 4 is provided on a semiconductor substrate 1 . On both sides of this mesa 20 are active layers 4.
A second semiconductor layer 12 having a smaller forbidden band width and different conductivity from the semiconductor substrate 1 is provided.
Above the mesa 20 and the second semiconductor layer 12,
A double heterostructure consisting of a first cladding layer 3, an active layer 4 and a second cladding layer 5 is provided. The central part of the flat active layer 4 above this mesa 20 is in contact with the first semiconductor layer 11 via the first cladding layer 3, and both ends thereof absorb light via the first cladding layer 3. It is in contact with a second semiconductor layer 12 whose forbidden band width is smaller than that of the active layer 4 . Therefore, the active layer 4 above the mesa 20 has a light waveguide mechanism, and current is effectively injected into the center of the active layer 4 above the mesa 20 by the second semiconductor layer 12. Therefore, a semiconductor laser having this structure oscillates in a stable single transverse mode with a low threshold value.

第3図a〜eは第2図の実施例を具体的によつ
て製作工程順に示した断面図である。まず、第3
図aに示すように、p型GaAs基板1上に第1の
半導体層11となるp型Al0.3Ga0.7As半導体層を
MOCVD法により1μm成長し、その表面にホト
リソグラフイと化学エツチングによりSiO2の幅
3μmのストライプ30を形成する。次に、
MOCVD炉に挿入し、HClとAsH3を流し加熱し
てエツチングを行い(第3図b)、その後、成長
ソースとなる有機金属とAsH3とドーパントガス
を送りn型のGaAsを0.7μm成長し、第2の半導
体層12を形成する(第3図c)。その後化学エ
ツチングによりSiO2ストライプ30を除去し
(第3図d)、適当な前処理をした後に再度
MOCVD法より第1のクラツド層3となるp型
のAl0.3Ga0.7As層0.3μm、活性層4となるノンド
ープのGaAs層0.1μm、第2のクラツド層5とな
るn型のAl0.3Ga0.7As層を1.5μm積層する(第3
図e)。さらに実際には第2クラツド層5の上に
n型のGaAs層を成長する。このように作製され
たウエフアは、通常のデバイス形成のプロセスに
より半導体レーザを形成する。
3A to 3E are sectional views specifically showing the embodiment of FIG. 2 in the order of manufacturing steps. First, the third
As shown in Figure a, a p-type Al 0.3 Ga 0.7 As semiconductor layer, which will become the first semiconductor layer 11, is formed on a p-type GaAs substrate 1.
The width of SiO 2 is grown by MOCVD method, and the width of SiO 2 is grown on the surface by photolithography and chemical etching.
3 μm stripes 30 are formed. next,
It was inserted into a MOCVD furnace, and HCl and AsH 3 were poured in to heat and etch it (Fig. 3b). After that, an organic metal serving as a growth source, AsH 3 , and a dopant gas were sent to grow n-type GaAs to a thickness of 0.7 μm. , a second semiconductor layer 12 is formed (FIG. 3c). Afterwards, the SiO 2 stripe 30 is removed by chemical etching (Fig. 3 d), and after appropriate pretreatment, the SiO 2 stripe 30 is removed again.
Using the MOCVD method, a p-type Al 0.3 Ga 0.7 As layer with a thickness of 0.3 μm becomes the first cladding layer 3, a non-doped GaAs layer with a thickness of 0.1 μm becomes the active layer 4, and an n-type Al 0.3 Ga 0.7 layer becomes the second cladding layer 5. Laminate an As layer of 1.5μm (third
Figure e). Furthermore, an n-type GaAs layer is actually grown on the second cladding layer 5. The wafer thus produced is used to form a semiconductor laser through a normal device forming process.

(発明の効果) この半導体レーザの活性層4はGaAs層で、第
2の半導体層12もGaAs層であるから、メサ2
0上部の活性層4には導波機構が形成されるの
で、安定な単一横モード発振が可能となる。
(Effect of the invention) Since the active layer 4 of this semiconductor laser is a GaAs layer and the second semiconductor layer 12 is also a GaAs layer, the mesa 2
Since a waveguide mechanism is formed in the active layer 4 above the 0, stable single transverse mode oscillation is possible.

また、本実施例の半導体レーザの作製にあた
り、第3図bの状態からSiO2ストライプ30を
除去し、メサ20に一様に第2の半導体層12と
なるGaAs層をMOCVD法により積層し、化学エ
ツチングのメサ上部とメサ下部でのエツチングレ
ートの違いにより、GaAsをエツチングして第3
図dに示す構造を作製する方法もある。さらに、
活性層4になる半導体層より半導体基板1の禁制
帯幅が大きいときは、第1の半導体層11を積層
せず、半導体基板1で代用することもできる。
In addition, in manufacturing the semiconductor laser of this example, the SiO 2 stripe 30 was removed from the state shown in FIG. Due to the difference in etching rate between the upper and lower parts of the mesa in chemical etching, GaAs is etched and the third
Another method is to create the structure shown in Figure d. moreover,
When the forbidden band width of the semiconductor substrate 1 is larger than that of the semiconductor layer that will become the active layer 4, the first semiconductor layer 11 may not be laminated and the semiconductor substrate 1 may be used instead.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは溝基板へのLPEおよび
MOCVDにより積層を行う状態を示す断面図、
第2図は本発明の実施例の断面模式図、第3図a
〜eは第2図を製作工程順に示した断面図であ
る。図において 1……半導体基板、2……電流ブロツク層、3
……第1のクラツド層、4……活性層、5……第
2のクラツド層、11……第1の半導体層、12
……第2の半導体層、20……メサ、30……
SiO2ストライプである。
Figures 1a and b show LPE and grooved substrates.
A cross-sectional view showing how lamination is performed by MOCVD,
Figure 2 is a schematic cross-sectional view of an embodiment of the present invention, Figure 3a
-E are sectional views showing FIG. 2 in the order of manufacturing steps. In the figure: 1...Semiconductor substrate, 2...Current blocking layer, 3
...first cladding layer, 4...active layer, 5...second cladding layer, 11...first semiconductor layer, 12
... second semiconductor layer, 20 ... mesa, 30 ...
SiO 2 stripes.

Claims (1)

【特許請求の範囲】[Claims] 1 第1および第2のクラツド層により活性層を
挾んだダブルヘテロ構造の半導体層を有する半導
体レーザにおいて、半導体基板上に前記活性層よ
り禁制帯幅が大きい第1の半導体層を含んで設け
られたメサと、このメサの上面以外の側面と前記
基板上面とを被覆し前記活性層より禁制帯幅が小
さくかつ前記半導体基板と導電性の異なる第2の
半導体層とを備え、この第2の半導体層の上部に
前記ダブルヘテロ構造の半導体層を設けたことを
特徴とする半導体レーザ。
1. In a semiconductor laser having a double heterostructure semiconductor layer in which an active layer is sandwiched between first and second cladding layers, a first semiconductor layer having a band gap larger than that of the active layer is provided on a semiconductor substrate. a second semiconductor layer that covers side surfaces other than the upper surface of the mesa and the upper surface of the substrate, has a narrower band gap than the active layer, and has a different conductivity from the semiconductor substrate; A semiconductor laser characterized in that the double heterostructure semiconductor layer is provided on top of the semiconductor layer.
JP1772584A 1984-02-03 1984-02-03 Semiconductor laser Granted JPS60163487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1772584A JPS60163487A (en) 1984-02-03 1984-02-03 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1772584A JPS60163487A (en) 1984-02-03 1984-02-03 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS60163487A JPS60163487A (en) 1985-08-26
JPH0552676B2 true JPH0552676B2 (en) 1993-08-06

Family

ID=11951718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1772584A Granted JPS60163487A (en) 1984-02-03 1984-02-03 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60163487A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614714B2 (en) * 1986-05-28 1997-05-28 フアナツク株式会社 Roughing method by copying
JPH06232099A (en) 1992-09-10 1994-08-19 Mitsubishi Electric Corp Manufacture of semiconductor device, manufacturing device of semiconductor device, manufacture of semiconductor laser, manufacture of quantum wire structure, and crystal growth method
US10650319B2 (en) 2015-02-06 2020-05-12 Northrop Grumman Systems Corporation Flux control of qubit under resonant excitation
US10756712B2 (en) 2017-11-13 2020-08-25 Northrop Grumman Systems Corporation RQL phase-mode flip-flop
US10615783B2 (en) 2018-07-31 2020-04-07 Northrop Grumman Systems Corporation RQL D flip-flops
US10554207B1 (en) 2018-07-31 2020-02-04 Northrop Grumman Systems Corporation Superconducting non-destructive readout circuits
US11201608B2 (en) 2020-04-24 2021-12-14 Northrop Grumman Systems Corporation Superconducting latch system

Also Published As

Publication number Publication date
JPS60163487A (en) 1985-08-26

Similar Documents

Publication Publication Date Title
JPH0552676B2 (en)
JPH07112091B2 (en) Method of manufacturing embedded semiconductor laser
JPH05327112A (en) Manufacture of semiconductor laser
JP2687495B2 (en) Manufacturing method of semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPH037153B2 (en)
JP2847770B2 (en) Method for forming protective layer on end face of semiconductor laser cavity
JPH05226774A (en) Semiconductor laser element and its production
JPS6344311B2 (en)
JPS62179790A (en) Semiconductor laser
JPH0710019B2 (en) Embedded structure semiconductor laser manufacturing method
JPS6390879A (en) Manufacture of semiconductor laser
JPS627185A (en) Manufacture of semiconductor laser
JPS6354234B2 (en)
JPH01293686A (en) Manufacture of semiconductor laser element
JPH01215087A (en) Semiconductor light emitting device
JPS6181688A (en) Distributed reflection type semiconductor laser
JPH0897501A (en) Manufacture of semiconductor device
JPS5864084A (en) Semiconductor laser
JPS62286294A (en) Manufacture of semiconductor laser
JPH09307185A (en) Method for manufacturing semiconductor laser element
JPH0632338B2 (en) Embedded semiconductor laser
JPH0614576B2 (en) Method for manufacturing semiconductor device
JPH0521891A (en) Manufacture of buried structure semiconductor laser
JPS60161688A (en) Manufacture of semiconductor laser device