JPH0897501A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0897501A
JPH0897501A JP23280894A JP23280894A JPH0897501A JP H0897501 A JPH0897501 A JP H0897501A JP 23280894 A JP23280894 A JP 23280894A JP 23280894 A JP23280894 A JP 23280894A JP H0897501 A JPH0897501 A JP H0897501A
Authority
JP
Japan
Prior art keywords
semiconductor
mesa structure
embedded
wall
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23280894A
Other languages
Japanese (ja)
Other versions
JP3215908B2 (en
Inventor
Takeo Miyazawa
丈夫 宮澤
Fumihiko Kobayashi
二三彦 小林
Hidefumi Mori
英史 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP23280894A priority Critical patent/JP3215908B2/en
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to EP99250062A priority patent/EP0955681A3/en
Priority to DE69511810T priority patent/DE69511810T2/en
Priority to EP95250236A priority patent/EP0704913B1/en
Priority to US08/534,333 priority patent/US5783844A/en
Publication of JPH0897501A publication Critical patent/JPH0897501A/en
Priority to US09/027,012 priority patent/US6403986B1/en
Application granted granted Critical
Publication of JP3215908B2 publication Critical patent/JP3215908B2/en
Priority to US10/067,553 priority patent/US6790697B2/en
Priority to US10/645,437 priority patent/US6949394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To make it possible to manufacture a surface optical element with flat surface by a vapor growth method. CONSTITUTION: An SiO2 mask 13 having an aperture part of a prescribed size is formed on the surface of an InP substrate S having (100) face and the substrate S is processed into the form of recessed grooves by reactive ion etching, which is performed using ethane gas and hydrogen gas as reaction gas, using this SiO2 mask 13 as an etching mask to form a square mesa structure 7, sidewalls 5 encircling this mesa structure 7 and sidewalls 9 of walls 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面型の半導体光素子を
半導体ヘテロ構造によって埋め込む半導体装置の作製方
法に係わり、特に結晶成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device in which a planar semiconductor optical element is embedded with a semiconductor heterostructure, and more particularly to a crystal growth method.

【0002】[0002]

【従来の技術】面型の半導体光素子の代表的なものとし
ては、垂直共振器型の面発光レーザが知られている。高
性能化のためには、垂直共振器型面発光レーザでも、導
波路型のレーザと同様に埋め込み構造をとる必要があ
る。
2. Description of the Related Art A vertical cavity surface emitting laser is known as a typical surface type semiconductor optical device. In order to improve the performance, the vertical cavity surface emitting laser also needs to have an embedded structure like the waveguide type laser.

【0003】図11は、GaAs系埋め込み構造の面発
光レーザの構成を示す要部断面図である。図11におい
て、面発光レーザは、円筒形の活性領域1と上下方向に
平行する2枚の反射鏡2とを有して構成され、活性領域
1は化学エッチング液により円筒形のメサ構造3に加工
され、液相成長法によって埋め込まれている。埋め込み
層4はpnp構造をとっており、電流はブロックされ
る。
FIG. 11 is a cross-sectional view of an essential part showing the structure of a surface emitting laser having a GaAs-based buried structure. In FIG. 11, the surface emitting laser is configured to have a cylindrical active region 1 and two reflecting mirrors 2 parallel to each other in the vertical direction. The active region 1 is formed into a cylindrical mesa structure 3 by a chemical etching solution. Processed and embedded by liquid phase epitaxy. The buried layer 4 has a pnp structure, and the current is blocked.

【0004】なお、図11において、20,21はクラ
ッド層、22は拡散領域、23は電極、24はバッファ
層、25はGaAs基板、26は電極である。
In FIG. 11, 20 and 21 are cladding layers, 22 is a diffusion region, 23 is an electrode, 24 is a buffer layer, 25 is a GaAs substrate, and 26 is an electrode.

【0005】このように構成された面発光レーザは、従
来では面発光素子を埋め込む場合、埋め込まれるべき領
域を残して他の領域は全てエッチングし、液相成長法な
どの成長法によって埋め込んでいた。
In the surface emitting laser having the above-described structure, conventionally, when a surface emitting element is embedded, a region to be embedded is left and all other regions are etched, and the surface emitting device is embedded by a growth method such as a liquid phase growth method. .

【0006】近年、長波長帯半導体レーザであるInP
系導波路型半導体レーザにおいて、半絶縁性InPによ
る埋め込み技術が開発された。半絶縁性のInPで埋め
込むことによって変調速度の高速化,発振閾値の低下な
ど、レーザの性能の向上が図られた。この技術を適用す
ることによって導波路型レーザと同様に面発光レーザや
その他の面型光素子でも性能の向上が期待される。
Recently, InP, which is a long-wavelength semiconductor laser,
A buried technique using semi-insulating InP has been developed for a waveguide type semiconductor laser. By embedding with semi-insulating InP, the performance of the laser was improved by increasing the modulation speed and lowering the oscillation threshold. The application of this technique is expected to improve the performance of surface-emitting lasers and other surface-type optical elements as well as waveguide-type lasers.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、半絶縁
性InPの埋め込みのための結晶成長法としては、液相
成長法を用いることはできず、気相成長法に頼らなけれ
ばならない。気相成長法としては、有機金属気相成長法
とハイドライド気相成長法とがよく用いられている。こ
のうち、有機金属成長法は、埋め込まれるメサ構造の近
傍で異常成長が起き易い。
However, as the crystal growth method for embedding semi-insulating InP, the liquid phase growth method cannot be used, and the vapor phase growth method must be relied upon. As the vapor phase growth method, a metal organic vapor phase growth method and a hydride vapor phase growth method are often used. Among these, in the organometallic growth method, abnormal growth easily occurs near the embedded mesa structure.

【0008】導波路型レーザでは、埋め込まれるべきリ
ッジの側壁が異常成長の起こり難い面方位になるように
リッジの方向を選ぶことによって異常成長の問題が解決
される。しかし、側壁が多くの面方位よりなっている面
型光素子では、異常成長が重大な問題となる。
In the waveguide type laser, the problem of abnormal growth is solved by selecting the direction of the ridge so that the side wall of the ridge to be embedded has a plane orientation in which abnormal growth does not easily occur. However, in a surface-type optical element in which the side walls have many plane orientations, abnormal growth is a serious problem.

【0009】一方、ハイドライド気相成長法では、この
ような異常成長が起こり難く、面型光素子の埋め込みに
適している。しかし、この方法にも、文献(第5回InP
andrelated Materials Conference(ThF5)でS.Lou
rdudoss等が)で述べているように平坦な表面が得られ
ないという問題があった。
On the other hand, in the hydride vapor phase epitaxy method, such abnormal growth is unlikely to occur, and it is suitable for embedding a surface-type optical element. However, this method also applies to the literature (5th InP
S.Lou at andrelated Materials Conference (ThF5)
As described by rdudoss et al.), there is a problem that a flat surface cannot be obtained.

【0010】図12は、前述した成長法により方形のメ
サ構造を埋め込んだ場合を説明する図であり、図12
(a)は平面図、図12(b)は[011]方向に沿っ
て切断した断面図、図12(c)は[01バー1]方向
で切断した断面図をそれぞれ示したものである。この図
12に示すように平坦な表面が得られないのは、埋め込
みメサ構造3の側壁5での成長速度が底面6(底面の面
指数は(100))の成長より速く、しかも、側壁5の
面方向によって成長速度が異なるためである。
FIG. 12 is a diagram for explaining a case where a rectangular mesa structure is embedded by the above-mentioned growth method.
12A is a plan view, FIG. 12B is a sectional view taken along the [011] direction, and FIG. 12C is a sectional view taken along the [01 bar 1] direction. As shown in FIG. 12, the flat surface cannot be obtained because the growth rate of the buried mesa structure 3 on the side wall 5 is higher than that of the bottom surface 6 (bottom surface index is (100)). This is because the growth rate varies depending on the surface direction of.

【0011】したがって、本発明は、前述した従来の課
題を解決するためになされたものであり、その目的は、
気相成長法によって表面が平坦な面型光素子の製作を可
能にする半導体装置の作製方法を提供することにある。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and its purpose is to:
It is an object of the present invention to provide a method for manufacturing a semiconductor device that enables the production of a planar optical element having a flat surface by a vapor growth method.

【0012】[0012]

【課題を解決するための手段】このような目的を達成す
るために第1の発明は、図1(a)に真上から見た平面
図、図1(b)にその断面図でそれぞれ示すように埋め
込まれるメサ構造7の周囲に半導体の壁8を巡らせた構
造を形成し、この構造を埋め込むようにしたものであ
る。
In order to achieve such an object, the first invention is shown in FIG. 1 (a) as a plan view seen from directly above and in FIG. 1 (b) as a sectional view thereof. A structure in which a semiconductor wall 8 is formed around the mesa structure 7 thus embedded is formed, and this structure is embedded.

【0013】また、第2の発明は、図3(a),(b)
に平面図で示すようにメサ構造7の側壁5または半導体
の側壁9からの結晶成長速度の速い領域11で側壁5と
側壁9との間隔を広くし、遅い領域12では間隔を狭く
するようにしたものである。
The second aspect of the invention is shown in FIGS. 3 (a) and 3 (b).
As shown in the plan view, the interval between the sidewall 5 and the sidewall 9 is widened in the region 11 where the crystal growth rate is fast from the sidewall 5 of the mesa structure 7 or the sidewall 9 of the semiconductor, and the interval is narrowed in the slow region 12. It was done.

【0014】また、第3の発明は、埋め込まれる半導体
メサ構造がIn,Ga,Al,P,AsよりなるIII-V
族半導体またはこれらの半導体の積層構造であり、壁を
巡らせた構造を埋め込む半導体が半絶縁性InPを用い
たものである。
In a third aspect of the invention, the semiconductor mesa structure to be embedded is III-V composed of In, Ga, Al, P and As.
The semiconductor is a group semiconductor or a laminated structure of these semiconductors, and the semiconductor in which the wall-surrounding structure is embedded uses semi-insulating InP.

【0015】また、第4の発明は、気相成長法としてハ
イドライド成長法またはクロライド成長法を用いたもの
である。
Further, the fourth invention uses a hydride growth method or a chloride growth method as a vapor phase growth method.

【0016】[0016]

【作用】第1の発明においては、半導体の壁8を巡らせ
た構造を少なくとも1つを形成し、この構造を埋め込む
ようにしたことにより、メサ構造7の側壁5と半導体の
壁8の側壁9との両方から成長がはじまり、両者が交わ
ることによって平坦な表面が形成される。この様子を真
上から見た平面図を図2(a),(b)に示す。図2
(a)では、埋め込みの途中であり、メサ構造7の側壁
5と半導体の側壁9との両方から矢印で示す方向に速い
速度で結晶領域10が成長している。図2(b)では、
両方の側壁5および側壁9から成長した結晶領域10が
交わったところであり、平坦な表面が得られる。
In the first aspect of the present invention, at least one structure is formed around the semiconductor wall 8 and the structure is embedded, so that the side wall 5 of the mesa structure 7 and the side wall 9 of the semiconductor wall 8 are formed. Growth starts from both and, and a flat surface is formed by the intersection of both. Plan views of this state viewed from directly above are shown in FIGS. Figure 2
In (a), the crystal region 10 is growing at a high speed in the direction indicated by the arrow from both the side wall 5 of the mesa structure 7 and the side wall 9 of the semiconductor during the filling. In FIG. 2 (b),
It is where the crystal regions 10 grown from both sidewalls 5 and 9 intersect, and a flat surface is obtained.

【0017】図2では、側壁5と側壁9とからの成長速
度が二方向で同じ場合を示しているが、側壁5,側壁9
の方向によって成長速度が異なる場合でも、側壁5と周
囲の側壁9との間が離れ過ぎていない場合には基板に垂
直な方向の成長速度が結晶領域10でも遅いので、平坦
な表面が得られる。
Although FIG. 2 shows the case where the growth rates from the side wall 5 and the side wall 9 are the same in two directions, the side wall 5 and the side wall 9 are the same.
Even if the growth rate is different depending on the direction, the growth rate in the direction perpendicular to the substrate is slow even in the crystal region 10 if the side wall 5 and the surrounding side wall 9 are not too far apart, so that a flat surface can be obtained. .

【0018】なお、メサ構造7の周囲に側壁5のない場
合には、図12に示したように近接したメサ構造7の側
壁5から成長した結晶領域10が交わって一方向には平
坦な表面が得られる。しかし、別の方向では取り残され
る部分が生じ、平坦な表面が得られない。ここで、成長
をさらに続けて取り残された領域を埋めても、先に平坦
になった表面が上方に成長して膨らんでしまい、平坦な
表面は得られない。
When there is no side wall 5 around the mesa structure 7, the crystal regions 10 grown from the side walls 5 of the adjacent mesa structure 7 intersect each other as shown in FIG. Is obtained. However, in the other direction, a part which is left behind is generated, and a flat surface cannot be obtained. Here, even if the growth is further continued to fill the remaining region, the previously flat surface grows upward and swells, and a flat surface cannot be obtained.

【0019】また、第2の発明においては、メサ構造7
の側壁5および半導体の側壁9から成長した結晶領域1
0が同時刻に交わるようにでき、したがって平坦な表面
が得られる。なお、側壁5と側壁9との間隔を正確に同
時刻に成長領域が交わるように設計しなくても、基板表
面に垂直な方向の成長速度は遅いので、平坦な表面が得
られる。
In the second invention, the mesa structure 7 is used.
Crystal region 1 grown from side wall 5 of semiconductor and side wall 9 of semiconductor
It is possible for the 0s to cross at the same time, thus obtaining a flat surface. Even if the distance between the side wall 5 and the side wall 9 is not designed so that the growth regions intersect at exactly the same time, the growth rate in the direction perpendicular to the substrate surface is slow, so that a flat surface can be obtained.

【0020】[0020]

【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。 (実施例1)図4は、本発明による半導体装置の作製方
法の一実施例によるメサ構造の埋め込み方法を説明する
図であり、図4(a)は上方から見た要部平面図,図4
(b)はその断面図である。本実施例では、埋め込まれ
るメサ構造の層構造には依らず、埋め込む半導体が半絶
縁性InPの場合について説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings. (Embodiment 1) FIG. 4 is a diagram for explaining a method of embedding a mesa structure according to an embodiment of a method for manufacturing a semiconductor device according to the present invention. FIG. Four
(B) is the sectional view. In the present embodiment, a case will be described in which the semiconductor to be embedded is semi-insulating InP regardless of the layer structure of the embedded mesa structure.

【0021】まず、図4に示すように(100)面を有
するInP基板Sの表面に所定の大きさの開口部を有す
るSiO2 マスク13を形成し、このSiO2 マスク1
3をエッチングマスクとしてInP基板Sをエタンと水
素とを反応ガスとする反応性イオンエッチングにより凹
溝状に加工して方形のメサ構造7およびこのメサ構造7
を囲む側壁5および壁8の側壁9を形成する。
First, as shown in FIG. 4, a SiO 2 mask 13 having an opening of a predetermined size is formed on the surface of an InP substrate S having a (100) plane, and this SiO 2 mask 1 is formed.
3 is used as an etching mask, the InP substrate S is processed into a concave groove shape by reactive ion etching using ethane and hydrogen as reaction gases, and a rectangular mesa structure 7 and this mesa structure 7 are formed.
A side wall 5 and a side wall 9 surrounding the wall 8 are formed.

【0022】この場合、InP基板Sの凹溝状にエッチ
ングした深さDは約2μmであり、側壁5と側壁9との
間の間隔Lも約2μmである。次に反応性イオンエッチ
ング後に酸素プラズマ灰化処理と硫酸処理とによりSi
2 マスク13およびエッチング面を清浄化する。
In this case, the depth D of the InP substrate S etched into the groove shape is about 2 μm, and the distance L between the side wall 5 and the side wall 9 is also about 2 μm. Then, after reactive ion etching, oxygen plasma ashing treatment and sulfuric acid treatment are performed to form Si.
The O 2 mask 13 and the etching surface are cleaned.

【0023】次にハイドライド成長法によってFeドー
プInPを約3分間成長する。このとき、SiO2 マス
ク13は、選択成長膜として機能する。図5(a),
(b)に成長後の断面図を示す。図5(a)および図5
(b)は、それぞれ[011]方向および[01バー
1]方向の断面である。図5に示すようにメサ構造7と
壁8との間は、Feがドープされ半絶縁性になったIn
P層14によって埋め込まれ、しかも、この埋め込み後
のInP層14の表面は平坦である。
Next, Fe-doped InP is grown for about 3 minutes by the hydride growth method. At this time, the SiO 2 mask 13 functions as a selective growth film. FIG. 5 (a),
A sectional view after the growth is shown in (b). 5 (a) and 5
(B) is a cross section in the [011] direction and the [01 bar 1] direction, respectively. As shown in FIG. 5, In between the mesa structure 7 and the wall 8 was In doped with Fe to be semi-insulating.
The InP layer 14 is filled with the P layer 14, and the surface of the InP layer 14 after the filling is flat.

【0024】(実施例2)図6は、本発明による半導体
装置の作製方法の他の実施例によるメサ構造の埋め込み
方法を説明する図であり、本実施例では、メサ構造およ
び埋め込み方法は前述した実施例1と同じである。本実
施例では、図6に示すようにメサ構造7の側壁5とこの
メサ構造7を囲む壁8の側壁9との間隔が成長の速い
[011]方向と[01バー1]方向とで異なってい
る。[011]方向では、間隔L1 が約20μmである
のに対して[01バー1]方向では、間隔L2 が約8μ
mである。凹溝の深さは約4μmであり、成長時間は約
16分である。
(Embodiment 2) FIG. 6 is a view for explaining a mesa structure embedding method according to another embodiment of the method for manufacturing a semiconductor device according to the present invention. In this embodiment, the mesa structure and the embedding method are the same as those described above. It is the same as in the first embodiment. In this embodiment, as shown in FIG. 6, the distance between the side wall 5 of the mesa structure 7 and the side wall 9 of the wall 8 surrounding the mesa structure 7 is different in the [011] direction and the [01 bar 1] direction in which the growth is fast. ing. In the [011] direction, the distance L 1 is about 20 μm, whereas in the [01 bar 1] direction, the distance L 2 is about 8 μm.
m. The depth of the groove is about 4 μm, and the growth time is about 16 minutes.

【0025】図7(a),(b)は、成長後の断面図を
示したものであり、図7(a)および図7(b)は、そ
れぞれ[011]方向および[01バー1]方向に沿っ
て切断したときの断面図である。図7に示すようにメサ
構造7と壁8との間の凹溝部は、Feがドープされ半絶
縁性になったInP層14によって埋め込まれ、しか
も、側壁5および側壁9の両方向からの埋め込み後のI
nP層14の表面は平坦である。
7 (a) and 7 (b) are cross-sectional views after the growth, and FIGS. 7 (a) and 7 (b) show the [011] direction and [01 bar 1], respectively. It is sectional drawing when it cut | disconnects along a direction. As shown in FIG. 7, the recessed portion between the mesa structure 7 and the wall 8 is filled with the InP layer 14 that is doped with Fe and becomes semi-insulating, and after filling from both directions of the side wall 5 and the side wall 9. Of I
The surface of the nP layer 14 is flat.

【0026】(実施例3)前述した実施例1および実施
例2では、埋め込まれるメサ構造7の形状が方形であっ
たが、メサ構造7が円形状の場合は、壁8の形状を図8
(a)または図8(b)に平面図で示すように円形状ま
たは楕円形状とすれば良い。なお、図8(b)に示すよ
うに壁8を楕円形状にするときは、長軸方向を成長速度
の速い[011]方向とする。
(Embodiment 3) In Embodiment 1 and Embodiment 2 described above, the shape of the embedded mesa structure 7 is square, but when the mesa structure 7 is circular, the shape of the wall 8 is shown in FIG.
It may be circular or elliptical as shown in the plan view of FIG. When the wall 8 has an elliptical shape as shown in FIG. 8B, the major axis direction is the [011] direction in which the growth rate is high.

【0027】また、本実施例では、図8(a)に示すよ
うに壁8の形状が円形状の場合にはメサ構造7と壁8と
の間の間隔L3 は約2μmとし、図8(b)に示すよう
に壁8の形状が楕円形状の場合には長軸方向の間隔L4
を約20μmとし、短軸方向の間隔L5 を約8μmとし
ている。また、このメサ構造7の深さとしては、図8
(a)に示す円形状の場合は約2μm,図8(b)に示
す楕円形状の場合は約4μmとしている。
Further, in this embodiment, as shown in FIG. 8A, when the wall 8 has a circular shape, the interval L 3 between the mesa structure 7 and the wall 8 is about 2 μm. spacing of the long axis direction when the shape of the wall 8 as shown in (b) of the elliptical L 4
Is about 20 μm, and the interval L 5 in the minor axis direction is about 8 μm. The depth of the mesa structure 7 is as shown in FIG.
The circular shape shown in (a) is about 2 μm, and the elliptical shape shown in FIG. 8 (b) is about 4 μm.

【0028】(実施例4)前述した実施例1〜実施例3
では、メサ構造7の周囲を囲む壁8は一重に形成した場
合について説明したが、この壁8を例えば図9に平面図
または図10に斜視図でそれぞれ示すように三重の壁8
1 ,82 ,83 で形成しても前述と同様の効果が得られ
る。なお、61 ,62 ,63 はメサ構造7と壁81 およ
び各壁81,82 ,83 間に形成される凹溝部の底面で
ある。
(Embodiment 4) Embodiments 1 to 3 described above
In the above, the case where the wall 8 surrounding the periphery of the mesa structure 7 is formed in a single layer has been described, but as shown in the plan view of FIG. 9 or the perspective view of FIG.
Even if it is formed of 1 , 8 2 and 8 3 , the same effect as described above can be obtained. Reference numerals 6 1 , 6 2 and 6 3 are the bottom surfaces of the recessed groove portion formed between the mesa structure 7 and the wall 8 1 and each of the walls 8 1 , 8 2 and 8 3 .

【0029】以上、4つの実施例を掲げたが、埋め込ま
れるメサ構造7の層構造は、レーザ構造や変調器構造な
ど種々の構造を採ることができる。また、メサ構造7ま
たは壁8からの横方向への成長速度が基板表面に垂直な
方向の成長より速いので、メサ構造7と壁8との間の間
隔に関する制限は緩く、前述した実施例で説明した以外
の種々の寸法も実現可能である。
Although the four examples have been described above, the layer structure of the embedded mesa structure 7 may be various structures such as a laser structure and a modulator structure. Further, since the lateral growth rate from the mesa structure 7 or the wall 8 is faster than the growth rate in the direction perpendicular to the substrate surface, the restriction on the distance between the mesa structure 7 and the wall 8 is loose. Various dimensions other than those described are possible.

【0030】また、前述した実施例では、埋め込み層と
してFeドープInP層14を用いた場合について説明
したが、本発明はこれに限定されるものではなく、例え
ばFeドープInP−n型InP−p型InPの3層構
造,npn電流ブロック構造などの種々の構造でも可能
である。
In the above-described embodiment, the case where the Fe-doped InP layer 14 is used as the burying layer has been described, but the present invention is not limited to this. For example, Fe-doped InP-n type InP-p. Various structures such as a three-layer structure of type InP and an npn current block structure are also possible.

【0031】また、前述した実施例では、埋め込みのた
めの気相成長法としてハイドライド成長法を用いた場合
について説明したが、本発明はこれに限定されるもので
はなく、このハイドライド成長法に代えてクロライド成
長法を用いても同様に平坦な埋め込みが可能である。
Further, in the above-described embodiment, the case where the hydride growth method is used as the vapor phase growth method for burying is explained, but the present invention is not limited to this, and this hydride growth method is used instead. Even if the chloride growth method is used, flat filling can be performed similarly.

【0032】[0032]

【発明の効果】以上、説明したように本発明によれば、
気相成長法により半導体メサ構造を平坦に埋め込むこと
ができるので、面発光レーザなどの面型光素子の性能を
大幅に向上させることができる。特に面型光素子の2次
元アレイを製作するときには表面の平坦性は極めて重要
であり、この平坦な表面を持つ面型光素子の製作が容易
に実現可能となるなどの極めて優れた効果が得られる。
As described above, according to the present invention,
Since the semiconductor mesa structure can be flatly embedded by the vapor phase growth method, the performance of a surface-type optical element such as a surface emitting laser can be significantly improved. In particular, the flatness of the surface is extremely important when manufacturing a two-dimensional array of surface-type optical elements, and it is possible to obtain extremely excellent effects such as the fact that the surface-type optical element having this flat surface can be easily manufactured. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による半導体装置の作製方法により埋
め込まれるメサ構造の構成を説明する図である。
FIG. 1 is a diagram illustrating a configuration of a mesa structure embedded by a method for manufacturing a semiconductor device according to the present invention.

【図2】 本発明による半導体装置の作製方法により埋
め込まれるメサ構造の埋め込み過程を説明する図であ
る。
FIG. 2 is a diagram illustrating a process of embedding a mesa structure that is embedded by a method for manufacturing a semiconductor device according to the present invention.

【図3】 本発明による半導体装置の作製方法により埋
め込まれるメサ構造の側壁の成長速度が面方位によって
大きく異なる場合の埋め込み過程を説明する図である。
FIG. 3 is a diagram illustrating an embedding process when the growth rate of the side wall of the mesa structure to be embedded by the method for manufacturing a semiconductor device according to the present invention greatly differs depending on the plane orientation.

【図4】 本発明による半導体装置の作製方法の一実施
例を説明するメサ構造の埋め込み方法を説明する図であ
る。
FIG. 4 is a diagram illustrating a method of embedding a mesa structure for explaining an example of a method for manufacturing a semiconductor device according to the present invention.

【図5】 (a)は図4で埋め込まれたメサ構造の[0
11]方向に沿った断面図、(b)はメサ構造の[01
バー1]方向に沿った断面図である。
5 (a) is a diagram showing a structure of [0 of the mesa structure embedded in FIG.
11] is a cross-sectional view taken along the [11] direction, FIG.
It is sectional drawing which followed the bar | burr 1] direction.

【図6】 本発明による半導体装置の作製方法の他の実
施例を説明するメサ構造の埋め込み方法を説明する平面
図である。
FIG. 6 is a plan view illustrating a method of embedding a mesa structure for explaining another embodiment of the method for manufacturing a semiconductor device according to the present invention.

【図7】 (a)は図6で埋め込まれたメサ構造の[0
11]方向に沿った断面図、(b)はメサ構造の[01
バー1]方向に沿った断面図である。
FIG. 7 (a) is a [0 of the mesa structure embedded in FIG.
11] is a cross-sectional view taken along the [11] direction, FIG.
It is sectional drawing which followed the bar | burr 1] direction.

【図8】 本発明による半導体装置の作製方法のさらに
他の実施例を説明するメサ構造の埋め込み方法を説明す
る平面図である。
FIG. 8 is a plan view explaining a method of embedding a mesa structure for explaining still another embodiment of the method for manufacturing a semiconductor device according to the present invention.

【図9】 本発明による半導体装置の作製方法の他の実
施例を説明するメサ構造の埋め込み方法を説明する平面
図である。
FIG. 9 is a plan view illustrating a method of embedding a mesa structure for explaining another embodiment of the method for manufacturing a semiconductor device according to the present invention.

【図10】 本発明による半導体装置の作製方法の他の
実施例を説明するメサ構造の埋め込み方法を説明する斜
視図である。
FIG. 10 is a perspective view illustrating a method of embedding a mesa structure for explaining another embodiment of the method for manufacturing a semiconductor device according to the present invention.

【図11】 GaAs系埋め込み構造の面発光レーザの
構成を示す要部断面図である。
FIG. 11 is a cross-sectional view of an essential part showing the configuration of a surface emitting laser having a GaAs-based buried structure.

【図12】 従来の方法により埋め込まれた方形のメサ
構造を説明する図である。
FIG. 12 is a diagram illustrating a rectangular mesa structure embedded by a conventional method.

【符号の説明】[Explanation of symbols]

1…活性領域、2…反射鏡、3…メサ構造、4…埋め込
み層、5…メサ構造の側壁、6,61 ,62 ,63 …底
面、7…メサ構造、8,81 ,82 ,83 …メサ構造の
周囲に巡らされた壁、9…壁の側壁、10…横方向に成
長した結晶領域、11…横方向成長速度の速い領域、1
2…横方向成長速度の遅い領域、13…SiO2 マス
ク、14…FeドープInP層、S…半導体基板。
DESCRIPTION OF SYMBOLS 1 ... Active region, 2 ... Reflector, 3 ... Mesa structure, 4 ... Embedded layer, 5 ... Side wall of mesa structure, 6,6 1 , 6 2 , 6 3 ... Bottom surface, 7 ... Mesa structure, 8, 8 1 , 8 2 , 8 3 ... Walls circulated around the mesa structure, 9 ... Side walls of walls, 10 ... Crystal regions grown in the lateral direction, 11 ... Regions in which lateral growth rate is high, 1
2 ... Region with slow lateral growth rate, 13 ... SiO 2 mask, 14 ... Fe-doped InP layer, S ... Semiconductor substrate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気相成長法により柱状の半導体メサ構造
を半導体によって埋め込む半導体装置の作製方法におい
て、 前記半導体メサ構造の周囲に半導体の壁を巡らせた構造
を少なくとも1つを形成し、前記半導体の壁を巡らせた
構造を埋め込むことを特徴とした半導体装置の作製方
法。
1. A method of manufacturing a semiconductor device in which a columnar semiconductor mesa structure is embedded by a semiconductor by a vapor phase growth method, wherein at least one structure having a semiconductor wall is formed around the semiconductor mesa structure, and the semiconductor is formed. A method for manufacturing a semiconductor device, characterized by embedding a structure in which a wall of the semiconductor device is surrounded.
【請求項2】 請求項1において、前記半導体の壁を巡
らせた構造が、前記半導体メサ構造の周囲の側壁または
半導体の側壁に垂直な方向の結晶成長速度の速い順に半
導体メサ構造の周囲の側壁と半導体の側壁との間の距離
を広くすることを特徴とした半導体装置の作製方法。
2. The semiconductor mesa structure according to claim 1, wherein the structure surrounding the semiconductor wall is a sidewall of the semiconductor mesa structure or a sidewall of the semiconductor mesa structure in order of increasing crystal growth rate in a direction perpendicular to the semiconductor sidewall. A method for manufacturing a semiconductor device, characterized in that a distance between a semiconductor and a sidewall of a semiconductor is widened.
【請求項3】 請求項1または請求項2において、埋め
込まれる半導体メサ構造がIn,Ga,Al,P,As
よりなるIII-V 族半導体またはこれらの半導体の積層構
造であり、前記壁を巡らせた構造を埋め込む半導体が半
絶縁性InPであることをことを特徴とした半導体装置
の作製方法。
3. The semiconductor mesa structure to be embedded according to claim 1, wherein the semiconductor mesa structure is In, Ga, Al, P, As.
A method for manufacturing a semiconductor device, wherein the semiconductor is a III-V group semiconductor or a laminated structure of these semiconductors, and the semiconductor filling the structure surrounding the wall is semi-insulating InP.
【請求項4】 請求項1,請求項2または請求項3にお
いて、前記気相成長法がハイドライド成長法またはクロ
ライド成長法であることを特徴とした半導体装置の作製
方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the vapor phase growth method is a hydride growth method or a chloride growth method.
JP23280894A 1994-09-28 1994-09-28 Method for manufacturing semiconductor device Expired - Fee Related JP3215908B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP23280894A JP3215908B2 (en) 1994-09-28 1994-09-28 Method for manufacturing semiconductor device
DE69511810T DE69511810T2 (en) 1994-09-28 1995-09-27 Semiconductor optical device and manufacturing method
EP95250236A EP0704913B1 (en) 1994-09-28 1995-09-27 Optical semiconductor device and method of fabricating the same
US08/534,333 US5783844A (en) 1994-09-28 1995-09-27 Optical semiconductor device
EP99250062A EP0955681A3 (en) 1994-09-28 1995-09-27 Optical semiconductor device and method of fabricating the same
US09/027,012 US6403986B1 (en) 1994-09-28 1998-02-20 Optical semiconductor device and method of fabricating the same
US10/067,553 US6790697B2 (en) 1994-09-28 2002-02-04 Optical semiconductor device and method of fabricating the same
US10/645,437 US6949394B2 (en) 1994-09-28 2003-08-20 Optical semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23280894A JP3215908B2 (en) 1994-09-28 1994-09-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0897501A true JPH0897501A (en) 1996-04-12
JP3215908B2 JP3215908B2 (en) 2001-10-09

Family

ID=16945095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23280894A Expired - Fee Related JP3215908B2 (en) 1994-09-28 1994-09-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3215908B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033706A (en) * 2010-07-30 2012-02-16 Kyoto Univ Method of manufacturing two-dimensional photonic crystal laser
CN117406547A (en) * 2023-12-15 2024-01-16 合肥晶合集成电路股份有限公司 Pseudo-pattern structure of photomask and photomask

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033706A (en) * 2010-07-30 2012-02-16 Kyoto Univ Method of manufacturing two-dimensional photonic crystal laser
CN117406547A (en) * 2023-12-15 2024-01-16 合肥晶合集成电路股份有限公司 Pseudo-pattern structure of photomask and photomask
CN117406547B (en) * 2023-12-15 2024-04-05 合肥晶合集成电路股份有限公司 Pseudo-pattern structure of photomask and photomask

Also Published As

Publication number Publication date
JP3215908B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US5093278A (en) Method of manufacturing a semiconductor laser
CN112018598A (en) Method for correcting (100) crystal face oxidation aperture
US4792962A (en) A ring-shaped resonator type semiconductor laser device
JP3215908B2 (en) Method for manufacturing semiconductor device
JPH0552676B2 (en)
JPH07202317A (en) Manufacture of embedded structure semiconductor laser
JPH02260636A (en) Etching of algainp crystal
JPS61234585A (en) Optical integrated circuit and manufacture thereof
JP2000183458A (en) Semiconductor device and its production
JPH02119285A (en) Manufacture of semiconductor laser
JP2003046196A (en) Semiconductor laser and its manufacturing method
JPS63209189A (en) Production of semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPH01196894A (en) Semiconductor laser device
JPS62179790A (en) Semiconductor laser
JPH0677605A (en) Semiconductor element and fabrication thereof
JPS58219772A (en) Laser type light emission device and method of producing same
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof
JPH065969A (en) Semiconductor laser
JPH0661582A (en) Manufacture of semiconductor laser device
JPS5856992B2 (en) semiconductor laser equipment
JPH01215087A (en) Semiconductor light emitting device
JPS6175585A (en) Buried semiconductor laser
JPS61284985A (en) Manufacture of semiconductor laser device
JPH0614576B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees