JPS61112394A - Embedded type semiconductor laser - Google Patents

Embedded type semiconductor laser

Info

Publication number
JPS61112394A
JPS61112394A JP23453784A JP23453784A JPS61112394A JP S61112394 A JPS61112394 A JP S61112394A JP 23453784 A JP23453784 A JP 23453784A JP 23453784 A JP23453784 A JP 23453784A JP S61112394 A JPS61112394 A JP S61112394A
Authority
JP
Japan
Prior art keywords
active layer
mesa
width
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23453784A
Other languages
Japanese (ja)
Other versions
JPH0632338B2 (en
Inventor
Kenichi Kobayashi
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23453784A priority Critical patent/JPH0632338B2/en
Publication of JPS61112394A publication Critical patent/JPS61112394A/en
Publication of JPH0632338B2 publication Critical patent/JPH0632338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To maintain a single lateral mode even if high output power is implemented, by providing double light guides, in which another light guide mechanism is provided in one light guide, thereby broadening the width of an active layer, which is determined by the width of a mesa part, and enlarging the cross sectional area of the light guides. CONSTITUTION:A mesa part 100 is provided on a semiconductor substrate 1. In the structure of the mesa part 100, a first semiconductor layer 30 of P type Al0.3Ga0.7As, whose forbidden band width is larger than an active layer 4, is held by a second semiconductor layer 20 of N type GaAs, whose forbidden band width is smaller or equal to the active layer 4. The active layer 4 is positioned so that the upper part and the lower part of the mesa 100 are separat ed. Therefore, the active layer 4 at the side of the upper part of the mesa is surrounded by a clad layer 5 of N type Al0.3Ga0.7As, whose refractive index is smaller than that of the active layer. Thus one light guide is formed. Light is guided in the light guide having a width W1. Even if the width W1 is made broad, a single lateral mode is maintained owing to the presence of an inner light guide having a width W2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、安定な単−横モードで発振し高出力の得られ
る埋め込み型半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a buried semiconductor laser that oscillates in a stable single-transverse mode and provides high output.

(従来技術とその問題点) 光通信や光情報処理用光源として半導体レーザが使われ
ているが、このような用途においては半導体レーザは安
定な単−横モードで発振し、高出力であることが重要で
ある。
(Prior art and its problems) Semiconductor lasers are used as light sources for optical communication and optical information processing, but in these applications, semiconductor lasers must oscillate in a stable single-transverse mode and have high output. is important.

現在、これらの光源用の半導体レーザとして埋め込み構
造(BH槽構造以下略す)と呼ばれる活性層が活性層よ
り屈折率の小さな半導体層中に埋め込まれた構造のもの
がよく採用されている。しかし、埋め込み型半導体レー
ザ情理め込まれた活性層の幅が2μm以上になると容易
に横高次モードが発振してしまい、また、低注入レベル
では単−横モード発振しても高出力動作させるためにキ
ャリアを高注入すると単−横モード発振が維持できなく
なるという問題があった。
Currently, as semiconductor lasers for these light sources, a structure called a buried structure (hereinafter abbreviated as BH tank structure) in which an active layer is embedded in a semiconductor layer whose refractive index is smaller than that of the active layer is often employed. However, when the width of the active layer embedded in a buried semiconductor laser becomes 2 μm or more, higher-order transverse modes easily oscillate, and at low implantation levels, even single-transverse mode oscillations result in high output operation. Therefore, there is a problem that if a large amount of carriers is injected, single-transverse mode oscillation cannot be maintained.

本発明の目的は、上記の問題点を除去し、安定な単−横
モードで発振し高出力の得られる埋め込み型半導体レー
ザを提供することKある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems and provide a buried semiconductor laser which oscillates in a stable single-transverse mode and provides high output.

(問題点を解決するための手段) 本発明の埋め込み型半導体レーザは、基板上に活性層よ
り禁制帯幅が大きい第1の半導体層を活性層より禁制帯
幅が同じかあるいは小さな第2の半導体層によりはさみ
込んだ構造を有するメサを設け、このメサの上部とメサ
の下部でとぎれた活性層を有するダブルヘテロ構造をメ
サを含む基板上に有することを特徴とする。したがって
メサ上部の活性層は活性層より屈折率が小さな半導体結
晶内に埋め込まれているため、1つの光の導波路を形成
する。さらにメサ上部の光の4波路を形成する活性層は
その内部においてもメサを形成している半導体の禁制帯
幅が活性層の禁制帯幅に対してメサ中央で大きくメサの
両側で小さくされているため、光の導波路の中にもう一
つ導波機構を備えた二重の導波路を有している。このこ
とKよりメサ幅で決まる活性層幅を広くして光導波路の
断面積を大きくして高出力化をはかったときにおいても
単−横モードを維持することができる。
(Means for Solving the Problems) In the buried semiconductor laser of the present invention, a first semiconductor layer having a larger forbidden band width than the active layer is formed on the substrate, and a second semiconductor layer having the same or smaller forbidden band width than the active layer is formed on the substrate. The present invention is characterized in that a mesa having a structure sandwiched between semiconductor layers is provided, and a double heterostructure having an active layer separated at the upper part of the mesa and the lower part of the mesa is provided on the substrate including the mesa. Therefore, since the active layer above the mesa is embedded in a semiconductor crystal having a smaller refractive index than the active layer, it forms one optical waveguide. Furthermore, inside the active layer that forms the four optical wave paths at the top of the mesa, the forbidden band width of the semiconductor forming the mesa is larger at the center of the mesa and smaller on both sides of the mesa than the forbidden band width of the active layer. Therefore, it has a double waveguide with another waveguide mechanism inside the optical waveguide. This makes it possible to maintain a single-transverse mode even when the active layer width determined by the mesa width is widened to increase the cross-sectional area of the optical waveguide to achieve high output.

(実施例) 以下図面を用いて詳細に説明する。(Example) This will be explained in detail below using the drawings.

第1図は本発明の埋め込み型半導体レーザの一実施例の
断面図であシ、上部には導波機構の等測的な屈折率分布
も示しである。
FIG. 1 is a sectional view of an embodiment of the buried semiconductor laser of the present invention, and the isometric refractive index distribution of the waveguide mechanism is also shown in the upper part.

半導体基板(P型GaAs)1上にメサ100が設けら
れておシ、メサ100は活性層(GaAs)4より禁制
帯幅が大きい第1の半導体層(P型Ate、 3 Ga
 0.7As ) 30が活性層4より禁制帯幅の小さ
いかまたは等しい第2の半導体層(n型GaAs)20
によりはさみ込まれた構造を有している。メサ100の
上部を下部に分離して活性層4が位置し、そのためメサ
上部の活性層4は周囲を活性層4より屈折率が小さなり
ラッド層5に囲まれておシ、1つの導波路を形成してい
る。その導波路幅は第1図中に示されているようにWI
である。メサ100上の活性層4は薄いクラッド層(P
型AtO,3Ga0.7As)3を介してAの部分は第
1の半導体層30に、Bの部分は第2の半導体層20に
接している。第1の半導体層30は活性層4より禁制帯
幅”゛大きく・第2の半導体層20は活性層4jp、、
A mesa 100 is provided on a semiconductor substrate (P-type GaAs) 1, and the mesa 100 is made of a first semiconductor layer (P-type Ate, 3 Ga) having a larger forbidden band width than the active layer (GaAs) 4.
0.7As) 30 is a second semiconductor layer (n-type GaAs) 20 whose forbidden band width is smaller or equal to that of the active layer 4.
It has a structure in which it is sandwiched between two. The active layer 4 is located separating the upper part of the mesa 100 into the lower part, and therefore the active layer 4 at the upper part of the mesa is surrounded by a rad layer 5 having a smaller refractive index than the active layer 4, and forms one waveguide. is formed. The waveguide width is WI as shown in FIG.
It is. The active layer 4 on the mesa 100 is a thin cladding layer (P
The portion A is in contact with the first semiconductor layer 30 and the portion B is in contact with the second semiconductor layer 20 via the type AtO, 3Ga0.7As) 3. The first semiconductor layer 30 has a larger forbidden band width than the active layer 4, and the second semiconductor layer 20 has a larger forbidden band width than the active layer 4.
.

禁制帯幅が小さいかまたは等しい。このことKよりメサ
上の活性層4内部にさらに幅W2の導波路機構がそなえ
つけられている。活性層4の導波路を等側屈折率導波路
におきかえると、第1図の上部に示した形になる。
The forbidden band width is smaller or equal. Because of this, a waveguide structure with a width W2 is further provided inside the active layer 4 on the mesa. If the waveguide of the active layer 4 is replaced with an equilateral refractive index waveguide, the shape shown in the upper part of FIG. 1 will be obtained.

光はWlの幅の導波路で導波されると共に内部にあるW
2の幅の導波路の存在のためW、の幅を広くしても単−
横モードが維持される。Wlの幅を広くできることは大
出力を出せるということであシ、その時でも単−横モー
ドが維持されるという特徴を有する。
The light is guided by a waveguide with a width of Wl, and the internal W
Due to the existence of a waveguide with a width of 2, even if the width of W is increased,
Landscape mode is maintained. The ability to widen the width of Wl means that a large output can be produced, and even at that time, the unilateral mode is maintained.

以下、本発明の埋め込み型半導体レーザの製造方法を説
明する。第2図fa) 、 (bl 、 (C) 、 
(d)は本発明の半導体レーザの製造工程を示す図であ
り、図(a)K示すようKP形のGaAs基板上に第1
の半導体層30となる厚さ1μmのP形At013Ga
0.7As、filを有機金属分解法(以下MOCVD
法を略す)により成長し、図(b) K示すようにSi
n、のストライプマスク200を形成した後M OCV
 D炉反応管内部で気相エツチングし、その後第2の半
導体層20となるn型GaAs層を成長し図(C)の形
状を作製する。次に5in2200を除去し、エツチン
グ処理をした後液相エピタキシャル成長により第1のク
ラッド層3となるP形のAt0.3Ga0.7As層を
0.2μm1活性層4となるノンドーグのG a A 
s層0.1μm1第2のクラ、ド層5となるn形のAt
O,3Ga0.7As 層を2μm成長し図(d)の本
発明の半導体レーザ構造を作製した。実際にはさらにそ
の上にG a A sキャラプ層を成長するが図には示
してない。メサ100の上部の活性層4と下部の活性層
4とは分離されているが、液相エピタキシャル成長では
このように分離成長させることは容易に行うことができ
る。
Hereinafter, a method for manufacturing a buried semiconductor laser according to the present invention will be explained. Figure 2 fa), (bl, (C),
(d) is a diagram showing the manufacturing process of the semiconductor laser of the present invention. As shown in FIG.
P-type At013Ga with a thickness of 1 μm becomes the semiconductor layer 30 of
0.7As, fil was prepared using an organometallic decomposition method (hereinafter referred to as MOCVD).
As shown in Figure (b) K, Si
After forming the stripe mask 200 of MOCV
Vapor phase etching is performed inside the D furnace reaction tube, and then an n-type GaAs layer that will become the second semiconductor layer 20 is grown to form the shape shown in Figure (C). Next, 5in2200 was removed, and after etching, a P-type At0.3Ga0.7As layer, which would become the first cladding layer 3, was grown by liquid phase epitaxial growth to a thickness of 0.2 μm.
s layer 0.1 μm 1 n-type At which becomes the second layer 5
An O,3Ga0.7As layer was grown to a thickness of 2 μm to fabricate the semiconductor laser structure of the present invention shown in FIG. 3(d). In reality, a GaAs carapace layer is further grown on top of this, but it is not shown in the figure. Although the upper active layer 4 and the lower active layer 4 of the mesa 100 are separated, such separation growth can be easily performed by liquid phase epitaxial growth.

(発明の効果) 以上述べたように、本発明においては活性層は2重の導
波路機構を有しているので高出力でかつ単−横モードの
発振を容易に得ることができる。
(Effects of the Invention) As described above, in the present invention, since the active layer has a double waveguide structure, high output and single-transverse mode oscillation can be easily obtained.

また、第2の半導体層は半導体基板と導電性が異なるた
めメサの中央部以外にはP−n−P−n構造が形成され
、従って活性層の発光領域のみに、かつ横基本モードに
最も大きな利得を与える第1図に示したW2の幅で注入
が行なわれる。このことも導波路機構と相まって単−横
モード発振させるのに好都合である。
In addition, since the second semiconductor layer has a conductivity different from that of the semiconductor substrate, a P-n-P-n structure is formed in areas other than the central part of the mesa, and therefore, a P-n-P-n structure is formed only in the light emitting region of the active layer and most in the lateral fundamental mode. The implantation is performed with a width of W2 shown in FIG. 1, which provides a large gain. This, in combination with the waveguide mechanism, is also convenient for single-transverse mode oscillation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の埋め込み型半導体レーザの一実施例
の断面図、第2図(a) 、 (b) 、 (C) 、
 (d)は本発明の半導体レーザの製造工程図である。 図中、1・・・・・・半導体基板、3,5・・・・・・
クラッド層、4・・・・・・活性層、20・・・・・・
第2の半導体層、30・・・・・・第1の半導体層、2
00・・・・・・5in2ストライプである。
FIG. 1 is a sectional view of an embodiment of the embedded semiconductor laser of the present invention, and FIGS. 2(a), (b), (C),
(d) is a manufacturing process diagram of the semiconductor laser of the present invention. In the figure, 1... semiconductor substrate, 3, 5...
Cladding layer, 4...Active layer, 20...
Second semiconductor layer, 30...First semiconductor layer, 2
00...5in2 stripe.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に活性層より禁制帯幅が大きい第1の半導
体層を活性層と禁制帯幅が同じかあるいはそれより小さ
な第2の半導体層により側面からはさみ込んだ構造を有
するメサを設け、このメサの上部とメサ下部でとぎれた
活性層を有するダブルヘテロ構造を前記メサを含む基板
上に設けたことを特徴とする埋め込み型半導体レーザ。
A mesa having a structure in which a first semiconductor layer having a forbidden band width larger than that of an active layer is sandwiched from the sides by a second semiconductor layer having a forbidden band width equal to or smaller than that of the active layer is provided on a semiconductor substrate. 1. A buried semiconductor laser characterized in that a double heterostructure having an active layer separated at an upper part of a mesa and a lower part of the mesa is provided on a substrate including the mesa.
JP23453784A 1984-11-07 1984-11-07 Embedded semiconductor laser Expired - Lifetime JPH0632338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23453784A JPH0632338B2 (en) 1984-11-07 1984-11-07 Embedded semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23453784A JPH0632338B2 (en) 1984-11-07 1984-11-07 Embedded semiconductor laser

Publications (2)

Publication Number Publication Date
JPS61112394A true JPS61112394A (en) 1986-05-30
JPH0632338B2 JPH0632338B2 (en) 1994-04-27

Family

ID=16972577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23453784A Expired - Lifetime JPH0632338B2 (en) 1984-11-07 1984-11-07 Embedded semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0632338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120788A (en) * 1990-09-11 1992-04-21 Sharp Corp Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120788A (en) * 1990-09-11 1992-04-21 Sharp Corp Semiconductor laser

Also Published As

Publication number Publication date
JPH0632338B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JP2564813B2 (en) A (1) GaInP semiconductor light emitting device
JPS61112394A (en) Embedded type semiconductor laser
JPH0552676B2 (en)
JP2006245137A (en) Semiconductor optical element
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
JPS60223186A (en) Buried type semiconductor device
JPH03104292A (en) Semiconductor laser
JPS5856992B2 (en) semiconductor laser equipment
US4358850A (en) Terraced substrate semiconductor laser
JPH0373584A (en) Semiconductor laser device
JPS5834988A (en) Manufacture of semiconductor laser
JPS6062177A (en) Semiconductor laser
JPH0410705Y2 (en)
JPH0685389A (en) Semiconductor laser element and manufacture thereof
JPH05183231A (en) Semiconductor laser and manufacturing method thereof
JPS60145691A (en) Semiconductor laser
JPH01152789A (en) Semiconductor laser device and its manufacture
JPS60187084A (en) Buried structure semiconductor laser
JPS60187083A (en) Semiconductor laser
JPH04321291A (en) Semiconductor device
JPS56124288A (en) Single transverse mode semiconductor laser
JPH02174287A (en) Semiconductor laser
JPH02213183A (en) Semiconductor laser and manufacture thereof