JPH02213183A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH02213183A
JPH02213183A JP3395889A JP3395889A JPH02213183A JP H02213183 A JPH02213183 A JP H02213183A JP 3395889 A JP3395889 A JP 3395889A JP 3395889 A JP3395889 A JP 3395889A JP H02213183 A JPH02213183 A JP H02213183A
Authority
JP
Japan
Prior art keywords
conductivity type
layer
active layer
inp
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3395889A
Other languages
Japanese (ja)
Inventor
Yoichi Sasai
佐々井 洋一
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3395889A priority Critical patent/JPH02213183A/en
Publication of JPH02213183A publication Critical patent/JPH02213183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce astigmatism by providing a region of a low retractive index on the lateral sides in the vicinity of a stripe-shaped active layer by diffusing impurities of a second conductivity type from the surface of an (AlxGa1-x)InP clad layer of the second conductivity type having a projecting part, in a double hetero structure constructed of an (AlxGa1-X)InP clad layer of a first conductivity type, an InGaP active layer and said clad layer of the second conductivity type formed which are formed on a GaAs substrate of the first conductivity type. CONSTITUTION:An (AlxGa1-x)InP clad layer 13 of a first conductivity type (0<x<=1), an (AlyGa1-y)InP active layer 14 (0<=y<x, z) and an (AlzGa1-z)InP clad layer 15 of a second conductivity type (0<z<=1) having a stripe-shaped projecting part are formed on a substrate 11 of the first conductivity type, so that a double hetero structure be constructed. Impurities of the second conductivity type are diffused from the surface on the lateral sides of the projecting part of the clad layer 15 of the second conductivity type and on the outside of said projecting part into the active layer except the part of this layer just under the projecting part and into the clad layer 13 of the first conductivity type, and thereby a region 20 is formed. According to this constitution, a difference in the refractive index in the horizontal direction can be made large for junction in the vicinity of the active layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、可視光領域でレーザ発振する半導体レーザお
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser that oscillates in the visible light region and a method for manufacturing the same.

従来の技術 (AlxGaIK ”’t −X )0.5 ”0.5
P系化合物半導体装置GaAg基板に格子整合しながら
直接遷移型で禁止帯幅が1.9 eVから2,36vま
での範囲で組成Xを変えながら変化させることができる
。この為。
Conventional technology (AlxGaIK"'t-X)0.5"0.5
The P-based compound semiconductor device is a direct transition type device that is lattice matched to a GaAg substrate, and the forbidden band width can be varied while changing the composition X in the range from 1.9 eV to 2,36 V. For this reason.

この混晶系を用すたダブルヘテロ構造の半導体レーザは
波長0.68μmから0.58μmまで発光する魅力あ
る材料であυ最近活発に研究開発されている。この系の
半導体レーザの利用分野は波長が短いため記録密度の向
上を狙ったコンパクトディスクや光デイスク用光源とし
て有望視されている。
A double heterostructure semiconductor laser using this mixed crystal system is an attractive material that emits light at a wavelength of 0.68 μm to 0.58 μm, and has been actively researched and developed recently. Since this type of semiconductor laser has a short wavelength, it is considered promising as a light source for compact disks and optical disks that aim to improve recording density.

この系の半導体レーザの一例として第4図に示す構造で
波長670μmの赤色レーザが得られている(第20同
周体素子材料コンフルンス、D−3−3,1988)。
As an example of this type of semiconductor laser, a red laser with a wavelength of 670 .mu.m has been obtained with the structure shown in FIG. 4 (20th Confluence of Element Materials, D-3-3, 1988).

11はn型GaAs基板、12はn型OaムSバッフ1
層、13ばn型(AlxGaIG、7G飄S ) 0.
5 ”0.S Pクラッド層、14はKn  Ga  
P活性層、15はp型(AlxGa”0.7”0,1 
)0,5o、s   o、s Xn  Pクラッド層、16はp型Ino、Gao、P
層。
11 is an n-type GaAs substrate, 12 is an n-type OAM S buffer 1
Layer, 13ban type (AlxGaIG, 7G S) 0.
5”0.S P cladding layer, 14 is Kn Ga
P active layer, 15 is p type (AlxGa"0.7"0,1
)0, 5o, s o, s Xn P cladding layer, 16 is p-type Ino, Gao, P
layer.

17はp型Gaム8埋め込み層、18はn型電極。17 is a p-type Ga 8 buried layer, and 18 is an n-type electrode.

19はp型電極である。この構造の特徴はp型りラッド
層16に設けたメサ部と、メサ外部に設けた活性層14
より屈折率が大きなp型CaAs層17により、接合に
対して水平方向に実効屈折率差をつけ、また、p型Ga
As層は光吸収層として拗き、高次モードを抑制し横モ
ードの安定化を図っている。そのため、高出力化が可能
となり安定な光−電流特性が得られている。この素子の
成長は一般に減圧有機金属気相成長法(MOVPE)で
行っている。しかしながら、この素子は吸収層を用いた
反相折率導波型であるため、出射角は一般に水平方向で
7〜8°、垂直方向で30〜40°で楕円状のビーム形
状で1通常のストライプ型レーザと同様非点収差が約4
0μmと大きく光ディスクやコンパクトディスクなどの
記録用光源としては使用上難点がある。
19 is a p-type electrode. This structure is characterized by a mesa portion provided in the p-type rad layer 16 and an active layer 14 provided outside the mesa.
The p-type CaAs layer 17, which has a larger refractive index, creates an effective refractive index difference in the horizontal direction with respect to the junction.
The As layer serves as a light absorption layer, suppressing higher-order modes and stabilizing transverse modes. Therefore, high output is possible and stable photo-current characteristics are obtained. The growth of this device is generally performed by low pressure metal organic vapor phase epitaxy (MOVPE). However, since this element is an antiphase refractive index waveguide type using an absorption layer, the output angle is generally 7 to 8 degrees in the horizontal direction and 30 to 40 degrees in the vertical direction, and the beam shape is elliptical. Similar to striped lasers, astigmatism is approximately 4
It is large, 0 μm, and is difficult to use as a recording light source for optical discs, compact discs, etc.

発明が解決しようとする課題 以上のように従来の技術においてはAlGa1nP系の
半導体レーザは反相折率導波型のため非点収差が大きい
という問題点がある。
Problems to be Solved by the Invention As described above, the conventional technology has a problem in that the AlGa1nP semiconductor laser has a large astigmatism because it is of the antiphase index guided type.

課題を解決するための手段 本発明によれば、第1の導電型基板上に第1の導電型の
(AlxGa1xGa、−x) InP  り−y 、
、ド層(0<)C≦1)。
Means for Solving the Problems According to the present invention, (AlxGa1xGa, -x) InP of a first conductivity type is formed on a substrate of a first conductivity type.
, de layer (0<)C≦1).

(AlyGa1−、)InP活性層(0≦y<x、z)
およびストライプ状の凸部を有する第2の導電型の(A
lxGal、 Ga、−、) InPクラッド層(0<
z≦1)を形成してなるダブルヘテロ構造であって、第
2の導電型り5ラド層の凸部側面ならびに凸部外の表面
から、前記凸部直下の活性層を除く活性層ならびに第1
の導電型クラッド層中まで第2の導電型クラッド層中ま
で第2の導電型の不純物が拡散された領域を具備した半
導体レーザである。更にその作製方法をMovpx法に
よシ活性層の成長温度を630℃から700℃の範囲で
作製する。
(AlyGa1-,)InP active layer (0≦y<x, z)
and a second conductivity type (A
lxGal, Ga, -,) InP cladding layer (0<
z≦1), from the side surface of the convex part of the second conductivity type 5-rad layer and the surface outside the convex part, the active layer excluding the active layer directly under the convex part, and the active layer 1
This semiconductor laser includes a region in which impurities of a second conductivity type are diffused into the cladding layer of the second conductivity type. Further, the manufacturing method is Movpx method, and the growth temperature of the active layer is in the range of 630°C to 700°C.

作用 上述の本発明による手段を用いると、容易に屈折率導波
型の半導体レーザが得られ、安定な単一横モードが得ら
れるだけでなく出射角は垂直方向は30〜40’と変わ
らないが水平方向は16〜20°と大きくなってアスペ
クト比が向上し、また、非点収差唸数μmと改善される
。更に、活性層の成長温度を630’Cから700 ’
Cの範囲で成長を行うことによって、活性層近傍におい
て接合に対して水平方向の屈折率差をより大きくとるこ
とが可能となり、よシ安定な単一モード発振ならびに低
非点収差の特性を持つ半導体レーザが得られる。
Effect: By using the means according to the present invention described above, a refractive index guided semiconductor laser can be easily obtained, and not only a stable single transverse mode can be obtained, but also the emission angle remains unchanged at 30 to 40' in the vertical direction. The horizontal direction is increased to 16 to 20 degrees, improving the aspect ratio, and the astigmatism is improved to a few micrometers. Furthermore, the growth temperature of the active layer was changed from 630'C to 700'C.
By growing within the C range, it is possible to create a larger horizontal refractive index difference with respect to the junction near the active layer, resulting in highly stable single mode oscillation and low astigmatism. A semiconductor laser is obtained.

実施例 (実施例1) 以・下、本発明の実施例を図面を用いて説明する。Example (Example 1) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の半導体レーザの構造ψ面図を示す。な
お1図中の番号は説明を簡単にするため従来例の第4図
と同じにしている。、11けn型Oaム基板、12はn
型QaAsバッ7ツ層(厚みd〜0.5μm、キャリア
濃in〜I Xl 018cyx″)、13はn型(A
lxGal、 Ga、−、) XnP クラット層((
1〜1 μm  、 n〜5X1 o17c=*−3)
14はInGaP 活性層(d〜0.1 am 、アン
ドープ)、15は順メサ形状のp型(AlxGaeX”
 1−X )InPり−Pッド層((INo、7 μm
 、 p〜5 X 10”clll−3)、16はp型
InGaP層(d 〜0.511m 。
FIG. 1 shows a ψ plane view of the structure of the semiconductor laser of the present invention. Note that the numbers in FIG. 1 are the same as in FIG. 4 of the conventional example to simplify the explanation. , 11 is n-type OAM substrate, 12 is n
Type QaAs batt 7 layer (thickness d ~ 0.5 μm, carrier concentration in ~ IXl 018cyx''), 13 is n type (A
lxGal, Ga, -,) XnP crat layer ((
1~1 μm, n~5X1 o17c=*-3)
14 is an InGaP active layer (d~0.1 am, undoped), 15 is a normal mesa-shaped p-type (AlxGaeX"
1-X) InP layer ((INo, 7 μm
, p ~ 5 x 10''clll-3), 16 is a p-type InGaP layer (d ~ 0.511 m).

p〜2X1018i”1l−5)l11 T社p型GI
Lム8コンタクト層(d〜3μ@ 、 p〜3X10′
8CM ’) 。
p~2X1018i”1l-5)l11 Company T p type GI
Lm 8 contact layer (d~3μ@, p~3X10'
8CM').

18はn型ムuGe / Ni電極、19はp型ムuZ
n電極である。また、p型クラッド層表面から拡散した
p型Zn拡散層(深さ1μm、p〜5X10”1−5)
が第1@のように形成されている。
18 is n-type MuGe/Ni electrode, 19 is p-type MuZ
It is an n-electrode. In addition, a p-type Zn diffusion layer (depth 1 μm, p~5X10”1-5) diffused from the surface of the p-type cladding layer.
is formed like the first @.

p型InGaP層16の福は3μmである。したがって
、Zn拡散されていない置載の活性層のストライプ幅は
約2μmである。
The thickness of the p-type InGaP layer 16 is 3 μm. Therefore, the stripe width of the mounted active layer without Zn diffusion is about 2 μm.

第1図の素子の電流通路はへテロ障壁の小さいp型Ga
ムS層17からp型I nGa P層16を通ってp型
りラッド層15.InGaP活性層14へと注入される
。これはp型InGaP層18によってp型GaムSコ
ンタクト層17よりp型クラッド層17との間の電気抵
抗低減のためである。第1図の構造の特徴は、まず従来
の第4図と同様、電流狭窄は上述のようにヘテロ障壁差
を利用してPMコンタクト層17とp型クラッド層16
によって行われる。先導波はストライプ状のメサに形成
されたクラッド層16において行われる。っtDP型拡
散拡散層20って活性層14内に高濃度p型領域100
とアンドープ領域101間の屈折率差が生じる。つiシ
、屈折率は波長870nlE1に対してアンドープ層1
01は3.58.高濃度層1ωは3.67で、高濃度p
型偵域の方が屈折率が約3X10  1度小さくなシ、
本発明の構造は従来の構造と異なりm折率導波型レーザ
となる。したがって、反屈折率導波型と異な多接合に対
して垂直方向だけでなく水平方向も導波する光の波面は
曲がることなく、出射光は共振器端面で理想的に回折さ
れる。したがって、基本的に非点収差は小さく抑えられ
る。実際に作製した素子の特性はしきい値電流60rI
Lム、出射角は水平方向10″以上、垂直方向306.
非点収差10μm以下のものが得られた。一方、第2図
はp型りヲッド層上にn型G&ムS電流ブロック層21
を設けている。
The current path in the device shown in Figure 1 is made of p-type Ga, which has a small heterobarrier.
The p-type Rrad layer 15. It is implanted into the InGaP active layer 14. This is because the p-type InGaP layer 18 reduces the electrical resistance between the p-type GaM S contact layer 17 and the p-type cladding layer 17 . The structure shown in FIG. 1 is characterized by the fact that, like the conventional structure shown in FIG.
carried out by The leading wave is generated in the cladding layer 16 formed in a striped mesa. The tDP type diffusion layer 20 is a highly doped p-type region 100 in the active layer 14.
A difference in refractive index occurs between the undoped region 101 and the undoped region 101 . The refractive index of the undoped layer is 1 for the wavelength 870nlE1.
01 is 3.58. The high concentration layer 1ω is 3.67, and the high concentration p
The refractive index of the type reconnaissance area is about 3x10, which is 1 degree smaller.
The structure of the present invention is an m-index waveguide laser, unlike the conventional structure. Therefore, unlike the anti-refractive index waveguide type, the wavefront of light guided not only in the vertical direction but also in the horizontal direction with respect to the multi-junction is not bent, and the emitted light is ideally diffracted at the resonator end face. Therefore, astigmatism can basically be kept small. The characteristics of the actually manufactured device are that the threshold current is 60 rI.
The output angle is 10" or more in the horizontal direction and 306" in the vertical direction.
An astigmatism of 10 μm or less was obtained. On the other hand, FIG. 2 shows an n-type G&M S current blocking layer 21 on the p-type raw layer.
has been established.

これによって、高電圧駆動する場合の活性層以外に流れ
る電流を阻止する役目を担っており高出力動作の折には
有利となる。
This serves to prevent current from flowing to areas other than the active layer when driven at a high voltage, and is advantageous when operating at a high output.

次に1本発明の実施例の構造の作製方法について第3図
を用いて述べる。まず、第3図(!L)においてmov
px法もしくはMBE法を用いてn型G1ムS基板11
上にn型GILA!iバ、ファ層12゜n型クラッド層
13、InGILP活性層14.p型クラッド層16な
らびにp型I nGIP層16全16する。次に、第3
図山)のようにストライプ状の幅3μmの5iO2Jを
フォトリングラフィ法により形成する。第3図(c)で
硫設系液でp型InGaPR1eならびにp型クラッド
層15をメサエッチングする。そして、に3図町でS 
x Oz +i 22をマスク托してメサエッチング表
面からZn拡散して拡散層20を深さ約1μm形成する
Next, a method for manufacturing a structure according to an embodiment of the present invention will be described with reference to FIG. First, in Figure 3 (!L), mov
N-type G1 S substrate 11 using px method or MBE method
N-type GILA on top! i-bar, F layer 12°, n-type cladding layer 13, InGILP active layer 14. A p-type cladding layer 16 and a p-type InGIP layer 16 are formed. Next, the third
5iO2J stripes with a width of 3 μm are formed by photolithography as shown in Fig. 2). In FIG. 3(c), the p-type InGaPR 1e and the p-type cladding layer 15 are mesa-etched using a sulfur-based solution. Then, in 3-machi, S
Using xOz+i 22 as a mask, Zn is diffused from the mesa etched surface to form a diffusion layer 20 with a depth of about 1 μm.

Zn拡散条件は拡散ソースZnP2および赤リンを石英
アンプル中へエビウニノー−とともに真空封入(真空度
<I X 10−’ torr) して600’(,1
0分間で行なった。
The Zn diffusion conditions were as follows: the diffusion source ZnP2 and red phosphorus were sealed together with shrimp in a quartz ampoule under vacuum (vacuum degree <I
This was done in 0 minutes.

その後、拡散表面の熱ダメージ層をH2504系液で軽
くエツチングした後、直ちにウェハーを成長室に導入し
、第3図(6)でp型G&ムS層17を埋め込み成長す
る。最後に第3図(f’)で電極19.20を形成して
作製プロセスは終了する。
After that, the heat-damaged layer on the diffusion surface is lightly etched with a H2504-based solution, and then the wafer is immediately introduced into a growth chamber, where a p-type G&M S layer 17 is buried and grown as shown in FIG. 3(6). Finally, as shown in FIG. 3(f'), electrodes 19 and 20 are formed, and the manufacturing process is completed.

(実施例2) 次に、本発明の第2の実施例について述べる。(Example 2) Next, a second embodiment of the present invention will be described.

有機金1気相成長法でInGaPを成長する場合。When growing InGaP using organic gold 1 vapor phase growth method.

成長温度によ勺組成が同一でも禁止帯幅が異なることが
報告されている。例えば、5明ら、アプライド フィツ
クス レター 第60巻、P、θ73(1987)。こ
の論文では成長温度660℃近傍で成長した結晶は■族
副格子上のGaとInの配列に規則性が生じ、所謂自然
超格子が形成される(オーダリング)。実際ランダムに
配列された場合(ディスオーダリング)とくらべ禁止帯
幅は約5QmeV小さくなる。我4の実験ではオーダリ
ングの生じる成長温度は630〜700 ’Cであった
。したがって、第1図の本発明の第1の実施例の構造に
おいて、活性層14を有機金1気相成長法で成長温度e
so’c近傍で成長するとオーダリングの状態の結晶構
造のものが得られ、Zn拡散によってZn拡散領域2o
中にある活性層14は結晶構造がくずれ、ディスオーダ
になる。よって。
It has been reported that the forbidden band width varies depending on the growth temperature even if the grain composition is the same. For example, 5 Ming et al., Applied Fixtures Letters Vol. 60, P, θ73 (1987). In this paper, crystals grown at a growth temperature of around 660° C. exhibit regularity in the arrangement of Ga and In on the group II sublattice, forming a so-called natural superlattice (ordering). In fact, compared to the case of random arrangement (disordering), the forbidden band width is about 5 QmeV smaller. In our fourth experiment, the growth temperature at which ordering occurred was 630 to 700'C. Therefore, in the structure of the first embodiment of the present invention shown in FIG.
When grown in the vicinity of so'c, an ordered crystal structure is obtained, and the Zn diffusion region 2o is formed by Zn diffusion.
The crystal structure of the active layer 14 therein collapses and becomes disordered. Therefore.

メサストライプ中の活性層14の両側には禁止帯幅の大
きな、所謂屈折率の小さな領域が形成された屈折高専波
型構造が得られる。実効屈折率差はZn拡散をeoo℃
で行った場合、拡散濃度は約5 X I Q”cM−’
  で波長e70μrrt、クラッド層の組Ff、X=
0.6とした時、約8×10  となり通常の埋め込み
型構造と変わり無いものが得られる。したがって、接合
に対し水平の出射角を制御することが可能となるだけで
なく、屈折率導波型であるため非点収差の小さな半導体
レーザが作製可能となる。実際に素子を作製したところ
、オーダリングの結晶構造を有する活性層14のストラ
イプ幅が2μ扉に対して、しきい値電流が601ム、出
射角は水平方向16〜2o0.垂直方向30′で従来の
素子に比べ真円に近く、低非点収差1〜2μmのものが
得られた。また、電流だ対する光出力特性も改善され高
電流注入においても槓モードの安定な特性であった。
A refractive harmonic wave structure is obtained in which so-called low refractive index regions with a large forbidden band width are formed on both sides of the active layer 14 in the mesa stripe. The effective refractive index difference is eoo°C due to Zn diffusion.
When carried out with
, wavelength e70μrrt, cladding layer set Ff, X=
When it is 0.6, it becomes about 8×10 2 , which is the same as a normal embedded structure. Therefore, it is not only possible to control the horizontal emission angle with respect to the junction, but also it is possible to manufacture a semiconductor laser with small astigmatism because it is of the refractive index waveguide type. When a device was actually fabricated, the stripe width of the active layer 14 having an ordered crystal structure was 2 μm, the threshold current was 601 μm, and the output angle was 16 to 2 μm in the horizontal direction. An element closer to a perfect circle in the vertical direction 30' than conventional elements and with a low astigmatism of 1 to 2 μm was obtained. In addition, the optical output characteristics with respect to current were improved, and the characteristics were stable in the ram mode even at high current injection.

発明の効果 以上のようK、まず第1に、第1の導電型のGaAg基
板1に第1の導電型の(AlxGa’)C”1−X)1
nPクラッド層、 InGaP活性層、ならびに凸部を
有する第2の導電型の(AlxGa1xGa t−x 
) I nPクラッド層からなるダブルヘテロ構造で、
第2の導電型のクラッド層表面から第2の導電型の不純
物を拡散してストライプ状の活性層近傍の側面に低屈折
率領域を設けて、屈折率導波型半導体レーザを作製する
。すると、出射角は接合に対して水平方向は従来の素子
に比べ大きくなる。また、非点収差は10μm以下とな
り改善が見られた。
Effects of the Invention As described above, first, (AlxGa')C"1-X)1 of the first conductivity type is deposited on the GaAg substrate 1 of the first conductivity type.
An nP cladding layer, an InGaP active layer, and a second conductivity type (AlxGa1xGa t-x
) A double heterostructure consisting of an I nP cladding layer,
A second conductivity type impurity is diffused from the surface of the second conductivity type cladding layer to provide a low refractive index region on the side surface near the striped active layer, thereby manufacturing a refractive index waveguide semiconductor laser. Then, the output angle in the horizontal direction with respect to the junction becomes larger than that of the conventional element. Furthermore, the astigmatism was 10 μm or less, which was an improvement.

第2に、活性層の成長温度をeao〜700℃近傍で成
長を行うことによりストライプ状の活性層において拡散
領域を境にして実効屈折率差を大きくとることが可能と
なって、非点収差が1〜2μmとより小さく、−1だ水
平方向の出射角もより大きくとることが可能となった。
Second, by growing the active layer at a growth temperature of around eao ~ 700°C, it is possible to increase the effective refractive index difference between the diffusion regions in the striped active layer, which reduces astigmatism. is as small as 1 to 2 μm, and it is now possible to obtain a larger horizontal output angle by -1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の半導体レーザの断面図
、第2図は本発明の第1の実施例の半導体レーザの断面
図、第3図は第1図の素子の作製工程断面図、第4図は
従来の実施例の断面図である。 11・・・・・・n塁Gaム8基板、13・・・・・・
nを(AlxGa/xG″+−x)InPクラッド層、
 14−−−−−−pti(五1xGa、−x) In
Pクラッド層、 21−−−−−− n型Gaムgt流
ブロック層、20・・・・・・Zn拡散層。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名20
−・−P!城秋管 第 図 第 図 (G
1 is a cross-sectional view of a semiconductor laser according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a semiconductor laser according to a first embodiment of the present invention, and FIG. 3 is a manufacturing process of the device shown in FIG. 1. Cross-sectional view, FIG. 4 is a cross-sectional view of a conventional embodiment. 11...N base Ga 8 board, 13...
n is (AlxGa/xG''+-x)InP cladding layer,
14------pti(51xGa, -x) In
P cladding layer, 21-----n-type Ga-mutant flow blocking layer, 20...Zn diffusion layer. Name of agent: Patent attorney Shigetaka Awano and 1 other person20
-・-P! Joshukan diagram diagram (G

Claims (3)

【特許請求の範囲】[Claims] (1)第1の導電型の化合物半導体基板上に第1の導電
型の(Al_xGa_1_−_x)InPクラッド層(
0<x≦1)、(Al_yGa_1_−_7)InP活
性層(0≦y<x、z)およびストライプ状の凸部を有
する第2の導電型の(Al_zGa_1_−_2)In
Pクラッド層(0<z≦1)を有し、前記第2の導電型
クラッド層表面から、前記凸部直下に位置する前記活性
層を除く前記活性層ならびに第1の導電型クラッド層中
まで第2の導電型の不純物が拡散された領域を具備した
ことを特徴とする半導体レーザ。
(1) A first conductivity type (Al_xGa_1_-_x)InP cladding layer (
0<x≦1), (Al_yGa_1_-_7)InP active layer (0≦y<x, z) and a second conductivity type (Al_zGa_1_-_2)In having striped convex portions.
having a P cladding layer (0<z≦1), from the surface of the second conductivity type cladding layer to the active layer excluding the active layer located directly below the convex portion and into the first conductivity type cladding layer; A semiconductor laser comprising a region in which a second conductivity type impurity is diffused.
(2)第1の導電型化合物半導体基板上に第1の導電型
の(Al_xGa_1_−_x)InPクラッド層(0
<x≦1)、(Al_yGa_1_−_y)InP(0
≦y<1)活性層および第2の導電型の(Al_zGa
_1_−_z)InPクラッド層(0<z≦1)を形成
してなるダブルヘテロ構造を積層する第1の成長工程と
、第2の導電型のクラッド層をストライプ状にエッチン
グして凸部を形成する工程と、前記第2の導電型クラッ
ド層表面から前記凸部直下に位置する活性層を除く前記
活性層ならびに第1の導電型クラッド層まで第2の導電
型の不純物を拡散する工程と、前記拡散工程の後に前記
基板と格子整合する化合物半導体を成長する工程を具備
した半導体レーザの製造方法。
(2) A first conductivity type (Al_xGa_1_-_x) InP cladding layer (0
<x≦1), (Al_yGa_1_-_y)InP(0
≦y<1) active layer and second conductivity type (Al_zGa
_1_-_z) The first growth step of laminating a double heterostructure formed by forming an InP cladding layer (0<z≦1) and etching the second conductivity type cladding layer in a stripe shape to form convex portions. and a step of diffusing impurities of a second conductivity type from the surface of the second conductivity type cladding layer to the active layer excluding the active layer located directly below the convex portion and the first conductivity type cladding layer. . A method for manufacturing a semiconductor laser, comprising the step of growing a compound semiconductor lattice-matched to the substrate after the diffusion step.
(3)有機金属気相成長法で成長温度630℃から70
0℃までの範囲で(Al_yGa_1_−_y)InP
活性層(0≦y<1)を成長することを特徴とする特許
請求の範囲第2項記載の半導体レーザの製造方法。
(3) Growth temperature from 630°C to 70°C using organometallic vapor phase epitaxy
(Al_yGa_1_-_y)InP in the range up to 0℃
3. The method of manufacturing a semiconductor laser according to claim 2, wherein an active layer (0≦y<1) is grown.
JP3395889A 1989-02-14 1989-02-14 Semiconductor laser and manufacture thereof Pending JPH02213183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3395889A JPH02213183A (en) 1989-02-14 1989-02-14 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3395889A JPH02213183A (en) 1989-02-14 1989-02-14 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02213183A true JPH02213183A (en) 1990-08-24

Family

ID=12401000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3395889A Pending JPH02213183A (en) 1989-02-14 1989-02-14 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02213183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110192A (en) * 1991-10-18 1993-04-30 Kubota Corp Semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110192A (en) * 1991-10-18 1993-04-30 Kubota Corp Semiconductor laser element

Similar Documents

Publication Publication Date Title
JPS6180882A (en) Semiconductor laser device
JPH09199791A (en) Optical semiconductor device and its manufacture
JPS61168981A (en) Semiconductor laser device
JPH0462195B2 (en)
JPH02213183A (en) Semiconductor laser and manufacture thereof
JPH077232A (en) Optical semiconductor device
JPS6046087A (en) Distributed bragg reflection type semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH0278290A (en) Semiconductor laser device
JPH0414277A (en) Semiconductor laser and its manufacture
JP2973215B2 (en) Semiconductor laser device
JPS5916432B2 (en) Composite semiconductor laser device
JPH03174793A (en) Semiconductor laser
JP3903229B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0728093B2 (en) Semiconductor laser device
JPH0373584A (en) Semiconductor laser device
JP2001077466A (en) Semiconductor laser
JPH0728094B2 (en) Semiconductor laser device
JPH09307187A (en) Secondary harmonic component generating semiconductor laser
JPH11168256A (en) Light-emitting element and its manufacturing method
JPH0685379A (en) Semiconductor laser element and manufacture thereof
JPS61134091A (en) Ingaasp visible light semiconductor laser
JPH04120788A (en) Semiconductor laser
JPH04305990A (en) Manufacture of semiconductor laser element
JPH01241884A (en) Multiple quantum well semiconductor laser